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Abstract: Epilepsy is one of the most common brain disorders. Electroencephalogram (EEG) is widely used
in epilepsy diagnosis and treatment, with it the epileptic spikes can be observed. Tensor decomposition-based
feature extraction has been proposed to facilitate automatic detection of EEG epileptic spikes. However, tensor
decomposition may still result in a large number of features which are considered negligible in determining expected
output performance. We proposed a new feature selection method that combines the Fisher score and p-value
feature selection methods to rank the features by using the longest common sequences (LCS) to separate epileptic
and non-epileptic spikes. The proposed method significantly outperformed several state-of-the-art feature selection
methods.
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1. Introduction

Epilepsy is a severe neurological disorder
and is one of the most common brain disorders,
accounting for 1% of all human diseases.
According to a study in 2010 [1], there are
about 50 millions people worldwide suffering
from epilepsy, among them about 40 millions
live in developing countries and 80 − 90% of
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these people are not treated [2, 3]. Vietnam is
one of those countries with a high incidence of
epilepsy. According to [4], 0.44% of the Vietnam
population are affected by epilepsy.

In epilepsy diagnosis and treatment, doctors
often rely on observed seizure or epileptiform
patterns (such as shape and density of spikes,
sharp waves, and spike-wave complexes) in
the electroencephalogram (EEG) of patients to
determine the type of epilepsy and the affected
area of the brain.

In recent years, there have been many studies
on automatic detection of epileptic spikes [5–

47



48 N.T.A. Dao et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 35, No. 2 (2019) 47–59

13]. These automatic epileptic spike detection
methods mostly analyze EEG data on a single
channel at a time. In reality, epileptic spikes on
adjacent channels are likely to occur at the same
time. Therefore, simultaneous multi-channel
processing of EEG signals allows exploitation of
the spatial correlation between epileptic spikes
for improving the efficiency of epileptic spike
detection.

While raw multi-channel EEG signals are
two-dimensional, multi-channel EEG data can
be represented by tensors of higher dimensions,
with the dimensions correspond to such domains
as time, frequency, scale, channel, object,
group, etc. Tensor analysis has been utilized
for automatic seizure detection [14–18]. An
approach for automatic epileptic spike detection
based on tensor decomposition was proposed
in [19].

The purpose of tensor decomposition in
multi-channel EEG signal processing is for
feature extraction: the EEG data is reduced to
a set of feature vectors. Another step, called
feature selection, may be needed to further reduce
the size of the feature vectors. A number of
algorithms have been proposed for addressing
the problem of feature selection so far. Recent
surveys on feature selection are found in [20–
25]. According to selection strategy perspective,
feature selection algorithms can be categorized
into three groups: filter, wrapper and embedded
methods [20]. Filtering methods rank the features
and then select the features that have high
ranking scores before feeding them into learning
algorithms. In the methods of the wrapper group,
the features are scored using a learning algorithm,
while in the embedded methods feature selection
is incorporated with the training process. It is
note that the filter methods are independent of
any learning algorithms, while feature selection
methods in the two latter groups rely highly
on performance of learning algorithms for
measuring the relevance of features. Feature

selection methods may be categorized into
three groups: supervised, unsupervised, and
semi-supervised methods. Supervised feature
selections are generally for the problems of
classification and regression. The main idea is
to select a subset of extracted features that can
maximize the relevance to the label information
or regression targets [20, 21]. Unsupervised
feature selections are generally for clustering
problems. Different from supervised methods,
they usually look for alternatives to evaluate
feature relevance from unlabeled data such as
the locality/variance preserving ability [26, 27].
Semi-supervised feature selections aim to utilize
both labeled and unlabeled data [25]. The
algorithms in this group often exploit the label
information of labeled data and data distribution
of unlabeled data to evaluate the important of
features [28]. These methods are widely used
in applications of machine learning [21, 23]
and pattern recognition [29, 30], including EEG
signal classification [31–34]. In [31], Garrett et
al. proposed a feature selection method based
on genetic algorithms and successfully applied
it to EEG during finger movement. Maryann
et al. used hybrid feature selection for seizure
prediction focused on precursors [32]. Robert
Jenke et al. used not only multivariate feature
selection methods but also univariate selection
methods for emotion recognition from EEG [33].
John Atkinson et al. combined a mutual
information-based feature selection method and
kernel classifiers in order to enhance the accuracy
of the emotion classification [34]. Although these
methods improve more or less the performance
of EEG classifications, they do not fully consider
the combination of different feature selection
methods which may further improve the overall
accuracy of the classifiers and detectors.

In [35], a multi-channel system for EEG
epileptic spike detection base on tensor
decomposition was proposed. The resulting
set of features, however, is highly redundant in
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determining the expected output (e.g., detected
epileptic spikes). This motivates us to look for a
feature selection model relevant to EEG epileptic
datasets. We proposed a new method of feature
selection that combines Fisher score and p-value
to rank the features by using longest common
sequences (LCS). The proposed method was
compared with several well-known methods,
including: Fisher score [36] and Laplacian
score [37], Unsupervised Discriminative Feature
Selection (UDFS) [38], Infinite Latent Feature
Selection (ILFS) [39], and Local Learning-based
Clustering Feature Selection (LLCFS) [40]. To
the best of our knowledge, this study is the first
work aiming to combine two widely used feature
selection methods to enhance the effectiveness of
dimensionality reduction in the problem of EEG
classification.

The paper is organized as follows.
Section 2 provides the background on tensor
decomposition and our recently proposed multi-
channel EEG epileptic spike detection. The
proposed method is described in Section 3.
Section 4 shows experimental results and
discussions of the results. Finally, Section 5
concludes the paper.

2. Preliminaries

2.1. Notations and Tensor Decomposition

The notations of mathematical symbols used
in this paper are listed in Table 1 [35]. A tensor is
a generalization of vectors, matrices and can be
seen as a multidimensional array [41]. Similar
to matrix decomposition, tensor decomposition
factorizes a tensor into a set of matrices called
loading factors, and one small core tensor. Two
well-known decomposition models are canonical
decomposition (CP)1 and Tucker. The main

1Canonical decomposition is also called parallel factor
analysis (PARAFAC).

Table 1: Mathematical Symbols

a, a,A,A scalar, vector, matrix and tensor
AT the transpose of A
A† the pseudo-inverse of A
A(k) the mode-k unfolding of A
‖A‖F the Frobenius norm of A
~ the Hadamand product
� the devision of two matrices

A ⊗ B the Kronecker product of A and B

A ×k U
the k-mode product of A
with a matrix U

A�B the concatenation of A and B
〈A,B〉 the inner product of A and B

difference is that the former yields a diagonal
core tensor, while the latter does not require a
diagonal core, but a set of orthogonal factors.
Decomposition of an n-way tensor can be
mathematically formulated as follows:

X = G ×1 U1 ×2 U2 · · · ×n Un, (1)

where X ∈ RI1×I2···×In is the decomposing tensor,
G ∈ Rr1×r2···×rn is the decomposed core tensor
of X , and {Ui}

n
i=1,Ui ∈ RIi×ri are the set of

decomposed orthogonal factors.
In this work, we focus on nonnegative Tucker

decomposition (NTD) in which both the core
tensor G and orthogonal factors Ui are required to
be nonnegative. In particular, NTD can be stated
as the following minimization problem:

min
G,Ui
‖X − G ×1 U1 · · · ×n Un‖

2
F

s.t. G ≥ 0,Ui ≥ 0,∀i = 1, 2, . . . n.
(2)

The solution of (2) can be obtained by using
alternative minimization in which a variable (e.g.,
factor U1) is optimized while the others are
kept fixed. We here re-introduce a standard
NTD algorithm [42], which is used in our
recently proposed multi-channel EEG epileptic
spike detection system [35]. Particularly, the
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objective function of (2) can be reformulated as
arg min

Ui≥0
fU =

1
2

n∑
j=1

‖X( j) − U jS j‖
2
F ,

arg min
G≥0

fG =
1
2
‖ vec(X ) − F vec(G)‖22,

with F = ⊗U j. The update rules for estimating
the factors and the core tensor are given by

Ui = Ui − α~
∂ fU
∂Ui

,

G = G − α~ ∂ fG
∂G

,

where the step size α is computed by α = Ui �

(UiX(i)GT
(i)).

2.2. A Multi-channel EEG Epileptic Spike
Detection System

In this work, we inherit our recently proposed
multi-channel system for EEG epileptic spike
detection in [35]. Assume that we have
the pre-processed multi-channel EEG recording
at hand and input it to the system. The
system then processes it in four main stages:
data representation, feature extraction, feature
selection, and classification.

Data representation
In this stage, each multi-channel EEG

segment of K channels and I data samples around
a spike, which is labeled as epileptic or non-
epileptic, are analyzed by the continuous wavelet
transform (CWT). We then obtain a K time-
frequency representation matrices of sizes I × J
for an EEG segment, with J being the number of
wavelet scales. These matrices are concatenated
into a three-way EEG tensor X ∈ RI×J×K

+ (i.e.,
time × scale × channel). EEG tensors formed
from epileptic spikes are called epileptic tensors,
X ep, and those from non-epileptic spikes are
called non-epileptic tensors, X nep.

Feature Extraction
In this second stage, we aim to find a feature

space F ep that can span the set of training
epileptic spikes. After that, both epileptic and
non-epileptic spikes are projected onto F ep to
produce the discriminant features.

In particular, the stage consists of the
following four steps. Firstly, we concatenate all
N1 training epileptic tensors X ep

1 , . . . ,X ep
N1

into a

single 4-way epileptic tensor X̃ ep ∈ RI×J×K×N1
+

as follows:

X̃ ep = X ep
1 �X ep

2 � · · ·�X ep
N1
.

Secondly, the multilinear rank [r1, r2, r3] of
the EEG tensor X̃ ep can be determined by solving
the following problems for i = 1, 2, 3:

ri
∆
= argmin

r
‖X(i) − UI×rΛr×rVr×JK‖22.

Thanks to the truncated HOSVD [43], the
rank ri can be selected as the number of ri

top eigenvalues of the corresponding covariance
matrix of X̃ ep.

Thirdly, we use NTD to decompose X̃ ep into
loading factors A ∈ RI1×r1

+ in the time domain,
B ∈ RI2×r2

+ in the wavelet scale domain, and C ∈
RI3×r3

+ in the spatial/channel domain, as

X̃ ep NTD
= G ×1 A ×2 B ×3 C ×4 D. (3)

The epileptic feature space is then given by

F = G ×4 D.

Finally, we project all training EEG tensors
X train

i onto the resulting epileptic feature space
F ep to produce the discriminant feature vector

fi = vec(X train
i ×1 A† ×2 B† ×3 C†).

Feature Selection
In this third stage, we use the Fisher score,

which is one of the most widely used method for
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feature selection [36], used to rank features. Let
F be the set of features obtained by NTD,

F = {f(i)}
r1·r2·r3
i=1 .

The objective is to find a linear combination
wT f such that the best separation can be
achieved. In particular, the Fisher discriminant
ratio is determined by maximizing the following
ratio of between-class variation and within-class
variation:

fFisher(w) =
σ2

between

σ2
within

=
[w(µ1 − µ2)]2

wT (Σ1 + Σ2)w
.

The Fisher score of each feature fi can then be
defined as the maximum separation w(i):

γ(fi)
∆
= w(i) =

N1(µi,1 − µi)2 + N2(µi,2 − µi)2

N1σ
2
i,1 + N2σ

2
i,2

.

In feature selection, each feature is selected
independently depending on its Fisher score so
that the higher the score the more significant the
feature is. After ranking all features based on
their Fisher scores, the top l features with highest
Fisher scores are selected to form the set of
selected features FFisher = {f(1), f(2), . . . , f(l)|f(i) ∈

F, i = 1, . . . , l}, for later use in classification.
Classification
In this final stage, selected features are

fed into a classifier producing a binary class
label as its output, deciding if the underlying
spike is epileptic or non-epileptic. Well-
known classifiers can be used for this tasks,
including support vector machine (SVM), k-
nearest neighbor (KNN) and naive bayes (NB)
model.

3. Proposed method

In this paper, we improve the multi-
channel system for EEG epileptic spike detection
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Fig. 1: Proposed combination of Fisher score and p-value
for feature selection in the multi-channel EEG Epileptic

Spike Detection System

proposed in [35] by replacing its feature selection
algorithm (i.e., using the Fisher score) by a new
method, which aims to combine two common
feature selection methods– the Fisher score and
the p-value–, to enhance the overall classification
accuracy of the automatic spike detection system.
The structure of the modified system is shown in
Fig 1.

We exploit the fact that an EEG dataset
usually include different components: brain
activities of interest such as epileptic spikes, and
activities without interest such as artifacts and
noise. In addition, tensor decomposition may
result in a huge number of the features; for
example, NTD would give r = r1 · r2 · r3 features.
As a consequence, the expected outputs (e.g.,
detected epileptic spikes) may not be determined
by a complete set of the resulting features, but
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depends only on a subset of relevant features.
This motivates us to look for a model of feature
selection relevant for EEG epileptic datasets.

In this stage, we apply the hypothesis
testing [44] on each feature, and compare
resulting p-values and Fisher scores [45] for
each feature to assess the effectiveness of the
classification. To select features, we propose to
combine the Fisher scores and the p-values to
rank the features by using the following selection
rule: a more significant feature is one that has
higher Fisher score and lower p-value. Since
the Fisher score and p-value of each feature
are calculated independently, it results in two
separate sequences, of Fisher scores and of p-
values. A solution to finding significant features
is to first sort these sequences and then find the
longest subsequence that is common to these two
sorted sequences. The latter can be done by
using the longest common subsequence (LCS)
algorithm [46].

Assume that we have extracted n features
from NTD, i.e., F = {f1, f2, . . . , fn}. Denote N1
and N2 the numbers of epileptic spikes and non-
epileptic spikes, respectively. Denote Ω1 and Ω2
are the classes consisting these epileptic spikes
and non-epileptic spikes, respectively. Let µi,c

and σi,c be the mean and standard deviation of
the i-th feature for class Ωc, c ∈ {1, 2}, µi and σi

be the mean and the standard deviation of the i-th
feature in the whole training dataset, mc and Σc

be the mean and covariance matrix of class Ωc.
Then, the proposed feature selection method is
composed of three main tasks. The first task is
to rank the features by using their Fisher scores,
as described in Section 2.2. The second task is
to compute p-value for each feature fi. The third
task is to combine Fisher scores and the p-values.
Next, we will describe the second and the third
tasks.

 

 

p = 0.05 

Reject H0 Reject H0 

Accept H0 Accept H0 
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Fig. 2: A p-value is the probability of an observed result
assuming that the null hypothesis H0 is true.

Feature selection using p-values

In hypothesis testing, p-value (probability
value) is the probability of observing a value as
unlikely or more unlikely than the value of the
test statistic when the null hypothesis is true [47],
as shown in Fig. 2. The higher value of p, the
lower the reliability of the result. A statistical
significance level α is generally used to evaluate
the results of hypothesis testing. When p is
smaller than the significance level, we can have
sufficient evidence to reject the hypothesis. In
medical applications, α is often chosen at 0.05,
0.01, or 0.001 [44]. In this work, the null
hypothesis H0 states that there is no difference
between the means of two groups (i.e., epileptic
spikes and non-epileptic spikes). For each feature
fi, the smaller the p-value of the feature the more
significant the feature is. Given a value α, if
α > p the test rejects the null hypothesis, and
vice versa. The t-test value for each feature f(i)
can be computed as follows:

t(f(i)) =
|µi,1 − µi,2|√

σ2
i,1/N1 + σ2

i,2/N2

. (4)

The higher the t-test value, the higher the
difference between the two means is. From the t-
test value, the corresponding p-value is obtainted
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by using the T-tables [44]. Therefore, by sorting
features according to their p-values, we obtain a
set of significant features Fp-val.

Feature selection using both Fisher scores and p-
values

To find the longest common subsequence
(LCS) of the two ranked feature sequences
FFisher and Fp-val obtained from the above steps
respectively based on Fisher score andp-value,
we use a dynamic programming algorithm, as
follows:

Let L be a table such that each entry L(i, j)
is the largest length of the common subsequence
between F(i)

Fisher ⊂ FFisher and F( j)
p-val ⊂ Fp-val,

i ≤ l1, j ≤ l2, where l1 and l2 are the lengths
of FFisher and Fp-val, respectively. Since the
solution for each subproblem L(i, j) depends on
the preceding subproblems L(i − 1, j),L(i, j − 1),
and L(i−1, j−1), the solution to finding the LCS
corresponds is found by recursively solving the
subproblems starting from L(0, 0), as follows

L(i, j) =L(i − 1, j) + 1, F(i)
Fisher = F( j)

p-val,

max
(
L(i − 1, j),L(i, j − 1)

)
, F(i)

Fisher , F( j)
p-val.

with L(0, j) = L(i, 0) = 0.
As a result, L(l1, l2) is the largest length of

the common sequence between FFisher and Fp-val.
After that, The LCS is established by tracking
elements of the common sequence using table L
and the following rules:

(i) if the neighbors of L(i, j) are identical,
then they are appended to the LCS;

(ii) otherwise, compare the values of L(i, j −
1) and L(i − 1, j) and follow the direction of the
greater value.

4. Experimental results

4.1. EEG dataset

EEG data used in this study were recorded
from 17 epilepsy patients of the National
Pediatric Hospital using the 10 − 20 international
standard with 19 EEG data channels, the
sampling rate was 256Hz. Among these patients,
there are 11 females and 6 males, with the
youngest being 4-year-old and the oldest being
72-year-old. The total number of recorded
epileptic spikes in the whole dataset is 1442 and
the number of randomly selected non-epileptic
spikes is 6114. Table 2 represents the details of
the dataset.

The dataset is divided into two sets, including
the training set and the testing set, using either the
10-fold cross-validation method or the leave-one-
out cross-validation (LOOCV) method. In the 10-
fold cross-validation method, the whole dataset is
divided into 10 parts, one part is used for testing
when the remaining 9 parts are for training. This
partitioning process is repeated until all parts in
dataset are tested. In the LOOCV method, in
each testing case, the classifier model is fitted by
using a training data composed of 16 patients and
then tested by the remaining patient. The process
is repeated until every patient in the dataset has
been placed in the testing set once.

4.2. Evaluation metrics

To evaluate performance of a classifier,
we use three widely used statistical evaluation
metrics [48], including accuracy (ACC),
sensitivity (SEN) and specificity (SPE).

True positive (TP) and false positive (FP)
are the number of spikes that the doctor labels
as epileptic spikes and non-epileptic spikes,
respectively, while the system classifies both as
epileptic spikes. True negative (TN) and false
negative (FN) are the number of spikes that
the doctor labels as epileptic spikes and non-
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Table 2: EEG Dataset

Patient Gender Age Duration EPs/Non-EPs Patient Gender Age Duration EPs/Non-EPs

1 Male 4 19m21s 8/393 10 Male 21 23m57s 8/274
2 Male 6 22m25s 635/193 11 Male 72 15m26s 2/117
3 Male 9 11m24s 6/188 12 Female 10 17m7s 3/582
4 Male 9 11m24s 16/453 13 Female 13 18m53s 5/514
5 Male 11 16m16s 351/816 14 Female 16 20m14s 8/76
6 Male 12 17m49s 22/602 15 Female 20 14m32s 324/202
7 Male 15 22m0s 2/50 16a Female 22 17m 56s 19/156
8 Male 16 22m58s 11/589 16b Female 22 9m 41s 9/216
9 Male 20 27m13s 1/75 17 Female 28 5m31s 12/618

EPs = Number of epileptic spikes; Non-EPs = Number of non-epileptic spikes.

epileptic spikes, while the system classifies as
non-epileptic spikes.

ACC presents the proportion of the (epileptic
and non-epileptic) spikes correctly classified over
the total number of (epileptic and non-epileptic)
spikes:

ACC =
TP + TN

TP + FP + TN + FN
.

SEN measures the proportion of actual
epileptic spikes that are correctly classified, as
given by

SEN =
TP

TP + FN
.

SPE provides similar information as SEN but
for non-epileptic spikes, as given by

SPE =
TN

TN + FP
.

In addition, the receiver operating
characteristic (ROC) curve is also used to
illustrate the performance of the system [49].
The curve is drawn by plotting the TP rate
(equivalent to SEN defined above) and the FP
rate (1− SPE). As a result, the ROC curve allows
us to derive a cost/benefit analysis for making
decision. An key metric of ROC is the area under
the ROC curve (AUC). AUC is used to compare

the performance of classifiers. Classifiers may
have different ROC curves but if these curves
have the same AUC values, then these classifiers
are considered to have the same performance.
Performance ranking based on AUC includes:
[0.9–1] as excellent, [0.8–0.9] as good, [0.7–0.8]
as fair, [0.6–0.7] as poor, and [0.5–0.6] as failed.

4.3. Results and discussions

The feature extraction method proposed
in [19] is applied on this dataset, resulting in 1442
three-way epileptic tensors X ep ∈ R56×20×19

+ and
6114 three-way non-epileptic tensors X nep ∈

R56×20×19
+ . Similar to [19], the rank components

corresponding to time, frequency, and channel
are determined as r1 = 15, r2 = 10, and r3 = 19,
respectively. The four-way epileptic tensor X̃ ep ∈

R56×20×19×k
+ is constructed by concatenating these

k three-way epileptic tensors. NTD is performed
to obtain the common factors A ∈ R56×15

+ , B ∈
R20×10

+ , and C ∈ R19×19
+ of the training epileptic

tensor X̃ ep. The common factors of the training
non-epileptic tensor are also obtained in a similar
way.

The proposed feature selection method is
compared with other state-of-the-art models
mentioned in Section 1, including G-Fisher score,
Laplacian score, UDFS, ILFS, and LLCFS,
in terms of number of selected features and
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Fig. 3: Fisher scores andp-values of 2850 features, sorted
by Fisher score. Features with p-value p > 0.05 will be

removed.

classification performance. For implementing the
reference feature selection methods, we use a
feature selection toolbox, introduced in [39].

Figure 3 helps explain how the proposed
method selects features. By choosing α = 0.05
for hypothesis testing, more than 600 features
with the highest Fisher scores and having their
p-value lower than 0.05 are selected out of the
original 2850 features. It should be noted that all
the top 500 features ranked by Fisher score have
theirp-value very close to zero, meaning they
are able to completely reject the null hypothesis
H0, giving them strong discriminative power.
Another interesting result is that the selected
features for the epileptic class are significantly
different from those of the non-epileptic class, as
shown in Figure 4.

To compare the influence of feature selection
methods on classification performance, we
choose a linear-kernel support vector machine
(SVM) as the classifier. Four performance
metrics are evaluated for each method, including
ACC, SEN, SPE, and AUC [48].

Figure 5 shows the performances of the
system using SVM with different feature
selection methods. Given a same number of

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
-50

-25

0

25

50

75

100

Fig. 4: Vectors of top 10 features selected for each of the
two classes of epileptic spikes and non-epileptic spikes.

While the feature vectors of two epileptic spikes are similar
to each other, the non-epileptic feature vectors are not.

selected features, the system always performs
better with the proposed method than with other
methods, usually achieving an improvement of
between 5% and 10% in terms of SEN, ACC,
and AUC. AUC of the system with the proposed
method is always higher than 0.9 when the
number of selected features is higher than 50,
that means excellent overall performance can
be achieved with only about 50 features out of
2850. It is also shown that the performance
reaches its best and remains stable when the
number of features is greater than 70, with
SEN, ACC, and AUC of around 80%, 92%, and
0.95, respectively. On the contrary, to achieve
a similar performance, other methods need to
select at least 250 features. The proposed method
has outperformed the existing state-of-the-art
methods in this analysis.

Tables 3 and 4 provide the system
performance measures from our experiments
using leave-one-out cross validation and 10-
fold cross validation, respectively. In these
experiments SVM is used with the first 100
features selected by the proposed method
implemented in the feature selection stage of
the system. It can be seen from Table 4 that the
average performance of the proposed system
is excellent, while in Table 3 the performance
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may vary from patient to patient. The worst
performances often happen only to patients
whose EEG contains very few epileptic spikes.
For example, the system fails to detect any
epileptic spike of patient #9 (SEN is 0%),
whose EEG has only one epileptic spike over 75

Table 3: Performance measures of the proposed
SVM-employed system, using leave-one-out cross

validation with the first 100 significant features.

Pat. EPs/Non-EPs SEN SPE ACC AUC

1 8/393 75% 97.71% 97.26% 0.9066
2 635/193 78.90% 95.34% 82.73% 0.9511
3 6/188 100% 96.28% 96.39% 0.9885
4 16/453 100% 96.03% 96.16% 0.9970
5 351/816 85.75% 96.69% 93.40% 0.9655
6 22/602 77.27% 97.01% 96.31% 0.9723
7 2/50 100.0% 98.00% 98.08% 0.9900
8 11/589 81.82% 96.77% 96.50% 0.9750
9 1/75 0.00% 100% 98.68% 0.9920
10 8/274 75.00% 96.72% 96.10% 0.9658
11 2/117 50.00% 95.73% 94.96% 0.9573
12 3/582 33.33% 95.70% 95.38% 0.9364
13 5/514 80.00% 95.72% 95.57% 0.9712
14 8/76 87.50% 97.37% 96.43% 0.9655
15 324/202 80.25% 97.52% 86.88% 0.9655
16 38/372 84.21% 97.85% 96.59% 0.9417
17 12/618 100.0% 94.81% 94.83% 0.9919

Table 4: Performance measures of the proposed
SVM-employed system, using 10-fold cross validation with

the first 100 significant features.

Case EPs/Non-EPs SEN SPE ACC AUC

1 144/611 81.25% 96.73% 93.77% 0.9579
2 144/611 81.94% 97.55% 94.57% 0.9664
3 144/611 88.89% 93.84% 92.98% 0.9594
4 144/611 80.56% 95.74% 92.85% 0.9583
5 144/611 77.08% 97.22% 93.38% 0.9588
6 144/611 81.25% 96.56% 93.64% 0.9671
7 144/611 81.25% 96.73% 93.77% 0.9657
8 144/611 83.33% 95.91% 93.51% 0.9673
9 144/611 86.11% 96.73% 94.70% 0.9707
10 146/616 86.30% 97.40% 95.27% 0.9720

Average: 82.80% 96.45% 93.84% 0.9643

non-epileptic spikes.
We also experiment with different classifiers

on the proposed system, namely SVM, KNN
(K-Nearest Neighbors), and NB (Naive Bayes).
Performance of the system with different
classifiers are presented in Table 5. In general,
SVM performs slightly better than the other two
classifiers.
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Table 5: Performances of the system using SVM, KNN,
and NB with first 100 significant featues selected by the

proposed methods

Metric SVM KNN NB

SEN 82.80% 82.80% 82.80%

SPE 96.45% 97.96% 84.66%

ACC 93.84% 90.30% 84.01%

AUC 0.9643 0.8806 0.9024

5. Conclusions

In this paper, we introduced a new feature
selection method which combined Fisher score
and p-value methods in the stage of feature
selection of the multi-channel EEG epileptic
spike detection system recently proposed in [35],
in order to improve the its performance for
classifying epileptic and non-epileptic spikes.
Effectively, the proposed feature selection
method reduced the dimension of the feature
space and achieved good separability between
epileptic spikes and non-epileptic spikes. The
numerical experiments have indicated that the
proposed method outperforms several state-of-
the-art methods, including the generalized Fisher
score, Laplacian score, UDFS, ILFS and LLCFS.
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