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ABSTRACT

In this paper, we introduce a fast adaptive algorithm for CAN-
DECOMP/PARAFAC decomposition of streaming three-way
tensors using randomized sketching techniques. By leverag-
ing randomized least-squares regression and approximating
matrix multiplication, we propose an efficient first-order esti-
mator to minimize an exponentially weighted recursive least-
squares cost function. Our algorithm is fast, requiring a low
computational complexity and memory storage. Experiments
indicate that the proposed algorithm is capable of adaptive
tensor decomposition with a competitive performance evalu-
ation on both synthetic and real data.

Index Terms— CP/PARAFAC decomposition, adaptive al-
gorithms, streaming tensors, randomized methods.

1. INTRODUCTION
Nowadays, massive datasets have been increasingly recorded,
leading to “Big Data” [1]. The era of big data has brought
powerful analysis techniques for discovering new valuable in-
formation hidden in the data. Tensor decomposition, which is
one of these techniques, has been recently attracting much at-
tention of engineers and researchers [2].
A tensor is a multi-dimensional (multiway) array and tensor
decomposition represents a tensor as a sum of basic compo-
nents [3]. One of the most widely-used tensor decompositions
is CANDECOMP/PARAFAC (CP) decomposition seeking a
low rank approximation for tensors [3]. “Workhorse” algo-
rithms for the CP decomposition are based on the alternating
least-squares (ALS) method. In online applications, data ac-
quisition is a time-varying process where data are serially ac-
quired (streamed). This leads to several critical issues [4],
among them are the following: (i) growing in size of the
underlying data, (ii) time-evolving models, and (iii) (near)
real-time processing. The standard CP decomposition algo-
rithms, however, either have high complexity or operate in
batch mode, and thus may not be suitable for such online ap-
plications. Adaptive (online) CP decomposition has been in-
troduced as an efficient solution with a lower complexity and
memory storage.
In the literature of tensor decomposition, there have been
several proposed algorithms for adaptive CP decomposition.

This work was supported by the National Foundation for Science and
Technology Development of Vietnam under Grant No. 102.04-2019.14.

Many of them are based on the subspace tracking approach
in which estimators first track a low-dimensional tensor sub-
space, and then derive the loading factors from its Khatri-Rao
structure. State-of-the-art algorithms include: PARAFAC-
SDT and PARAFAC-RLST by Nion and Sidiropoulos in [5],
PETRELS-based CP [6] and SOAP [7]. Among these al-
gorithms, SOAP achieves a linear computational complexity
w.r.t. tensor dimensions and rank. These algorithms, how-
ever, do not utilize the Khatri-Rao structure when tracking the
tensor subspace, their estimation accuracy may be reasonable
when they use a good initialization. Another class of methods
is based on the alternating minimization approach in which
we can estimate directly all factors but the one corresponding
to the dimension growing over time. Morteza et al. have
proposed a first-order algorithm for adaptive CP decompo-
sition by applying the stochastic gradient descent method to
the cost function [8]. An accelerated version for higher-order
tensors (OLCP) has been proposed by Zhou et al. [9]. Similar
to the first class, OLCP is highly sensitive to initialization.
Smith et al. have introduced an adaptive algorithm for han-
dling streaming sparse tensors called CP-stream [10]. Kasai
has recently developed an efficient second-order algorithm
to exploit the recursive least squares algorithm, called OL-
STEC in [11]. Among these algorithms, OLSTEC provides
a competitive performance in terms of estimation accuracy.
However, the computational complexity of all algorithms
mentioned above is still high, either O(IJr) or O(IJr2),
where I, J are two fixed dimensions of the tensor and r rep-
resents its CP rank. When dealing with large-scale streaming
tensors, i.e. IJ ≫ r, it is desired to develop adaptive algo-
rithms with a much lower (sublinear) complexity.
In this study, we consider the problem of adaptive CP ten-
sor decomposition using randomized techniques. It is mainly
motivated by the fact that randomized algorithms help re-
duce computational complexity and memory storage of their
conventional counterparts [12]. As a result, they have re-
cently attracted a great deal of attention and achieved great
success in large-scale data analysis and tensor decomposition
in particular. With respect to the CP tensor model, Wang et
al. have applied a sketching technique to develop a fast al-
gorithm for orthogonal tensor decomposition [13]. Under
certain conditions, the tensor sketch can be obtained with-
out accessing the entire data [14]. Recently, Battaglino et
al. have proposed a practical randomized CP decomposi-
tion [15]. Their work was to speed up the traditional ALS
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Fig. 1: Streaming tensor Xt ∈ RI×J×K(t), reprinted from [6].
algorithm via randomized least-squares regressions. These al-
gorithms, however, are constrained to batch-mode operations,
hence not suitable for adaptive processing. Ma et al. intro-
duced a randomized online CP decomposition for streaming
tensors [16]. The algorithm can be considered as a random-
ized version of OLCP [9]. However, it is sensitive not only
to initialization, but also to time-varying low-rank models.
These drawbacks motivate us to look for a new efficient ran-
domized algorithm for adaptive CP decomposition.

Notations
Scalars and vectors are denoted by lowercase letters (e.g., x)
and boldface lowercase letters (e.g., x), respectively. Bold-
face capital and bold calligraphic letters denote matrices (e.g.,
X) and tensors (e.g., X ), respectively. Operators ○,⊙ and ⊛
denote the outer, Khatri-Rao, and Hadamard product, respec-
tively. Matrix transpose is denoted by (.)⊺ and X(∶, i) stands
for the i-th column vector of matrix X. Also, ∥.∥ denotes the
norm of a vector, matrix or tensor.

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider a three-way tensor X ∈ RI×J×K of rank r. A CAN-
DECOMP/PARAFAC (CP) decomposition of X is expressed
as follows:

X ∆
= JA,B,CK =

r

∑
i=1

A(∶, i) ○B(∶, i) ○C(∶, i), (1)

where the full-rank A ∈ RI×r, B ∈ RJ×r, and C ∈ RK×r are
called loading factors.
In order to decompose a tensor X into r components under
the CP model, we solve the following minimization:

min
A,B,C

∥X − X̃ ∥
2

F
, s.t. X̃ =

r

∑
i=1

A(∶, i) ○B(∶, i) ○C(∶, i), (2)

or its matrix representation

min
A,B,C

∥X(1) − X̃∥
2

F
, s.t. X̃k = Adiag(ck)B

⊺, (3)

where X̃ = [X̃1 X̃2 . . . X̃K], X(1) ∈ RI×JK is a matricization
of X and diag(ck) is the diagonal matrix formed by ck, the k-
th row of C. “Workhorse” algorithms for CP decomposition
are based on the alternating least-squares (ALS) approach [3].
CP decomposition is essentially unique under the following
conditions [3]:

r ≤K and r(r − 1) ≤ I(I − 1)J(J − 1)/2. (4)

In this paper, we deal with a three-way tensor Xt ∈ RI×J×K(t),
where I, J are fixed and K(t) varies with time, Xt satisfies
the conditions (4). At each time t, Xt is obtained by append-
ing a new slice Xt ∈ RI×J to the previous tensor Xt−1, as

shown in Fig. 1. Instead of recalculating batch CP decom-
position of Xt, we aim to develop an update efficient in both
computational complexity and memory storage, to obtain the
factors of Xt.
In an adaptive scheme1, we can reformulate (3) as follows:

min
A,B,C

[ft(A,B,C) =
1

t

t

∑
k=1

λt−k∥Xk −Adiag(ck)B
⊺∥

2

F
], (5)

where λ ∈ (0,1] is a forgetting parameter aimed at discount-
ing the past observations.
The minimization of (5) can be solved efficiently using the al-
ternating minimization framework, which can be decomposed
into three steps: (i) estimate ct, given At−1 and Bt−1; (ii) es-
timate At, given ct and Bt−1; (iii) update Bt, given ct and
At. In this work, we will adapt this framework for developing
our randomized adaptive CP algorithm.

3. PROPOSED METHOD

In this section, a fast adaptive CP decomposition algorithm
using randomized techniques is developed. This method is
referred to as ROLCP for Randomized OnLine CP. In par-
ticular, ct is estimated first by using a randomized overde-
termined least-squares method. After that, we introduce an
efficient update for estimating factors At and Bt based on
approximating matrix multiplication.

3.1. Estimation of ct

Given a new slice Xt and the two old factors At−1 and Bt−1,
ct can be estimated by solving the following minimization:

min
c∈Rr

∥Ht−1c − xt∥
2
2 +

ρc
2
∥c∥2

2, (6)

where xt = vec(Xt) and Ht−1 = Bt−1 ⊙ At−1 ∈ RIJ×r and
ρc is a small positive parameter for regularization. Expres-
sion (6) is an overdetermined least-squares problem which
requires O(IJr2) flops w.r.t. time complexity to compute
its exact solution copt in general [17]. Therefore, it becomes
inefficient when dealing with high-dimensional (large-scale)
tensors.
We here propose to solve a random sketch of (6) instead:

ct = argmin
c∈Rr

∥L(Ht−1c − xt)∥
2
2 +

ρc
2
∥c∥2

2, (7)

where L(.) is a sketching map that helps reduce the sample
size and hence speed up the computation [12]. Indeed, we
exploit that the Khatri-Rao product may increase the incoher-
ence from its factors, thanks to the following proposition.

Proposition 1. (Lemma 4 in [15]): Given A ∈ RI×r and B ∈

RJ×r, we have µ(A⊙B) ≤ µ(A)µ(B) where the coherence
µ(M) is defined as the maximum leverage score of M

SVD
=

UMΣMVH
M , i.e.,

µ(M) = max
j

`j(M), where `j(M) = ∥UM(j, ∶)∥2
2.

1In the adaptive scheme, two factors A and B may be changing slowly
with time, i.e., A = At and B = Bt. Our adaptive CP algorithm is able to
estimate factors A and B as well as track their variations with time.
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Intuitively, when a matrix has strong incoherence (i.e., low
coherence), all rows are almost equally important [18]. Ac-
cordingly, in many cases, the uniform row-sampling can pro-
vide a good sketch for (6) in which each row has equal chance
of being selected2, thanks to the Khatri-Rao structure of Ht−1.
Once formulating (7), the traditional least-squares method is
applied to estimate ct with a much lower complexityO(nr2)

where n is the number of selected rows from Ht−1 under an
error bound:

∥Ht−1ct − xt∥
2
2 +

ρc
2
∥ct∥

2
2

≤ (1 + ε)∥Ht−1copt − xt∥
2
2 +

ρc
2
∥copt∥

2
2, (8)

with high probability for some parameter ε ∈ (0,1) [17]. The
closed-form solution of (7) is given by

ct = [ρcIr + ∑
(i,j)∈Ωt

(ai ⊛ bj)
⊺
(ai ⊛ bj)]

−1

× ∑
(i,j)∈Ωt

Xt(i, j)(ai ⊛ bj)
⊺. (9)

where Ωt is the set of sampling entries, ai and bj are the i-th
and j-th row vectors of At−1 and Bt−1 respectively.

3.2. Estimation of factors At and Bt

Given the new slice Xt and past estimates of C and B, At

can be estimated by minimizing the following cost function:

At = argmin
A∈RI×r

[
1

t

t

∑
k=1

λt−k∥Xk −Adiag(ck)B
⊺

t−1∥
2

F
]. (10)

To find the optimal At, we set the derivative of (10) to zero,

A
t

∑
k=1

λt−kW⊺

kWk =
t

∑
k=1

λt−kXkWk, (11)

where Wk = Bt−1 diag(ck). Instead of solving (11) directly,
we can obtain At in the following recursive way:

Let us denote S
(A)
t = ∑

t
k=1 λ

t−kW⊺

i Wk and R
(A)
t =

∑
t
k=1 λ

t−kXkWk. Then, R
(A)
t and S

(A)
t can be updated

recursively:
S
(A)
t = λS

(A)
t−1 +W⊺

t Wt, (12)

R
(A)
t = λR

(A)
t−1 +XtWt. (13)

Using (12) and (13), (11) becomes

AS
(A)
t = λR

(A)
t−1 +XtWt

= λAt−1S
(A)
t−1 +XtWt

= At−1S
(A)
t + (Xt −At−1W

⊺

t )Wt.

Let the residual matrix be ∆t = Xt − At−1W
⊺

t and the co-
efficient matrix Vt = (S

(A)
t )

−1
W⊺

t . From that, we derive a
simple rule for updating At as follows

At = At−1 +∆tV
⊺

t . (14)

Besides, we can find further an approximation of (14) in order
to speed up the update by using a sampling technique [12]:

At ≈ At−1 + ∆̃tṼ
⊺

t , (15)

2In the presence of highly coherent factors, a preconditioning (mixing)
step is necessary to guarantee the incoherence. For instance, the subsampled
randomized Hadamard transform is a good candidate which can yield a trans-
formed matrix whose rows have (almost) uniform leverage scores, while the
error bound (8) is still guaranteed [19].

where ∆̃t and Ṽt are randomized version of ∆t and Vt re-
spectively, m is the number of columns of ∆̃t. In particular,
we first compute the leverage score of each row of Wt:

`j(Wt) = ∥Wt(j, ∶)∥2 , for j = 1,2, . . . , J. (16)

After that, we will pickm columns of ∆t and Vt with a prob-
ability proportional to `j(Wt).
Similarly, we also update Bt in the same way to At.

3.3. Performance analysis
With respect to memory storage, ROLCP requires O(2r2 +

(I + J)r) in each time instant t, in particular for At−1,Bt−1

and two matrices S
(A)
t and S

(B)
t . In terms of computational

complexity, computation of ct requires O(∣Ωt∣r
2) while up-

dating At and Bt demands O((I + J)(m + r)r).
The following lemma indicates the convergence of ROLCP.

Lemma 1. Assume that (A1) {Xt}
∞

t=1 are independent and
identically distributed from a data-generation distribution
Pdata having a compact set V; and (A2) the true loading fac-
tors {At,Bt}

∞

t=1 are bounded, i.e., ∥At∥
2
F ≤ κA < ∞ and

∥Bt∥
2
F ≤ κB < ∞. If {At,Bt}

∞

t=1 are generated by ROLCP,
the sequence converges to a stationary point of the empirical
loss function ft(.) when t→∞.

Due to the space limitation, its proof is omitted here.

4. EXPERIMENTS
In this section, we demonstrate the effectiveness and ef-
ficiency of our algorithm, ROLCP, on both synthetic and
real data. We also compare ROLCP with the state-of-the-
art adaptive (online) CP algorithms, including PARAFAC-
SDT [5], PARAFAC-RLST [5], OLCP [9], SOAP [7] and
OLSTEC [11]. Default parameters of these algorithms are
kept to have a fair comparison. Note that the first four
algorithms require a batch initialization, while OLSTEC
is initialized randomly. All experiments are implemented
in MATLAB using a computer with an Intel core i5 and
16GB of RAM. Our MATLAB codes are available online at
https://github.com/thanhtbt/ROLCP/.

4.1. Synthetic Data
Following the experimental framework in [7], at each time t,
synthetic tensor data are generated under the model:

Xt = At diag(ct)B
⊺

t + σNNX ,

where Xt ∈ RI×J is the t-th slice of Xt, ct is a random vector
living on Rr space, and σN is to control the Gaussian noise
NX ∈ RI×J . The two factors At ∈ RI×r, Bt ∈ RJ×r are
defined by

At = (1 − εA)At−1 + εANA, Bt = (1 − εB)Bt−1 + εBNB ,

where εA and εB are parameters chosen to control the varia-
tion of the two factors between two consecutive instances and
NA,NB are two random noise matrices with Gaussian entries
i.i.d of pdfN(0,1). In all experiments, the values of σN , εA,
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Fig. 2: Performance of six adaptive CP algorithms on a synthetic tensor of rank 10 and size 100 × 150 × 1000.

Dataset Highway Hall Lobby Park
Tensor size 320 × 240 × 1700 174 × 144 × 3584 128 × 160 × 1546 288 × 352 × 600
Evaluation metric Time(s) RE(X ) Time(s) RE(X ) Time(s) RE(X ) Time(s) RE(X )
SOAP 56.27 8.96 35.30 7.61 11.84 6.71 23.78 1.85

OLCP 41.96 4.97 27.25 6.56 8.51 5.24 23.19 1.01

OLSTEC 226.49 6.03 126.83 5.91 42.64 3.06 88.00 1.05

PARAFAC-RLST 406.68 8.55 187.1 7.63 55.58 8.16 215.48 2.16

PARAFAC-SDT 70.78 36.81 35.31 45.52 12.67 36.95 48.11 23.88

ROLCP (Proposed) 9.63 5.85 6.96 5.49 3.31 3.92 3.78 1.06

Table 1: Performance of adaptive CP algorithms on real data.

0 50 100 150 200 250 300

0

300

600

900

Fig. 3: Average running time of adaptive algorithms on dif-
ferent synthetic tensors.
and εB are set to 10−3, while the forgetting factor λ is fixed at
0.9. We set ∣Ωt∣ = 10r log r for reasonable performance.
In order to evaluate the estimation accuracy, we use the rela-
tive error (RE) metric defined by

RE(Uest,Utrue) = ∥Utrue −Uest∥F / ∥Utrue∥F ,

where Utrue(resp. Uest) refers to the ground truth (resp. es-
timation).
We use a simulated tensor whose size is 100×150×1000 and
its rank r = 10 to illustrate the effectiveness of our algorithm.
At time instant t = 600, we set εA and εB to 10−1 aiming to
create a significant change in the data model. The results are
shown in Fig. 2. As can be seen, ROLCP provides a competi-
tive performance as compared to OLSTEC, better than SOAP,
PARAFAC-SDT and PARAFAC-RLST, while OLCP does not
work well in this scenario.
The running times of these algorithms are reported in Fig. 3.
We here use a sequence of simulated tensors with size of
n × n × 10n, rank of 0.1n, n ∈ [10,300] for this task. The
result indicates that ROLCP is the fastest CP algorithm, sev-
eral times faster than the second best.

4.2. Real Data

In order to demonstrate the effectiveness of ROLCP on real
data, four real surveillance video sequences are used, in-
cluding Highway, Hall, Lobby and Park3. Specifically,
Highway contains 1700 frames of size 320 × 240 pixels.
Hall has 3584 frames of size 174 × 144 pixels. Lobby
consists of 1546 frames of size 128 × 160 pixels. Park in-
cludes 600 frames of size 288 × 352 pixels. We fix the rank
at r = 10 for all video tensors. To have a good initialization
for SOAP, OLCP, PARAFAC-RLST and PARAFAC-SDT,
training slices are the 100 first video frames.
Results are shown statistically in Table 1. Clearly, our al-
gorithm is the fastest adaptive CP decomposition. For in-
stance, when decomposing the Park tensor, our running time
is 3.78 seconds, 6 times faster than OLCP. The worst compu-
tation time is 215.48 seconds belonging to PARAFAC-RLST.
Besides, ROLCP also provides good estimation accuracy on
these data as compared to others, i.e., ROLCP usually yields
reasonable RE values.

5. CONCLUSIONS

In this paper, we proposed a fast adaptive algorithm for CP
decomposition based on the alternating minimization frame-
work. ROLCP estimates a low rank approximation of ten-
sors from noisy and high dimensional data with high accu-
racy, even when the model may be time-varying. Thanks to
the randomized sampling techniques, ROLCP is shown to be
one of the fastest adaptive CP algorithms, several times faster
than SOAP and OLCP in both synthetic and real data.

3Data: http://jacarini.dinf.usherbrooke.ca/
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