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Abstract– Principal component analysis (PCA) and subspace estimation (SE) are popular data analysis tools and used in
a wide range of applications. The main interest in PCA/SE is for dimensionality reduction and low-rank approximation
purposes. The emergence of big data streams have led to several essential issues for performing PCA/SE. Among them are
(i) the size of such data streams increases over time, (ii) the underlying models may be time-dependent, and (iii) problem
of dealing with the uncertainty and incompleteness in data. A robust variant of PCA/SE for such data streams, namely
robust online PCA or robust subspace tracking (RST), has been introduced as a good alternative. The main goal of this
paper is to provide a brief survey on recent RST algorithms in signal processing. Particularly, we begin this survey by
introducing the basic ideas of the RST problem. Then, different aspects of RST are reviewed with respect to different kinds
of non-Gaussian noises and sparse constraints. Our own contributions on this topic are also highlighted.

Keywords– Streaming PCA, subspace tracking, robust algorithm, imperfect data, sparse outlier, impulse noise, colored noise,
sparse subspace.

1 Introduction

Principal component analysis (PCA) and subspace es-
timation (SE) are widely used as a fundamental step
for dimensionality reduction and analysis. Their main
purpose is to extract low-dimensional subspaces from
high-dimensional data while still keeping as much
relevant information as possible. Consequently, PCA
and SE have found success in a wide range of fields,
from finance to neuroscience, with the most successful
applications in computer science. The main difference
between them is that PCA emphasizes the use of
eigenvectors rather than of subspace as in SE. PCA
in a standard set-up can be implemented by using ei-
ther eigenvalue decomposition (EVD) or singular value
decomposition (SVD) and is proved to be optimal in
terms of the Frobenius-norm approximation error by
the Eckart-Young theorem [1].

Recent years have witnessed an increasing interest
in adaptive processing [2]. It is mainly due to the fact
that online applications generate a huge amount of data
streams over time and such streams are often with
high veracity and velocity. It is known that veracity
requires robust algorithms for handling imperfect data
while velocity demands (near) real-time processing. Ac-
cordingly, important classes of PCA, such as subspace
tracking (ST) also called PCA for streaming data or
streaming PCA or dynamic PCA, and ST with missing
data have drawn much research attention recently in
signal processing and modern data analysis.

The attractive point of ST resides on two aspects.
First, in a similar manner to batch subspace meth-
ods [3], both the main components and the disturbance
components of data observation can be exploited in
many different ways. In fact, the subspace is simple to
understand (i.e., in a statistical sense) and implement,
thus proving its efficiency in many practical applica-
tions. Second, different from batch subspace methods,
ST has a better trade-off between the accuracy and the
computational complexity, thus making it suitable for
time-sensitivity and real-time applications. Due to its
practical use, we can find a wide range of applications
in diverse fields [3–5], for example, direction of arrival
(DoA) tracking in radar and sonar, data compression
and filtering, blind channel estimation and equaliza-
tion, and pattern recognition, to name a few.

However, it is well-known that PCA/SE is very
sensitive to data corruptions. This fact remains across
the above important PCA classes in general and ST
in particular. PCA dealing with impulsive noise and
outliers is referred to as robust PCA. In 2011, it was re-
visited in a seminal work of Candes et al [6]. This work
has attracted many research studies and applications,
with over 4000 citations as of now. PCA for streaming
data with impulsive noise and outliers is referred to as
robust subspace tracking (RST). It is considered much
more difficult than the original ST [7].

ST algorithms have been developed for over three
decades [3, 4]. It has been around ten years since
Delma’s survey [3] and we thus believe it is not only
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Table I
Surveys on PCA/SE and Subspace Tracking

Paper Topic & scope Main contribution

[4, 1990] Principal ST
A survey on numerical methods for tracking the low-rank approximation of

covariance matrices slowly varying with time.

[3, 2010] Principal and minor ST A comprehensive survey on classical ST algorithms.

[8, 2016] Principal component analysis A survey on adaptations of PCA for modern datasets and applications.

[9, 2018] Principal ST
A high-dimensional analysis framework for the state-of-the-art ST algorithms

from incomplete observations.

[5, 2018] ST and streaming PCA
A survey on both classical and recent ST algorithms able to handle missing data

and their performance guarantee.

[10, 2018] Robust subspace learning
A survey on robust PCA, RST, and robust subspace recovery in the presence

of sparse outliers.

[11, 2018] Robust PCA A survey on statistic and dynamic robust PCA algorithms.

[12, 2018] Principal component analysis A survey on distributed PCA algorithms.

[13, 2018] Robust subspace recovery
A survey on works on robust subspace recovery when measurements are

corrupted by sparse outliers.

[14, 2018] Sparse PCA A survey on recent theoretical developments of sparse PCA.

Ours RST
A survey on RST algorithms in the presence of different kinds of corruptions

(e.g. outliers, missing data, impulsive, and colored noise) and sparse subspace.

important but the right time to do an up-to-date survey
in order to highlight some aspects that were not men-
tioned in [3] as well as recent advances on this topic.

1.1 Related Work

Due to the importance of ST, there have been a num-
ber of published surveys in the literature. One of the
first and earliest surveys on principal subspace tracking
algorithms was carried on by Comon and Golub in [4].
The survey focuses on methods with high and mod-
erate computational complexity for tracking the low-
rank approximation of covariance matrices which may
be slowly varying with time. In [3], Delmas provided a
comprehensive overview on developments of classical
ST algorithms with low (linear) complexity.

Recently, different adaptations of PCA for modern
datasets and applications were reviewed in [8]. How-
ever, PCA for streaming data or ST was not addressed.
The problem of tracking the underlying subspace of
data from incomplete observations was discussed in [5]
and [9]. Particularly, the former concerned method-
ological classes of ST algorithms that are able to deal
with missing data while the latter presented a high-
dimensional framework for analyzing their conver-
gence behavior. The survey in [10] carried out reviews
on robust PCA, RST, and robust subspace recovery in
the presence of sparse outliers. Two similar surveys
to [10] have also been conducted in [11] and [13]
which respectively review (i) static and dynamic RPCA
algorithms, and (ii) the entire body of works on ro-
bust sparse recovery. In the literature, there exist two
others surveys on two adaptations of PCA which are
distributed PCA [12] and sparse PCA [14].

The main contributions of the above-mentioned pa-
pers are summarized in Table I.

1.2 Main Contributions

To the best of our knowledge, we are not aware of
any work that reviews the RST problem in the presence
of different kinds of non-Gaussian noise. Although the
three surveys [10, 11, 13] reviewed some classes of
RST algorithms, they only discussed on sparse outliers.
Methods for other non-Gaussian noises (e.g., impulsive
noise and colored noise) have not been reviewed yet.
Moreover, no survey exists on the problem of sparse
ST in the literature. This observation motivates us to
carry out a survey on the topic.

The main goal of this survey is to fill the gap in the
literature addressing the following three kinds of non-
Gaussian noises (including outliers, impulsive noise,
and colored noise) and sparse constraints. Our contri-
butions are as follows. First, in the context of missing
data and outliers, we review four main approaches for
dealing with them. They are Grassmannian, recursive
least-squares (RLS), recursive projected compressive
sensing (ReProCS), and adaptive projected subgradient
method (APSM). Second, when the measurements are
corrupted by impulsive noise, we show that most of
state-of-the-art RST algorithms are based on improving
the well-known PAST algorithm which belongs to the
class of RLS methods. Two other appealing approaches
including weighted RLS and adaptive Kalman filtering
are also reviewed. Third, we outline two main classes
of RST algorithms that are able to deal with colored
noise: instrumental variable-based and oblique projec-
tions. Finally, a short review on sparse ST algorithms
is presented.
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The structure of our review is as follows. Section 2
states the problem of RST. In Section 3, we provide
the state-of-the-art algorithms for the RST problem in
the presence of missing data and outliers. The next
two sections, 4 and 5, present RST algorithms that
are able to handle impulsive noise and colored noise,
respectively. Section 6 provides a short review on sparse
ST. Finally, Section 7 concludes the paper.

2 Robust Subspace Tracking: Problem

Formulation

At each time t, we suppose to observe a signal xt ∈ Rn

satisfying

xt = Pt`t + Ptvt, (1)

where Pt ∈ Rn×n is an observation mask matrix indi-
cating the i-th entry of xt is observed (i.e., Pt(i, i) = 1)
or not (i.e., Pt(i, i) = 0), vt ∈ Rn×1 is the (non-Gaussian)
noise vector and `t is the true signal living in a fixed
or slowly time-varying low-dimensional subspace of
Rn. More concretely, `t = Utwt in which wt is a
weight vector and Ut ∈ Rn×r (r � n) is a basis
matrix with d(Ut, Ut−1)

∆
= sin

(
θ(Ut, Ut−1)

)
� 1 where

θ(Ut, Ut−1) denotes the largest principal angle between
Ut and Ut−1.

The RST problem can be stated as follows: Given a
streaming set of observed signals {xt}t≥1 in (1), we wish to
estimate a rank-r matrix Ut such that it can cover the span
of the complete-data noiseless signal `t.

In this paper, we consider the RST problem in the
presence of different kinds of the non-Gaussian noise
vt: sparse outliers, impulse noise, and colored noise.
Also, we review sparse ST algorithms under the con-
straint that the basis matrix Ut is sparse.

3 Robust Subspace Tracking in the

Presence of Missing Data & Outliers

In the literature, there have been several studies on
ST in the presence of outliers and missing data. The
proposed RST algorithms can be categorized into four
main classes: (i) Grassmannian, (ii) recursive east-
Squares (RLS), (iii) recursive projected compressive
sensing (ReProCS), and (iv) adaptive projected subgra-
dient method (APSM). We summarize all the RST algo-
rithms robust to outliers and missing data in Table II.

3.1 Grassmannian Algorithms
Many of RST algorithms are based on the Grassman-

nian approach in which the ST procedure can be cast
into an optimization process on a Grassmann manifold.
More concretely, Grassman manifold is a space that
parameterizes all r-dimensional linear subspaces of the
N-dimensional vector space. The underlying subspace
can be derived from averaging the column span of
the (fully or partially) observed signals on the Grass-
mannian. Interestingly, each observed signal `t spans
a one-dimensional subspace which can be described as

a point in the Grassmannian. Therefore, the Grassman-
nian approach offers several advantages such as a lower
number of parameters to optimize and limited memory
usage and the resulting RST algorithms are often effi-
cient and scalable to high dimensional data [37].

State-of-the-art RST algorithms include GRASTA [15],
GOSUS [16], pROST [17, 18], and RoIGA [33, 34].
In [15], He et al. proposed an efficient RST algorithm
called Grassmannian robust adaptive ST (GRASTA)
which is a robust version of GROUSE in [38]. GRASTA
first uses an `1-norm cost function to reduce the effect
of sparse outliers and then performs the incremental
gradient on the Grassmann manifold of the subspace
U. In [16], Xu et al. introduced an effective algorithm
namely GOSUS for tracking subspace with structured-
sparsity. GOSUS also incorporates an adaptive step-
size for the incremental gradient on the manifold.
The effectiveness of GOSUS was demonstrated via
the real application of video background subtraction
and multiple face tracking. In [17, 18], Hage et al.
proposed a method, namely pPOST that combines
the advantages of Grassmannian optimization with a
non-convex sparsity measure. Instead of using the `1-
norm regularization, pPOST uses the penalty with non-
convex `0-surrogates allows reconstruction even in the
case when `1-based methods fail. Another algorithm
dubbed robust intrinsic Grassmann average (RoIGA)
was proposed by Rudrasis et al. in [33, 34]. RoIGA is a
geometric approach to computing principal linear sub-
spaces in finite and infinite dimensional reproducing
kernel Hilbert spaces. Among them, RoIGA is shown as
one of the fastest RST algorithms for handling missing
data corrupted by outliers.

3.2 Recursive Least-Squares based Algorithms

Another line of the RST research is based on recur-
sive least-squares (RLS) methods where the underly-
ing subspace is recursively updated by minimizing a
(weighted) least-squares objective function containing
squared residuals and a penalty accounting for outliers.
An efficient RLS-based algorithm is parallel estimation
and tracking by recursive least squares (PETRELS) [39]
which can be considered as an extension of the projec-
tion approximation ST (PAST) algorithm [40] in order
to handle missing data.

Inspired by PETRELS, several robust variants have
been proposed to deal with outliers the same line
such as [20, 27, 35, 36]. Robust online subspace es-
timation and tracking (ROSETA) in [20] applies an
adaptive step size at the stage of subspace estima-
tion to enhance the convergence rate. Meanwhile the
main idea of PETRELS-CFAR algorithm [27] is to han-
dle “outliers-removed” data (i.e., outliers are first re-
moved before performing ST) using a Constant False
Alarm Rate (CFAR) detector. Adopting the approach
of PETRELS-CFAR, but aiming to improve RST per-
formance, we proposed an efficient algorithm called
PETRELS-ADMM which is able to remove outliers
more effectively in [35, 36]. It includes two main stages:
outlier rejection and subspace estimation and tracking.
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Table II
RST Algorithms in the Presence of Both Missing Data and Sparse Outliers

Algorithm Method
Missing

Outliers
Prior

Initialization
Convergence Computational

Data Information Guarantee Complexity

GRASTA `1-norm + ADMM +
3 3 7 random 7 O(nr + r3)

(2012 [15]) Grassmannian

GOSUS `2-norm + ADMM +
7 3 3 random 7 -

(2014 [16]) Grassmannian

pROST `0-surrogate + Grassmannian
7 3 7 random 7 -

(2014 [17, 18]) Conjugate Gradient

MRMD Online max-norm
7 3 3 random 3 -

(2014 [19]) regularization

ROSETA `1,2-norm + ADMM +
3 3 7 random 7 O(nr2)

(2015 [20]) RLS

Roubst STAPSM
APSM + CoSAMP∗ 3 3 7 random 3 O(knr2)

(2015 [21, 22])

ReProCS-cPCA
ReProCS 7 3 3 batch 3 O(nr log2(n) log(1/ε))�

(2016 [23])

OTNNR Truncated nuclear-norm
7 3 7 random 7 -

(2016 [24]) regularization

OLP-RPCA `p-norm + singular
7 3 7 random 3 O(nr + r3)

(2017 [25]) value thresholding

L1-PCA `1-norm +
7 3 7 batch 7 O(nrω2)‡

(2018 [26]) Bit-flipping

PETRELS-CFAR
Robust statistic + RLS 3 3 3 batch 7 O(nr2 + nω)††

(2018 [27])

s-ReProCS
ReProCS 3 3 3 batch 3 O(nr log(n) log(1/ε))�

(2019 [28])

NORST-miss
ReProCS 3 7 3 batch 3 O(nr log(1/ε))�

(2019 [29])

L1-IRW `1-norm +
7 3 7 batch 7 O(k(nωr3 p + 2rnr2))†

(2019 [30]) Bit-flipping

OSTP Schatten quasi-norm +
7 3 7 random 3 O(nr2)

(2019 [31]) Block-proximal gradient

NORST
ReProCS 3 3 3 batch 3 O(nr log(1/ε))�

(2020 [32])

RoIGA
IGA# + Grassmannian 7 3 7 random 7 -

(2020 [33, 34])

PETRELS-ADMM `1-norm + ADMM +
3 3 3 random 3 O(nr2)

(2021 [35, 36]) RLS
∗ CoSAMP: Compressed Sampling Orthogonal Matching Pursuit # IGA: Intrinsic Grassmann Average
� ε : a desired subspace recovery accuracy ‡ ω: length of sliding window
†† ω: length of training window † ω: length of sliding window; k: number of iterations; p: number of bit flips

Outliers living in the measurement data are detected
and removed by a ADMM solver in an effective way.
An improved PETRELS was then introduced to update
the underlying subspace. In practice, the convergence
rate of RST-type algorithms is often faster than that
of Grassmmannian-based algorithms in slowly time-
varying environments.

3.3 Recursive Projected Compressive Sensing based
Algorithms

Recursive projected compressive sensing (ReProCS)-
based algorithms [23, 28, 29, 32] are also capable of
tracking subspace in the presence of outliers and miss-
ing data.

ReProCS-type algorithms use the piecewise constant
subspace change model described previously and start
with a “good” estimate of the initial subspace. At each
time, they first solve a projected compressive sensing
problem to derive the sparse outliers, e.g., using `1
minimization followed by thresholding-based support
estimation. After that, the subspace direction change is
then estimated by using projection-SVD [28].

ReProCS provides not only a memory-efficient and
highly robust solution, but also a precise subspace
estimation compared to the state-of-the-arts. However,
ReProCS-type algorithms often require strong assump-
tions on subspace changes, outlier magnitudes, and
accurate initialization.
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Table III
RST Algorithms in the Presence of Impulsive Noise

Algorithm Method Burst SIRV α-stable Initialization Convergence Computational
noise noise noise Guarantee Complexity

RPAST PAST + M-estimation 3 - 3 random 3 O(nr + r2)(2006 [41])

MCC-PAST Maximum correntropy
3 - 3 random 7 O(nr + r2)(2014 [42]) criterion (MCC) + PAST

BNC-PAST Bounded nonlinear
3 - 3 random 7 O(nr + r2)(2014 [43]) covariance (BNC) + PAST

robust KFVM Adaptive Kalman filter +
3 - - random 7 O(nr`+ `r2)+

(2020 [44]) M-estimation O(`2r + `3)

ROBUSTA Weighted RLS +
3 3 3 random 3 O(nr + r2)(2018 [27]) Mahalanobis distance

`: length of the sliding window
−: unknown or undetermined

3.4 Adaptive Projected Subgradient Method based
Algorithms

Adaptive projected subgradient method (APSM) can
provide a robust solution to the presence of missing
data and outliers [21, 22]. Main advantages of APSM
are that convex constraints can be readily incorporated
and it can be used as an alternative to constructing
the cost function from the sum of square errors like
RLS methods. The key idea of APSM stems from that
unknown parameters of regression models can be es-
timated from seeking a point in the intersection of all
the sets defined by measurements. In the context of ST,
based on the latest observed signals, a cost function
is properly chosen at each time instant which scores
a zero loss. The next task is to reach the intersection
point. To deal with sparse outliers, APSM-type algo-
rithms detect the time instances at which the observed
signals are corrupted by outliers via using sparsity-
aware greedy techniques (e.g. compressed sampling
orthogonal matching pursuit as used in [22]) and then
reject them.

3.5 Other Algorithms
Some other RST algorithms are able to track the

underlying subspace over time from measurements
corrupted by sparse outliers such as MRMD [19],
OTNNR [24], L1-PCA [26], L1-IRW [30], OLP-
RPCA [25], and OSTP [31]. Most of them use a `p-
regularization (0 ≤ p ≤ 1) to discard the effect of out-
liers. However, they are not designed for missing data.

4 Robust Subspace Tracking in the

Presence of Impulsive Noise

By “impulsive”, we mean it can be burst noise [45, 46],
spherically invariant random variable (SIRV) noise [47,
48], or alpha-stable noise [49, 50]. We note that even
though these algorithms were described to reduce the
effect of impulsive noise in general, most simulation
results were shown for burst noise only. RST algorithms
that are robust to impulsive noise are summarized in
Table III.

4.1 Robust Variants of PAST
To take into account impulsive noise, some methods

proposed in the literature have mainly been based on
robust statistics so far. Among them, some studies
have proposed robust variants of PAST to deal with
impulsive noise. In [41], a robust PAST (RPAST) was
proposed. The algorithm first detects the occurrence
of the impulsive noise based on a threshold, and then
eliminates undesirable effects by discarding contami-
nated observations. The threshold is determined based
on an empirical function of noise variance with the
assumption that error vectors follow a Gaussian dis-
tribution corrupted by additive impulsive noise.

Zhang et al. introduced another PAST’s variant called
MCC-PAST via the maximum correntropy criterion
(MCC) in [42, 51, 52]. MCC-PAST exploits a correntropy
as a new statistic, which can quantify both the time
structures and statistics of two random processes, to
deal with impulsive noise. Accordingly, the maximum
correntropy criterion (MCC) is applied as a substitute
for the mean square error criterion in the objective
function of PAST. Based on the RLS technique, the
MCC-PAST algorithm was then developed. To extend
the tracking capability of the MCC-PAS, a variable
forgetting factor (FF) technique was also employed in
the recursion process. In parallel, Shengyang et al. de-
veloped another robust variant of PAST, namely BNC-
PAST, to track the underlying subspace via a differ-
ent criterion [43]. The authors defined a new concept
namely bounded non-linear covariance (BNC) to handle
relative problems (including ST) in the presence of
non-Gaussian noise with a heavy-tailed distribution.
In particular, bounded nonlinear maps were employed
to discard the effect of impulsive noise. Accordingly, a
new robust PAST algorithm based on BNC was derived.

4.2 Adaptive Kalman Filtering
Another good approach capable of handling im-

pulsive noise is based on adaptive Kalaman filtering.
In [44], Liao et al. proposed a RST algorithm based
on an adaptive Kalman filter with variable number of
measurements (KFVM). The main idea of using the
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Table IV
RST Algorithms in the Presence of Colored Noise

Method Approach Initialization
Convergence Computational

Guarantee Complexity

IV-PAST
IV + PAST random 7 3n`+O(nr)

(2012 [53])

IVPM
IV + propagator-based random 7 n(`+ 2r)

(2014 [54])

LOFF-VR-SREIV-PAST IV + PAST +
random 3

6nr + 5r2 + 4n
(2020 [55]) adaptive forgetting factor +14r +O(nr)

obPAST Oblique projection +
random 7 3nr2 + 3nr +O(r3)

(2005 [56]) PAST

obYAST Oblique projection +
random 7 5nr +O(r2 + n) +O(r3)

(2012 [57]) YAST

`: the dimension of IV vector.

KFVM is to deal with the tracking of fast-varying
subspace [58]. More concretely, when the underlying
subspace varies quickly, a small number of past obser-
vations are exploited in the recursion and vice versa. To
handle the impulsive noise, the M-estimate technique
is incorporated into the KFVNM algorithm. The com-
plexity of the proposed KFVM-based algorithm is much
higher than the PAST-based algorithms especially when
the number of observations used for subspace update
is large.

4.3 Weighted Recursive Least-Squares Method

Recently, based on robust statistics but different from
the common two-step scheme mentioned above, we
proposed in [27] an RST algorithm with linear com-
putational complexity based on a weighted RLS ap-
proach, namely ROBUSTA. On the theoretical aspect,
we provided a converge analysis of ROBUSTA in the
presence of SIRV noise. Interestingly, we showed that
it also corresponded to adaptive robust covariance esti-
mation. ROBUSTA outperformed many state-of-the-art
algorithms for burst noise, SIRV noise, and alpha-stable
noise. Also, it can be easily adapted, in conjunction with
pre-processing steps, to handle alpha-stable noise.

5 Robust Subspace Tracking in the

Presence of Colored Noise

In the literature, RST algorithms that are robust to
colored noise can be categorized into two groups:
(i) instrumental variable and (ii) oblique projection. We
summarize these algorithms in Table IV.

5.1 Instrumental Variable based Algorithms

For colored noise, one of the main directions is
to use the instrumental variable (IV) which allows
avoiding biased estimate. An appealing benefit of this
approach is easy to adapt derivation from classical
ST algorithms. While having improved performance,

the computational complexity of IV-based algorithms is
often higher than the original ones due to the selection
of the IV vector size. Specifically, in [53], two direct
extensions of the PAST algorithms, named IV-PAST and
extended IV-PAST, were proposed. It is shown that their
performance is enhanced, comparing to the original
ones. With the aim to improve further performance
in subspace-based system identification applications,
several algorithms in conjunction with using IV were
addressed in [54]. The key idea is to adapt the propa-
gator approach by exploiting the relationship between
array signal processing and subspace identification.

Very recently, Chan et al. in [55] proposed a new
robust variant of PAST capable of handing linear mod-
els with complex coefficients, multiple outputs, and
colored noises. In the proposed method, the authors
used a new adaptive forgetting factor and imposed a
`2-norm regularization into the objective function of
PAST. In particular, the adaptive forgetting factor was
obtained at each time instant by minimizing the mean-
square deviation of the estimator from an extended
IV linear model and IV-PAST. The additional `2-norm
regularized term on the weight vectors is aimed to re-
duce the error variance and prevent the ill-conditioned
computation at low SNR levels. Generally, if low com-
putational complexity is concerned, IV-based methods
require a IV vector uncorrelated with the noise which
is not always met in practice.

5.2 Oblique Projection based Algorithms
Another direction, which can avoid the above draw-

back, is based on oblique projection onto the subspace
manifold, such as [56, 57]. It is due to the fact that
the noise vector may lie in a low dimension subspace
instead of being treated as full rank in the observation
space. Naturally, oblique projections arise in the solu-
tion to recover the signal. Accordingly, Chen et al. pro-
posed a variant of PAST named oblique PAST (obPAST)
to track the signal subspace in [56]. In the same line,
based on the well-known YAST algorithm [65], Florian
et al. introduced the new obYAST algorithm in [57].
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Table V
Sparse ST Algorithms

Algorithm Method
Prior

Initialization
Convergence Computational

Information Guarantee Complexity

OIST Oja method +
7 random 3 O(nr)

(2016 [59]) soft-thresholding

Streaming SPCA Row truncation +
7 batch 3 O(nr min(r, s log n))

(2015 [60]) QR decomposition

`1-PAST PAST method + `1-norm
3 random 7 3nr2 + 3nr +O(r2)

(2016 [61]) sample matrix inverse

OVBSL Bayesian inference +
3 random 7 O(nr2 + nr)

(2017 [62]) `2/`1-norm promotion

SS/DS-OPAST 2-step approach + OPAST +
7 random 7

3nr2 + 3nr +O(r3)/
(2017 [63]) `1-norm approximation 3nr +O(nr2)

SS/GSS-FAPI 2-step approach + FAPI +
7 random 3

2nr2 + 4nr +O(r2)/
(2020 [64]) Givens rotations 4nr + 4ns +O(r2)

Both obPAST and obYAST minimized a new exponen-
tial least-squares cost function where the orthogonal
projection in the residual error term is replaced with
an oblique one. Experiment results indicate that this
modification can facilitate the tracking ability of PAST
and YAST in the presence of colored noise. Table IV
reports further information about these RST algorithms,
e.g. convergence and complexity.

6 Sparse Subspace Tracking

Recently, sparse subspace estimation and tracking have
been attracted more attention from the signal process-
ing community due to the fact that many modern
datasets admit sparse representation has huge potential
capabilities for analyzing them [66]. Although several
algorithms have been introduced for sparse subspace
estimation in the batch setting (see [67–69] for ex-
amples), there exist only a few studies on sparse ST
algorithms so far.

In [59], Chuang and Yue proposed an adaptive al-
gorithm called OIST (which stands for Oja’s algorithm
with Iterative Soft Thresholding) for online sparse PCA.
The authors investigated a rank-one spiked model in a
high-dimension regime and indicated that the estimate
of the eigenvector from the sample covariance matrix
is inconsistent. To alleviate it, they introduced an ex-
tended version of Oja’s algorithm followed by a soft-
thresholding step to promote sparsity on the estimate.
The asymptotic convergence, steady state, and phase
transition of OIST were also derived to understand
its behavior in a high-dimension regime when the
dimension is much larger than the number of obser-
vations. However, OIST is designed for only rank-one
subspaces, i.e. lines. In parallel, a novel online sparse
PCA algorithm able to deal with rank-k spiked models
(k ≥ 1) was proposed via row truncation technique
in [60]. More concretely, a simple `2-norm based row
truncation operator was introduced to zero out rows
whose leverage score is below a predefined threshold.
At each time instant, the QR decomposition of the

resulting truncated covariance matrix was realized to
update the principal subspace. The authors also proved
that the proposed algorithm is consistent in the high-
dimension regime.

In [61], Xiaopeng et al. introduced a new robust
variant of PAST called `1-PAST. Specifically, the authors
modified the cost function of PAST by adding a `1-norm
constraint imposed on the subspace matrix to control
its sparsity. Accordingly, a new RLS algorithm like
PAST was derived to minimize the proposed objective
function in an efficient way. The `1-PAST is robust and
stable even when the number of observations is small.

In [62], Giampouras et al. developed a novel ro-
bust sparse ST method namely OVBSL in the lens of
Bayesian inference. To deal with the sparsity constraint
on the subspace matrix, OVBSL utilized the group-
sparsity inducing the convex `2/`1-norm. Since it be-
longs to the family of Bayesian methods, no fine-tuning
parameter is required and the proposed algorithm is
fully automated.

In this topic, we also proposed several two-stage
approach based algorithms for sparse ST in [63, 64, 70].
The main steps of the two-stage approach is as follows.
We first utilize a well-known ST algorithm from the
literature (e.g. PAST or FAPI) to extract an orthonormal
basis of the underlying subspace. Then, we estimate a
sparse weight matrix based on some criteria on sparsity
such that it can span the same subspace. For example,
in [63], two new algorithms SS-OPAST and DS-OPAST
were designed for sparse system matrix and sparse
source signals respectively. We particularly exploited
the natural gradient to find the sparsest matrix from the
estimated orthonormal matrix by OPAST. In [64, 70],
we used FAPI in the first stage and then derived SS-
FAPI, orthogonal SS-FAPI, and GSS-FAPI algorithms.
Specifically, the sparsity criterion considered there is
differentiable and smoother than the previous one
in [63]. Accordingly, it facilitates the optimization by
employing the Newton method and Taylor expansions.
To sum up, a performance comparison among these
sparse ST algorithms is given in Table V.
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7 Conclusions

ST has shown an increased interest in signal processing
with the aim of analyzing real-time big data problems
and its improvement is in parallel to recent advances
in optimization. In this paper, we provided a brief
survey on adaptive algorithms for RST which were
mostly developed over the last decade. We highlighted
three classes of RST algorithms for dealing with non-
Gaussian noises including sparse outliers, impulsive
noise, and colored noise. The last decade has also
witnessed the widespread of high-dimensional data
analysis in which sparse representation-based methods
are successfully applied to many signal processing
applications. Accordingly, sparse ST algorithms are also
reviewed in our survey.
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