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Abstract

Subspace tracking, which is refered to online PCA, is a classical problem in signal processing with
various applications in wireless communications, rada and image/video processing. Since outliers and
missing data are ubiquitous and more common in big data regime, robust variants of subspace tracking
(RST) are crucial. In this report, we propose a novel algorithm, namely PETRELS-ADMM, to improve
RST performance in such scenario. The proposed approach consists of two main stages, including outlier
rejection and subspace estimation. In the first stage, alternating direction method of multipliers (ADMM)
solver is used to detect outliers residing in the observed data in an efficient way. In the second stage,
we propose a modification of the parallel estimation and tracking by recursive least squares (PETRELS)
algorithm to update the underlying subspace. A theoretical convegence analysis is provided, i.e., we
prove that PETRELS-ADMM can generate a sequence of subspace solutions converging to the optimum
of its batch counterpart. Performance studies show the superiority of our algorithms as compared to the
state-of-the-art algorithms on both synthesis data and real data.
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Robust Subspace Tracking with Missing Data
and Outliers: Novel Algorithm and

Performance Guarantee

I. Introduction

Subspace estimation is a classical problem in signal processing with numerous applications in
wireless communications, radar, navigation and image/video processing, to name a few [1]. It
can be stated by a problem of estimating a r-dimensional subspace U of Rn where r � n, from
a set of m observed data vectors {x1,x2, . . . ,xm}, or equivalently, a measurement data matrix
X of size n×m. Generally, it is also known as the principal component analysis (PCA) problem
in machine learning. The standard approach is to solving an eigen-problem in batch manner
where the underlying subspace is derived from taking either singular value decomposition of
the data matrix or eigenvalue decomposition of its covariance matrix. In real-time or large-
scale applications, batch algorithms are however not useful and become inefficient due to their
high computational complexity O(nmmin(m,n)) and memory cost O(nm). Subspace tracking
or online (dynamic) PCA has been an excellent alternative with a much lower computational
complexity as well as memory cost, e.g. being linear with respect to the size of data vectors n.

In the literature of signal processing, extensive surveys of the standard algorithms for subspace
tracking are provided in [1], [2]. The algorithms can be categorized into three classes with respect
to their complexity, including the class of high complexity O(n2r), medium complexity O(nr2)

and low complexity O(nr). Note that, there usually exists a tradeoff among subspace estimation
accuracy, convergence rate and computational complexity. It is stated that algorithms belonging
to the medium complexity class can provide the best performance to cost ratio [2]. However,
the standard algorithms are sensitive to the presence of the corruptions in a similar way as to
PCA [3]. Their performance may be degraded significantly if the measurement data is corrupted
by even a small outliers or missing observations. As mentioned in recent reviews [4]–[6], missing
data and outliers are ubiquitous and more common in big data regime. This has led to attempts
to define robust variants of subspace learning, namely robust subspace tracking (RST), or online
robust PCA (ORPCA). In this work, we aim to investigate the RST problem when dealing with
data in the presence of both outliers and missing observations.

A. Related Works

In recent years, there have been several studies to subspace tracking from missing data. Almost
attempts are interpreted through geometric lens, i.e., the subspace tracking problem can be stated
by an optimization with a certain objective function. Along the line, Grassmannian rank-one
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update subspace estimation (GROUSE) [7] is an incremental gradient subspace algorithm which
performs the stochastic gradient descent on Grassmanian manifold of the r-dimensional subspace.
It belongs to the class of low complexity and its convergence has recently been proved in [8].
A robust version of GROUSE for handling outliers residing in the data is Grassmannian robust
adaptive subspace tracking (GRASTA) algorithm, which has been presented in [9]. GRASTA
first uses a `1-norm cost function to reduce the effect of sparse outliers and then performs
the incremental gradient on the Grassmanian manifold of subspace U in the similar way as to
GROUSE. Although GRASTA is one of the fastest RST algorithms for handling missing data
corrupted by outliers, no formal guarantees are obtained for the algorithm. Parallel estimation and
tracking by recursive least squares (PETRELS) algorithm, proposed in [10], can be considered
as an extension of the famous PAST algorithm [11], for handling missing data. Specifically,
PETRELS is a recursive least squares-type algorithm applying the second order stochastic gradient
descent to the cost function. The convergence results of PETRELS state that generated solutions
can converge to global optima in the full observation setting. Inspired of PETRELS, various
subspace tracking algorithms have been proposed to deal with missing data in the same line such
as [12]–[14]. The subspace tracking algorithm in [12] is derived from minimizing the sum of
squared residuals, but adding a regularization of the nuclear norm of subspace U. The ROSETA
algorithm [13] applies an adaptive step size at subspace estimate stage to enhance the convergence
rate. While the core of PETRELS-CFAR algorithm [14] is to handle “outliers-removed” data, i.e.,
outliers are first removed before tracking subspace. However, convergence of the PETRELS-based
algorithms have not been mathematically proved yet. Recursive projected compressive sensing
(ReProCS)-based algorithms [15], [16] are also able to reconstruct a subspace from missing
observations. The ReProCS-based algorithms provide not only a memory-efficient solution, but
also a reasonable subspace estimation compared to the state-of-the-art algorithms. However,
ReProCS-base algorithms require strong assumptions on subspace changes, outlier magnitudes
and accurate initialization (i.e., knowledge of the underlying subspace must be available). In
some applications, their assumptions are difficult to meet in data acquisition process or the
inherent nature of data in practice. Other subspace tracking algorithms having ability to deal with
missing data include pROST [17], APSM [18], POPCA [19] and OVBSL [20]. The algorithms
either require to memorize previous observations and good initialization or do not provide a
performance guarantee. Among algorithms mentioned above, only few of them can be capable
to handle robust subspace tracking in the presence of both outliers and missing observations,
including GRASTA [9], pROST [17], ROSETA [13], ReProCS-based algorithms [15], [16] and
PETRELS-CFAR [14]. Adopting the approach of PETRELS-CFAR but aiming to improve RST
performance, we are interested in looking for a method that can remove outliers more correctly.

B. Contributions

The main contributions of the report is two-fold:

• We propose a novel algorithm for the RST problem to deal with missing data corrupted by
outliers. It consists of two main stages, including outlier rejection and subspace estimation.
Specifically, outliers residing in the measurement data are detected and removed by our
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TABLE I: A comparison of the state of the art algorithms for online robust PCA, robust subspace
tracking

Algorithm Missing Data Mechanism Convergence Rate Convexity Convergence Guarantee Complexity

GRASTA
3 Grassmannian Manifold + ADMM O(1/k) 7 3 3

(2012 [9])

OR-PCA
7 `1-norm 3 3(global) 3 O((nr + r2)(r + 1))

(2013 [21])

pROST
3 `0-norm 7 7 -?

(2014 [17])

ROSETA
3 Manifold + ADMM

(2015 [13])

APSM
3 Robust Statistics ? 3 ? O(nr2)

(2015 [18])

RPCA-TNNR
7 ? ? ? ? ?

(2016 [22])

OLP-PCA
7 lp-norm 7 3 ? O(n(r + c)2) †

(2017 [23])

OMRMD
3 `0-norm 7 7 -?

(2017 [24])

PETRELS-CFAR
3 Robust Statistics

(2018 [14])

L1-PCA
7 ? 7 3 ? O(t2nr) ‡

(2018 [25]–[27])

ReProCS
3 ? 7 3 ? O(nr log(n) log(1/ε)) ∗

(2019 [15], [16], [28])

OSTP
7 `1-norm + Schatten-p 7 3 ? O(nr2)

(2019 [29])

PETRELS-ADMM 3 ADMM O(1/k) 3 3

† c is
‡ t denotes the time instant. The subspace update is exponential in t and linear in n, r.
∗ ε is the constrained error between true subspace and estimated subspace: SE(P̂,P) := ||(I− P̂P̂T )P||2 ≤ ε.

ADMM solver in an efficient way. A modification of PETRELS algorithm, where each row
of the underlying subspace is updated in parallel, is then proposed to update subspace with
a high accuracy.

• We are the first to provide a strong guarantee for the RST problem in the presence of
both outliers and miss observations. Specifically, we show that a sequence of the objective
values {ft(Ut)}∞t=1 converges almost surely. The solutions {Ut}∞t=1 generated by PETRELS-
ADMM converges to a stationary point of the expected loss function f(U) asymptotically.

It is noted that a preliminary study has been presented in a conference version [30]. Compared
to our earlier work, the problem formulation considered in Section II is more general. An
upgrade of PETRELS-ADMM algorithm and its full strong convergence analysis are provided in
this version. Furthermore, more extensive experiments on both synthesis data and real data are
provided to illustrate the effectiveness of the proposed algorithm.

Compared to related works, there are several differences between PETRELS-ADMM and the
state-of-the-arts RST algorithms which are what make our contributions significant. In partic-
ular, our mechanism for outlier rejection can facilitate the subspace estimation ability of RST
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algorithms where “clean” data involves the process only, thus improving overall performances.
It is due to the fact that subspace learning or PCA is very sensitive to even a small fractions of
outliers because of the quadratic norm minimization. The deviations from outliers will dominate
the total norm and hence drive the basic components of the subspace. Excepting PETRELS-
CFAR, the core of the state-of-the-art algorithms is “outlier-resistant”, i.e., to have a “right”
direction toward the true subspace, the algorithms have to require robust cost functions as well
as additional adaptive parameter selection. For examples, GRASTA and ROSETA use the `1-
norm robust estimator to reduce the effect of outliers while pROST applies the `0-norm one
instead. Both the three algorithms then perform stochastic gradient decent on the Grassmannian
of the underlying subspace. However, there is no guarantee that the `p-norm robust estimator (i.e.,
p ∈ [0, 1]) can provide an optimal solution because of non-convexity. Accordingly, the effect of
outliers can not completely removed in tracking. This is why the algorithms fail when there are a
large fractions of outliers in the measurement data or significant subspace changes in practice. By
contrast, PETRELS-based algorithms can utilize advantages of the original PETRELS in missing
observations and then treat outliers as missing data to facilitate the subspace tracking. Note that,
PETRELS obtains the competitive performance in terms of subspace estimation accuracy in the
case of “clean” data.

Our PETRELS-ADMM is more robust and efficient than PETRELS-CFAR. First, our ADMM
solver may be efficient than CFAR in terms of memory cost and flexibility. The CFAR requires
several previous observations to detect outliers1, while our ADMM solver utilizes a new data
vector and the previous estimated subspace and its memory cost is independent to the size of
data samples. Moreover, performance of CFAR depends highly on predefined parameters such
as the probability of false alarm Pfa and the size of training window Nω [14]. By contrast,
since the ADMM solver is a parameter free-type algorithm, our estimator is more flexible than
PETRELS-CFAR. Secondly, PETRELS-CFAR may provide an unstable solution in the presence
of a high corruption fraction. It is due to that PETRELS-CFAR uses the same line of the original
PETRELS after removing outliers. Lack of regularization in the original PETRELS can result
in an unstable solution when the fraction of missing data is large. Accordingly, convergence of
PETRELS is confined to the full observation when it boils down to the PAST algorithm. In our
work, an regularization of the `2,∞-norm of ‖U‖2

2,∞, which aims to control the maximum `2-norm
of rows in U, is therefore added in the objective function to avoid the scenario. In addition, an
adaptive step size ηt is also applied to speed up the convergence rate as well as enhance the
subspace estimation accuracy.

C. Report organization

The structure of the report is organized as follows. Section II states formulation for the RST
problem dealing with data in the presence of both outliers and missing observations. Section III
establishes our PETRELS-ADMM algorithm for RST and its theoretical convergence is ana-
lyzed in the Section IV. Section V presents extensive experiments to illustrate the effectiveness

1Recall that constant false alarm rate method (CFAR) [31] is a simple and efficient one for detecting target in radar systems
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of PETRELS-ADMM compared to the state-of-the-art algorithms. We conclude the report in
Section VI. Complete proofs are presented in the Appendix VIII.

D. Notations

In this report, we use lowercase (e.g. a), boldface lowercase (e.g. a) letters to denote scalars,
vectors, while capital boldface (e.g. A) and calligraphic letters e.g. (A) respectively denote
matrices and sets. The i-th entry of a vector a is denoted by a(i). For a matrix A, its (i, j)-
th entry is denoted by A(i, j), while A:,k and Al,: are its k-th column and l-th row of A

respectively. Operators (.)T , (.)†,E[.], tr(. ) denote the transportation, pseudo-inverse, expectation,
trace operator respectively. For 1 ≤ p < ∞, the `p-norm of a vector a ∈ Rn×1 is ‖a‖p

∆
=(∑n

i=1 |a(i)|p
)1/p, meanwhile its `0-norm is ‖a‖0

∆
= limp→0(

∑n
i=1 |a(i)|p) and its `∞-norm is

‖a‖∞
∆
= maxi |a(i)|. The `2,∞ of A is defined as the the maximum `2 row norm, i.e., ‖A‖2,∞ =

maxl ‖Al,:‖2. The Frobenius norm of a matrix A ∈ Rn×m is ‖A‖F
∆
=
(∑n

i=1

∑m
j=1 A(i, j)2)1/2

=√
tr(ATA). The condition number of matrix A is κ(A) =

σmax(A)

σmin(A)
, where σmax(A) and σmin(A)

are maximal and minimal singular values of A respectively.

II. Problem Formulation

A. Robust Subspace Tracking

Assume that at each time instant t, we observe a signal xt ∈ Rn×1 satisfying the following
model:

xt = Pt(`t + nt + st), (1)

where `t ∈ Rn×1 is the true signal that lies in a low dimensional subspace of U ∈ Rn×r (i.e.,
`t = Uwt, r � n), nt ∈ Rn×1 is a noise vector (e.g. N (0, σ)), st ∈ Rn×1 is a sparse outlier
vector which is somehow distributed in an ambient dimensional space, while the diagonal matrix
Pt ∈ Rn×n is the observation mask showing whether the k-th entry of xt is observed (i.e.,
Pt(k, k) = 1) or not (i.e., Pt(k, k) = 0).

Definition 1 (RST with Missing Data and Outliers): Given a set of observed signals, X =

{xi}ti=1, we wish to estimate a rank-r matrix Ut ∈ Rn×r such that it can cover the span of true
signals {`i}ti=1.

The RST problem can be stated as the following minimization:

Ut = argmin
U∈Rn×r

ft(U),

with ft(U)
∆
= E

x
i.i.d∼Pempirical

[`(U,P,x)] =
1

t

t∑
i=1

λt−ii `(U,Pi,xi),
(2)
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where Pempirical is the empirical data distribution and the loss function `(U,Pi,xi) is given by

`(U,Pi,xi)
∆
=min

s,w
‖Pi(Uw + s− xi)‖2

2 + ρ ‖s‖1 , (3)

where the `1-norm ‖s‖1 associated with a regularization weight ρ > 0 is to control the outlier
density (sparsity), and the forgetting factor λi ∈ (0, 1] is to discount the effect of past observations.
We usually prefer to minimize the expected cost f(U) on signals distributed i.i.d from the true
data-generating distribution Pdata, instead of the empirical cost ft(U) on Pempirical only. Thanks to
the law of large numbers, we have average of the observations without discounting (i.e., λ = 1)
converges to the expected value when t goes to infinity,

U = argmin
U∈Rn×r

f(U)

with f(U)
∆
= E

x
i.i.d∼Pdata

[`(U,P,x)] = lim
t→∞

ft(U).
(4)

From the past estimations {si,wi}ti=1, instead of minimizing the empirical cost function ft(U)

in (2), we propose to optimize the surrogate gt(U) of ft(U), which is defined by

gt(U) =
1

t

t∑
i=1

λt−i ‖Pi(Uwi + si − xi)‖2
2 + ρ ‖si‖1 . (5)

Note that, the objective function provides an upper bound for ft(U) as ft(U) ≤ gt(U), ∀t. In
our convergence analysis, we will prove that ft(Ut) and gt(Ut) converge almost surely to the
same limit. As a result, the solution Ut obtained by minimizing gt(U) is exactly the solution of
ft(U) can be when t tends to infinity.

B. Discusses

We have three remarks on the objective function statement above. First, the `0-norm regulariza-
tion may be stronger, but more complicated than the `1-norm one. Since the `0-norm returns the
number of nonzero entries in a vector, hence imposes on the entries in the same way. However,
the `0-norm based sparsity control function is non-convex and the resulting RST will be a NP-
hard problem [32]. While the `1-norm is the closest convex surrogate of the `0-norm, though the
`1-norm relies highly on the magnitude of vector entries. There have been many extensions of
`1-norm based (online) RPCA/RST approaches (see [6], [33], [34] for good reviews).

Second, the minimization (5) can be considered as a joint optimization of multiple variables
including the subspace U, coefficients w and outliers s. Although the function is not jointly
convex, it is (strongly) convex with respect to each of the variables while the others are fixed.
As a result, the minimization (5) can be solved efficiently using the alternating minimization
(AM) or alternating direction method of multipliers (ADMM) approaches [35]. Motivated by
advantages of the ADMM framework in terms of convergence [?], [36], we derived an efficient
algorithm, which will be presented in the next section, for handling the RST problem to handle
missing data corrupted by outliers.
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Third, performance of subspace tracking algorithms such as accuracy, stability, and complexity
can depend on the forgetting factor λ. When the value of λ close to one, the algorithms can
achieve good accuracy and stability, but their abilities in term of tracking and forgetting the
past can be reduced. A smaller value of λ can improve the computational complexity and hence
tracking but it may affect the accuracy of estimated subspaces. Generally, a constant forgetting
factor λ is often used for this work such as the algorithm PETRELS (e.g. λ = 0.98) [4], [10]
and ROBUSTA (e.g. λ = 0.999) [14], but variable forgetting factors can enhance the overall
performance of the algorithms and control the memory in a more flexible way,

ft(U) = λtft−1(U) + `(U,Pt,xt).

As a result, we modified the the original PETRELS in [10] by adding an adaptive step size
ηt ∈ (0, 1] at each time instant t (i.e., λt = ηtλ, see Section III-B). The modification provided a
comparative performance in term of subspace estimation accuracy in practice. Also, we want to
note that for the value of λi → 1 and a large enough t (e.g. t→∞), it may be assumed that

ft(U) =
1

t

t∑
i=1

λt−ii `(U,Pi,xi) ∼= E[`(U,P,x)].

Therefore, our convergence analysis still holds for the variable forgetting factors of our algorithm.

C. Assumptions

We make the following assumptions for convenience of convergence analysis as well as helping
deploy our optimization algorithm:

(A-1) The data-generation distribution Pdata has a compact set V , x i.i.d∼ Pdata. Real data are often
bounded such as audio, image and video, hence the assumption (A-1) naturally holds.

(A-2) The constrained set U ⊆ Rn×r for the underlying subspace is U ∆
= {U ∈ Rn×r, ‖Uk,:‖2 ≤

1, 1 ≤ κ(U) ≤ α} with a constant α. The first constraint ‖Uk,:‖2 ≤ 1 is to bound the scale
of basis vectors in U and hence prevent the arbitrarily very large values of U. Therefore,
there always exists a positive number ε > 0 such that ‖Ut‖F ≤ ε,∀t ≥ 1 (e.g. ε =

√
n).

While the low condition number of the subspace κ(U) is to prevent the ill-conditioned
computation. Furthermore, we also assume that the subspace change at two successive time
instances is small, i.e., the largest principal angle between Ut and Ut−1 is 0 ≤ θmax � π/2,
or the distance between the two subspaces satisfies 0 ≤ SE(Ut,Ut−1) = sin(θmax)� 1.

(A-3) The constrained set W ⊆ Rr×1 of coefficients is W = {w ∈ Rr×1, ω1 ≤ |w(i)| ≤ ω2, i =

1, 2, . . . , r} with two constants 0 ≤ ω1 < ω2. Since the data x and subspace U are assumed
to be bounded, it is natural that the subspace coefficient w is bounded.

(A-4) The constrained set S for outliers is S ∆
= {s ∈ Rn×1, ‖s‖∞ < C}. Theoretically, the `1-norm

approximation can yield the sparse solution for s, but it is not guaranteed that the solution
is usually optimal with respect to the corresponding `0-norm one. In this work, we aim to
estimate the locations of outliers correctly instead of their magnitude and then eliminate
them. The constraint S imposed on the outlier magnitude can control the convergence rate
of the proposed RST algorithm while still retaining the subspace estimation performance in
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practice. In some related works the bound C is often predefined, e.g. C can be chosen as
2m − 1, with m is the bit level for pixels in gray image/video applications. In addition, the
assumption is also important to enhance the well-definedness as stated by the Proposition 1.

III. Proposed PETRELS-ADMM Algorithm

In this section, we present a novel algorithm, namely PETRELS-ADMM, for RST to handle
missing data in the presence of outliers. The main idea is to develop a framework taken place
in two sequential phases to minimize the empirical cost function gt(U) in Eq. (5). Specifically,
outliers st and subspace Ut are alternatively updated at each time instant t.

Under the assumption (A-2) that the underlying subspace U changes slowly, we can detect
outliers in st by projecting the new signal xt into a space spanned by the previously estimated
subspace Ut−1 in the first phase. Specifically, we solve the following minimization problem:

st
∆
= argmin

s∈S,w∈W
˜̀(Ut−1,Pt,xt,w, s),

with ˜̀
t(Ut−1,Pt,xt,w, s) = ‖Pt(Ut−1w + s− xt)‖2

2 + ρ ‖s‖1 .
(6)

Note that, the original loss function `(Ut−1,Pt,xt) in Eq. (3) can be expressed w.r.t (s,w) as
follows

`(Ut−1,Pt,xt)
∆
= min

s∈S,w∈W
˜̀
t(Ut−1,Pt,xt,w, s).

In the second phase, the subspace Ut can be estimated by minimizing the sum of squared residuals
and account for outliers:

Ut
∆
= argmin

U∈U

1

t

t∑
i=1

λt−i ‖Pi(Uwi + si − xi)‖2
2 (7)

The following proposition help us to justify our assumptions in section II-C about the well-
definedness of the RST problem which facilitates to derive several important results later in
algorithm deployment and convergence analysis.

Proposition 1. (Uniform bound of outliers and subspace): If {Ut, st}∞t=1 be the sequence of
optimal solutions of the minimization (5), then they are bounded.

Proof. Since st be the optimal solution of (6) defined as

st
∆
= argmin

s∈S,w∈W
˜̀
t(Ut−1,Pt,xt,w, s),

we have the fact ˜̀
t(Ut−1,Pt,xt,wt, st) ≤ ˜̀

t(Ut−1,Pt,xt,0,0) and

‖st‖1 ≤
1

ρ
‖Ptxt‖2

2 =
1

ρ
‖xt‖2

2

Moreover, under the assumption (A-1), it is natural that st is bounded.
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Algorithm 1 Proposed PETRELS-ADMM

1: Input: A set of observed signal {xi}ti=1,xi ∈ Rn×1, observation masks {Pi}ti=1,Pi ∈ Rn×n,
true rank r.

2: procedure
3: for i = 1 to t do
4: Estimate outliers si using Algorithm 2:

si = argmin
s,w

‖Pi(Ui−1w + s− xi)‖2
2 + ρ ‖s‖1 .

5: Recover signal xre
i : xre

i (k) =

{
‖si‖0
n

xi(k), if si(k) = 0,

0, otherwise,
6: Estimate subspace Ui using Algorithm 3:

Ui = argmin
U,w

i∑
j=1

λi−j‖Pj(x
re
j −Uw)‖2

2 +
α

2i
‖U‖2

2,∞.

7: end for
8: return Ut

To exam the bound for Ut, we rewrite the problem (7) as

Ut := argmin
U∈Rn×r

g̃t(U) =
1

t

t∑
i=1

λt−i‖Pi(Uwi + si − xi)‖2
2 +

α

2t
‖U‖2

2,∞.

We also exploit the fact that g̃t(Ut) ≤ g̃t(U)|U=0 because of Ut = argminU g̃t(U). It implies
that ‖Ut‖2

2,∞ ≤ 2
α

∑t
i=1 λ

t−i‖Pi(si − xi)‖2
2 or Ut is bounded.

Our algorithm first applies the ADMM framework in [35], which has been widely used in
previous works for solving (6), and then propose a modification of PETRELS [10] to handle (7).
In the outlier rejection stage, we emphasize here that we propose to focus on augmenting s (as
shown in (9)) to further annihilate outlier effect, unlike GRASTA and ROSETA which focus
on augmenting w only. While, we modify the subspace update step in PETRELS by adding an
adaptive step size ηt ∈ (0, 1] at each time instance t, instead of a constant as in the original
version. The modification can be seen as an approximate interpretation of Newton’s method.

A. Online ADMM for Outlier Detection

We show in the following how to solve (6) step-by-step:

Update st: To estimate outlier st given w, we exploit that the fact that (6) can be cast into
the ADMM form as follows:

min
u,s

h(u) + q(s), subject to u− s = 0, (8)
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Algorithm 2 Remove outliers st

1: Input: Observed signal xt ∈ Rn×1, observation mask Pt ∈ Rn×n, the previous estimate
Ut−1 ∈ Rn×r, maximum iteration K, penalty parameters ρ1, ρ2, absolute and relative
tolerances εabs and εrel.

2: Initialization:
3: Choose {u0, s0,w0, z0, e0} randomly.
4: {r0, e0} ← 0n

5: procedure
6: for k = 0 to K do
7: Update s:
8: uk+1 = 1

1+ρ1

(
Pt(xt −Ut−1w

k)− ρ1(s
k − rk)

)
9: sk+1 = Sρ/ρ1(u

k+1 + rk)

10: rk+1 = rk + uk+1 − sk+1

11: Update w:
12: wk+1 = (UT

t−1PtUt−1)
†UT

t−1Pt(xt − sk+1 + ek)

13: zk+1 = Pt(Ut−1w
k+1 + sk+1 − xt)

14: ek+1 = ρ2
1+ρ2

zk+1 + 1
1+ρ2

S1+ 1
ρ2

(zk+1)

15: Stopping criteria:
16: if

∥∥sk+1 − sk
∥∥

2
<
√
nεabs + εrel

∥∥ρ1r
k+1
∥∥

2
then break

17: end for
18: return sk+1

where u is the additional decision variable, h(u) = 1
2
||Pt(Ut−1w+u−xt)||22 and q(s) = ρ‖s‖1.

The corresponding augmented Lagrangian with the dual variable vector β is thus given by

L(s,u,β) = q(s) + h(u) + βT (u− s) +
ρ1

2
‖u− s‖2

2, (9)

where ρ1 > 0 is the regularization parameter.2 Let r = β/ρ1 be the scaled dual variable, we can
rewrite the Lagrangian (9) as follows

L(s,u, r) = q(s) + h(u) + ρ1r
T (u− s) +

ρ1

2
‖u− s‖2

2. (10)

Note that, in GRASTA and ROSETA focus on augmenting w only.3

2It is referred to as the penalty parameter. Although convergence rate of the proposed algorithm is dependent on the chosen
value, the effect of the penalty parameter is little in practice. It is also shown that ADMM method can converge for all values
of the parameter within a few tens of iterations [35].

3In GRASTA [9] and ROSETA [13], both the authors aimed to detect outliers s by solving the augmented Lagrangian of (6)
as follows

L(s,y,w) = ‖s‖1 +
ρ

2
‖Pt(Ut−1w + s− xt)‖22 + yT (Pt(Ut−1w + s− xt)), (11)
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Therefore, we have the following update rule using the scaled dual variable at each k-th
iteration, as

uk+1=argmin
u

(
h(u) + ρ1(r

k)T (u− sk) +
ρ1

2
‖u− sk‖2

2

)
, (12)

sk+1=argmin
s

(
q(s)− ρ1(r

k)T s+
ρ1

2
‖uk+1 − s‖2

2

)
, (13)

rk+1 = rk + sk+1 − uk+1. (14)

In particular, we first exploit that the minimization (12) can be formulated as a convex quadratic
form:

uk+1 = argmin
u

(
1

2
‖u−Pt(xt −Ut−1w)‖2

2 + ρ1(r
k)Tu+

ρ1

2
‖u− sk‖2

2

)
= argmin

u

(
1 + ρ1

2
‖u‖2

2 − [Pt(xt −Ut−1w)− ρ1(s
k − rk)]Tu

)
=

1

1 + ρ1

(
Pt(xt −Ut−1w)− ρ1(s

k − rk)
)
.

(15)

While the problem (13) is truly a standard proximal minimization with the `1-norm [37] as

sk+1 := argmin
s

(
ρ ‖s‖1 +

ρ1

2
‖s− (uk+1 + rk)‖2

2

)
= Sρ/ρ1(u

k+1 + rk),
(16)

where Sα(x) is the soft thresholding, defined as

Sα(x) =


0, if |x| ≤ α,

x− α, if x > α,

x+ α, if x < −α,

which is a proximity operator of the `1-norm [37].

Finally, a simple update rule for the scaled dual variable r can be given by

rk+1 = rk − βk∇L(rk), (17)

where the gradient ∇L(rk) is computed by ∇L(rk) = ρ1(u
k+1−sk+1) and βk > 0 is the step size

controlling the convergence rate. For the method of multipliers in general and ADMM method
in particular, the step size for the dual variable update can be chosen to be equal the penalty
parameter [35]. Therefore, the step size βk is here set to be βk = 1/ρ1 at the k-th iteration
because of the scaled version.

Update wt: To estimate wt given s, (6) can be recast into the following ADMM form

min
w∈W,e∈Rn×1

1

2
‖Pt(Ut−1w + s− xt)‖2

2 + y(e)

subject to Pt(Ut−1w + s− xt)− e = 0

(18)

where y(e) is a convex regularizer function for the noise e, (e.g. y(e) = σ
2
‖e‖2

2, with σ−1 can
be chosen as the signal to noise ratio, SNR). However, the formulation (18) is still affected by
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outliers because s may not be completely rejected in each iteration. Therefore, (18) can be cast
further into the ADMM form such that it can lie between least squares (LS) and least absolute
deviations to reduce the impact of outliers. The Huber fitting can bring transition between the
quadratic and absolute terms of Lw,e(w, e, .), as

Lw,e(w, e, .) = fHub(e) +
ρ2

2
‖Pt(Ut−1w + s− xt)− e‖2

2), (19)

where the Huber function can be given [35],

fHub(x) =

{
x2/2, |x| ≤ 1,

|x| − 1/2, |x| > 1.

As a result, e-updates for estimating w involve the proximity operator of the Huber function,
that is,

ek+1 =
ρ2

1 + ρ2

Pt(Ut−1w
k+1 + s− xt) +

1

1 + ρ2

S1+ 1
ρ2

(Pt(Ut−1w
k+1 + s− xt)),

Hence, at the (k+1)-th iteration, wk+1 can be updated using the following closed-form solution
of the convex quadratic function:

wk+1 = (UT
t−1PtUt−1)

†UT
t−1Pt(xt − s+ ek),

where (.)† denotes the matrix pseudo-inversion operator. To sum up, the rule for updating wt

can be given by

wk+1 = (UT
t−1PtUt−1)

†UT
t−1Pt(xt − s+ ek), (20)

zk+1 = Pt(Ut−1w
k+1 + s− xt), (21)

ek+1 =
ρ2

1 + ρ2

zk+1 +
1

1 + ρ2

S1+ 1
ρ2

(zk+1). (22)

We can use a parameter ν > 0 is to ensure that the matrix UT
t−1PtUt−1 + νI is invertible in

Eq. (20) as well as to satisfy the constraint on subspace coefficients, i.e., w ∈ W . We note that,
by using the Huber fitting operator, our algorithm is better in reducing the impact of outliers
than GRASTA and ROSETA which use `2-norm regularization.

The procedure is stopped when the maximum iteration has reached or the accuracy tolerance
for the primal residual and dual norm has met:∥∥sk+1 − sk

∥∥
2
<
√
nεabs + εrel

∥∥ρ1r
k+1
∥∥

2
,

where εabs > 0 and εrel > 0 are predefined tolerances for absolute and relative part respectively.
A reasonable range for the absolute tolerance may be [10−6, 10−3], while [10−4, 10−2] is good
for the relative tolerance, see [35] for further details of the stopping criterion.
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Algorithm 3 Modified PETRELS for updating Ut

1: Input: Recovered signals {xfre
i }ti=1, observation mask Pt, the previous estimate Ut−1,

forgetting factor λ, the step size η, the previous Hessian Ht−1.
2: procedure
3: wt = (Pre

t Ut−1) \ xfre
t

4: xt =

∥∥xfre
t −Pre

t Ut−1wt

∥∥
2

‖wt‖2

5: ηt =
xt√
x2
t + 1

6: if ηt > η then ηt = 1 end if
7: for m = 1 to n do
8: Hm

t = λHm
t−1 +Pre

t (m,m)wtw
T
t

9: Rm
t = Hm

t + α
(

1
2t
− λt

2(t−1)

)
I

10: at = Rm
t−1 \wt

11: umt = umt−1 + ηt P
re
t (m,m)(xre

t (m)−wT
t u

m
t−1)at

12: end for
13: return Ut

B. Modified PETRELS for Subspace Estimation

Having estimated st, we can rewrite the optimization (7) as

Ut := argmin
U

1

t

t∑
i=1

λt−i‖Pre
i (x

re
i −Uwi)‖2

2 +
α

2t
‖U‖2

2,∞, (23)

where the recovered signal xre
i and the new observation Pre

i are determined by the following rule:

• if si(k) = 0, then xre
i (k) =

‖si‖0
n

xi(k),

• if si(k) 6= 0, then Pre
i (k, k) = 0,

and the outliers si can be eliminated.

Thanks to the parallel scheme of PETRELS [10], the optimal solution of the problem (23) can
be obtained by solving its subproblems at each row um of U, m = 1, 2, . . . , n, that is,

um = argmin
um∈Rr×1

t∑
i=1

λt−iPre
i (m,m)(xre

i (m)−wT
i u

m)2 +
α

2t
‖um‖2

2 . (24)

In this way, we can speed up the subspace update by ignoring the um if the m-th entry of xre
t is

labeled as missing observation or outlier. The update is summarized in Algorithm 3. Note that,
we relax the recursive update rule for each row um by adding an adaptive step size ηt ∈ (0, 1] at
each time instance t, instead of a constant as in the original PETRELS [10] and the simplified
PETRELS [4], i.e.,

umt = umt−1 + ηtP
re
t (m,m)(xre

t (m)−wT
t u

m
t−1)at (25)
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where Rm
t =

∑t
i=1 λ

t−iPt(m,m)wiw
T
i + α

(
1
2t
− ηtλ

2(t−1)

)
I, and at = (Rm

t )
†wt and the adaptive

step size ηt is given by

ηt =
xt√
x2
t + 1

, with xt =
‖et‖2

‖wt‖2

, (26)

where the residual error et is computed by et = xre
t −Pre

t Ut−1wt. Specifically, the adaptive step
size ηt can be expressed by ηt = sin(θt), see Fig. 1. The smaller angle θt is, we are closer to
the true subspace, the smaller step size is needed.

‖et‖2
‖wt‖2

√( ‖et‖2
‖wt‖2

)2
+ 1

1

θt

Fig. 1: Adaptive step size ηt.

The modification can be seen as an approximate interpretation of Newton’s method which
guarantee that the solution can converge to stationary point. The convergence analysis will be
provided in the next section.

IV. Theoretical Analysis

In this section, we provide a convergence analysis of the proposed PETRELS-ADMM algorithm
for RST problem dealing with missing data corrupted by outliers. Motivated by the results of
convergence of empirical processes for online sparse coding in [38] and online robust PCA in
[21], [24], we derive a theoretical approach to analyze the convergence of values of the objective
function {ft(Ut)}∞t=1 as well as the solutions {Ut}∞t=1 generated by PETRELS-ADMM. We note
that, there are several differences between our work and the previous works. In particular, the
work of [38] is to dedicate to sparse coding with a different mechanism where behaviors of
its objective function and surrogate are to augment on sparse coefficients, while we focuses
on controlling outlier sparsity and the underlying subspace. The work of [21], [24] can only
guarantee in the case of data with full observations. In addition, the authors in [21], [24] assumed
that the surrogate functions gt(U) are strongly convex and the minimizers of the s-update are
unique (see Assumptions (A2-A3) therein), while we can prove them (see Proposition 3 and
Lemma 1). Furthermore, there is a forgetting factor λt to enable the ability of forgetting the
past and observation masks {Pi}ti=1 in our objective function which lead to more challenges in
convergence analysis. In addition, differences in term of optimization algorithms, constraints and
assumptions induce many other differences in our proof compared with the previous works.

Given assumptions defined in Section II-C, our main theoretical result can be stated by the
following theorem:
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Theorem 1. (Convergence of PETRELS-ADMM): Let {Ut}∞t=1 be the sequence of solutions
generated by PETRELS-ADMM, then the sequence converges to a stationary point of the expected
loss function f(U) when t→∞.

Proof Sketch. Our proof is derived similarly the line in [21], [38] which is divided into main
stages as follows: We first prove that the solutions {Ut, st}t≥1 generated by the PETRELS-
ADMM algorithm are optimal and uniformly bounded. We then prove that a nonnegative sequence
{gt(Ut)}∞t=1 converges almost surely when {Ut}∞t=1 be the sequence of optimal solutions gen-
erated by the PETRELS-ADMM algorithm. After that, we prove that the surrogate {gt(Ut)}∞t=1

converges almost surely to the that of the empirical loss function {ft(Ut)}∞t=1 as well as the true
loss function, i.e., gt(Ut)

a.s.→ ft(Ut)
a.s.→ f(Ut), thanks to the central limit theorem.

Due to space limit, we here present key results and report their proof sketch only, while the
details of their proofs are provided in the Appendix VIII.

Lemma 1. (Convergence of Algorithm 2): At each time instant t, let {sk,uk, rk,wk, ek}∞k=1 be
a sequence generated by Algorithm 2 for outlier detection, there always exists a set of positive
numbers {cu, cs, cr, cw, ce} at each iteration such that the minimizers satisfy

L(sk+1,uk+1, rk+1,wk+1, ek+1) ≤ L(sk,uk, rk,wk, ek)− cu‖uk − uk+1‖2
2

− cs‖sk − sk+1‖2
2 − cr‖rk − rk+1‖2

2

− cw‖wk −wk+1‖2
2 − ce‖ek − ek+1‖2

2,

≤ L(sk,uk, rk,wk, ek),

(27)

and the asymptotic variation of sk (i.e., outliers) is given by

lim
k→∞

∥∥sk+1 − sk
∥∥2

2
= 0. (28)

Proof Sketch. We state the following proposition, which is the same line as in previous conver-
gence analysis of ADMM algorithms [39], [40], to prove the first part of lemma 1 as follows

Proposition 2. Let {sk,uk, rk,wk, ek}∞k=1 be a sequence generated by Algorithm 2, then

1) The minimizer uk+1 defined in (13) satisfies

L(sk,uk+1, rk,wk, ek) ≤ L(sk,uk, rk,wk, ek)− cu‖uk − uk+1‖2
2.

2) The minimizer sk+1 defined in (16) satisfies

L(sk+1,uk+1, rk,wk, ek) ≤ L(sk,uk+1, rk,wk, ek)− cs‖sk − sk+1‖2
2.

3) The minimizer rk+1 defined in (14) satisfies

L(sk+1,uk+1, rk+1,wk, ek) ≤ L(sk+1,uk+1, rk,wk, ek)− cr‖rk − rk+1‖2
2.

4) The minimizer wk+1 defined in (20) satisfies

L(sk+1,uk+1, rk+1,wk+1, ek) ≤ L(sk+1,uk+1, rk+1,wk, ek)− cw‖wk −wk+1‖2
2.
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5) The minimizer ek+1 defined in (22) satisfies

L(sk+1,uk+1, rk+1,wk+1, ek+1) ≤ L(sk+1,uk+1, rk+1,wk+1, ek)− ce‖ek − ek+1‖2
2.

As a result, the cluster {sk,uk, rk,wk, ek} converges to stationary point of L(s,u, r,w, e)
when k →∞ and it also implies that the sequence {sk}∞k=0 is convergent, i.e.,

∞∑
k=0

‖sk+1 − sk‖2
2 <∞ or lim

k→∞

∥∥sk+1 − sk
∥∥2

2
= 0.

Corollary 1. Let the sequence {st}t≥1 be solutions generated by the Algorithm 2, then it is
uniformly bounded.

Proposition 3. (Convexity of the surrogate functions gt(U)) : Given assumptions in Section II-C,
the surrogate function gt(U) defined in Eq. (5) is not only strongly convex, but also Lipschitz
function, i.e., there always exists two positive numbers m1 and m2 such that

m1 ‖Ut+1 −Ut‖2
F ≤ |gt(Ut+1)− gt(Ut)| ≤ m2 ‖Ut+1 −Ut‖F . (29)

Proof Sketch. To prove that gt(U) is strongly convex, we state the following facts: gt(U) is con-
tinuous and differentiable; its second derivative is a positive semi-definite matrix (i.e.,∇2

Ugt(U) ≥
mI); and the domain of gt(U) is convex. In order to satisfy the Lipschitz condition, we show
that the first derivative of gt(U) is bounded.

Lemma 2. (Convergence of Algorithm 3): Given an outlier vector st generated by Algorithm 2
at each time instant t, Algorithm 3 can provide an local optimal solution Ut for minimizing
gt(U). Moreover, the asymptotic variation of estimated subspaces {Ut}t≥1 is given by

‖Ut −Ut+1‖F
a.s.→ O

(
1

t

)
(30)

Proof Sketch. To establish the convergence, we exploit that our modification can be seen as an
approximate interpretation of Newton’s method,

Ut
∼= Ut−1 − ηt

[
Hg̃t(Ut−1)

]−1∇g̃t(Ut−1) +O
(
1

t

)
,

where Hg̃t(Ut−1) and ∇g̃t(Ut−1) are the Hessian matrix and gradient of the function g̃t(U) at
Ut−1. It implies that the estimated Ut converges to the stationary point of gt(U).

Furthermore, since gt(U) is strongly convex and Lipschitz function w.r.t the variable U as
shown in Proposition 3, we have the following inequality

m1 ‖Ut+1 −Ut‖2
F ≤ |gt(Ut+1)− gt(Ut)| ≤ m2 ‖Ut+1 −Ut‖F

⇔ ‖Ut −Ut+1‖F ≤
m2

m1

= O
(
1

t

)
.

Note that the positive number m2 = O(1/t) is already given in the proof of Proposition 3 in
Appendix VIII-C, while m1 is a constant.
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Corollary 2. If {Ut}t≥1 be the sequence generated by PETRELS-ADMM, the sequence {Ut}t≥1

is uniformly bounded.

Lemma 3. (Convergence of the surrogate function gt(U)): Let {Ut}∞t=1 be a sequence of solutions
generated by Algorithm 1 at each time instant t, the sequence {gt(Ut)}∞t=1converges almost surely,
i.e.,

∞∑
t=1

∣∣E[gt+1(Ut+1)− gt(Ut)]
∣∣ <∞ a.s. (31)

Proof Sketch. We denote the stochastic process {ut}t≥1, ut
∆
= gt(Ut) ≥ 0 and prove that the sum

of the positive difference of {ut}t≥1 is bounded, i.e.,
∞∑
t=1

∣∣E[ut+1 − ut]
∣∣ <∞ a.s.

In particular, we have the following inequality

E[ut+1 − ut] ≤ E[
√
t(f(Ut)− ft(Ut))]︸ ︷︷ ︸

E[Gt(Ut)]

1√
t(t+ 1)︸ ︷︷ ︸
at

.

In parallel, we exploit that Gt(Ut) =
√
t(f(Ut) − ft(Ut)) is the scaled and centered version

of the empirical measure, which converges in distribution to a normal random variable, thanks
to the center limit theorem. Therefore E[

√
t(f(Ut)− ft(Ut))] is bounded. Furthermore, we also

indicate that the sum
∑∞

t=1 at converges. The two facts result in the Lemma 3.

Lemma 4. (Convergence of the empirical loss function ft(U)): The empirical loss function
{ft(Ut)}∞t=1 converges almost surely when t→∞, or

gt(Ut)− ft(Ut)
a.s.−→ 0. (32)

Proof Sketch. We begin the proof with providing the following inequality:

gt(Ut)− ft(Ut)

t+ 1
=≤ ut − ut+1︸ ︷︷ ︸

(S-1)

+
`(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1︸ ︷︷ ︸
(S-2)

We then prove that two sequences (S-1)-(S-2) converge almost surely. As a result, the sequence{
(gt(Ut)− ft(Ut))

1
t+1

}
also convergence almost surely, i.e.,

∞∑
t=0

(
gt(Ut)− ft(Ut)

) 1

t+ 1
<∞.

In parallel, we exploit that the real sequence { 1
t+1
}t≥1 diverges, i.e.,

∑∞
t=1

1
t+1

= ∞. It implies
that gt(Ut)− ft(Ut) converges.
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Corollary 3. The expected loss function {f(Ut)}∞t=1 converges almost surely when t→∞.

gt(Ut)− f(Ut)
a.s.−→ 0. (33)

Proof. Since ft(Ut)
a.s.→ f(Ut) and gt(Ut)

a.s.→ ft(Ut), then gt(Ut)
a.s.→ f(Ut). Since gt(Ut)

converges almost surely, f(Ut) also converges almost surely when t→∞.

V. Experiments

In this section, we evaluate performance of the proposed algorithm by comparing to state-of-the-
arts in three scenarios: robust subspace tracking, robust matrix completion and video background-
foreground separation. In particular, extensive experiments on synthesis data are carried on to
demonstrate the convergence and robustness of our PETRELS-ADMM algorithm as well as the
state of the art algorithms for subspace tracking and matrix completion. While four real video
sequences are used to illustrate the effectiveness of PETRELS-ADMM for background-foreground
separation.

A. Robust Subspace Tracking

In the following experiments, data xt at each time t is generated randomly using the standard
signal model as in Eq. (1)

xt = Pt(Aωt + nt + st),

where A ∈ Rn×r denotes a mixing matrix, ωt is a random vector living on Rr space (i.e.,
` = Aωt) and both of them are Gaussian i.i.d. N (0, 1); nt presents the white Gaussian noise
N (0, σ2), with SNR = −10 log10(σ

2) is the signal-to-noise ratio to control the impact of noise on
algorithm performance; Pt is the observation mask showing the percentage of observed entries
in xt; and st is uniform i.i.d. over [0, 1. (fac-outlier)] given the magnitude fac-outlier of outliers
that aim to create a space for outliers.

In order to evaluate the subspace estimation accuracy, we use the subspace estimation perfor-
mance (SEP) [41], [42] metric

SEP =
1

L

L∑
i=1

tr{UT
es-i(I−UexU

T
ex)Ues-i}

tr{UT
es-i(UexUT

ex)Ues-i}
,

and subspace error (SE) metric, also referred to as the distance between two subspaces [43],

SE =
1

L

L∑
i=1

√
1− cos2(θi), with cos(θi) = max

u∈Uex
max
v∈Ues-i

uTv

‖u‖ ‖v‖
,

where L is the number of independent runs, Uex and Ues-i are the true and the estimated subspaces
at the i-th run respectively. The lower SEP and SE are, the better performance of the algorithm
achieves.
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Fig. 2: Convergence of PETRELS-ADMM in terms of the variation
∥∥sk+1 − sk

∥∥
2
: n = 50, r = 2,

90% entries observed and outlier density of 5%.

State-of-the-art algorithms for comparison are: GRASTA [9], ROSETA [13] and PETRELS-
CFAR [14], ReProCS [15]. To have a fair comparison, the parameters of these algorithms are
set default and these codes are available online4. The experimental results are averaged over 100
independent runs. The experiments are conducted in following investigations:

1) Convergence of PETRELS-ADMM: To demonstrate the convergence of our algorithm, we
use a synthesis data whose number of row n = 50, rank r = 2, and 5000 observations with 90%

entries observed on average. Specifically, the outlier density is varied from 5% to 40%, while
the outlier intensity is set at three values of low, medium and high level (i.e., fac-outlier =

0.1, 1 and 10 respectively). The regularization weight ρ varies in the range [0.1, 1.5]. Also, three
noise levels are considered, with SNR ∈ {0, 10, 20} dB. The results are shown as in Fig. 2,
Fig. 3 and Fig. 4.

Fig. 2 shows the typical convergence behavior of PETRELS-ADMM w.r.t the two variables:
fac-outlier and the weight ρ. We can see that, the variation of {sk}k≥1 always converges in all
testing cases (i.e., approximate 10−14 on average). When the regularization weight ρ ≥ 0.5, the
convergence rate is fast which the variation

∥∥sk+1 − sk
∥∥

2
can converge in 50 iterations in both

low- and high-noise cases. The results are practical evidences of the Lemma 1. Similarly, varia-
tions of the sequence {Ut}t≥0 generated by PETRELS-ADMM also have asymptotic converged
behavior as shown in Fig. 3. The convergences of {Ut}t≥0 are also verified by comparing to the
original PETRELS [10] with perfect reconstructions as in Fig. 4. Clearly, our PETRELS-ADMM
outperforms the original PETRELS with full observation in terms of both SEN and SE metrics,
albeit the convergence rate of the original PETRELS is faster than that of our algorithm. Note
that, the original PETRELS can converge to the global optima in the full observation regime
given a deterministic noise level [10]. Therefore, it testifies the robustness of PETRELS-ADMM
in high-noise cases.

4GRASTA: https://sites.google.com/site/hejunzz/grasta
ROSETA: http://www.merl.com/research/license#ROSETA
ReProCS: https://github.com/praneethmurthy/ReProCS
Our codes: https://github.com/thanhtbt/RST
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Fig. 3: Convergence of PETRELS-ADMM in terms of the variation ‖Ut+1 −Ut‖F : n = 50, r =

2, 90% entries observed and outlier intensity fac-outlier = 10.

2) Outlier Detection: Follow the experiment above, we verify the ability of PETRELS-
ADMM for outlier detection on the same synthesis data. Outliers {st}t≥0 are uniform i.i.d. over
[0, 1. (fac-outlier)] given the magnitude fac-outlier of outliers which is fixed at 5. The results are
shown as in Fig. 5. We can see that, the location of outliers st are detected completely even when
the measurement data is mixed by noise with a high SNR value (e.g. 10 dB). Also, amplitude
of the outliers is recovered nearly correctly with a small relative error (RE = ‖st−s̃t‖2

‖st‖2 ) in both
cases (e.g. RE = 0.0635 at the 20 dB noise level). As a result, the corrupted signals are also
well reconstructed, see Fig. 5(b) and (d).

A performance comparison of PETRELS-ADMM and GRASTA for outlier detection task
is carried out to show the effectiveness of the proposed method. The synthesis data is also
generated for the number of row, n = 50, rank r = 2 and 5000 observations. Outlier density
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Fig. 4: Convergence of PETRELS-ADMM compared to that of original PETRELS with full
observation and perfect reconstructions: n = 50, r = 2, 90% entries observed, outlier intensity
fac-outlier = 10 and outlier density of 5%.

and intensity are varied in the range [5%− 40%] and [0.1, 1, 5, 10] respectively while SNR is set
at 4 noise levels, [5 − 40] dB. The results are shown as in Fig. 6, 8 and 7. In particular, when
the density of outliers is low (e.g. 20%), both methods can detect outliers effectively at the high
values of SNR. Their detection performance may be degraded when the effect of random noise
is increased. Although the location of outliers can be identified correctly, PERTRELS-ADMM
provides better results than GRASTA in term of sparsity, see Fig. 6(b) and (c). The effect of
outlier intensity and density on their outlier detection performance are illustrated in Fig. 7 and
Fig. 8 respectively. Similarly, our method also outperforms GRASTA. When the data is corrupted
by strong outliers, both methods are able to detect them efficiently, but results of our method
are more sparse than that of GRASTA, see Fig. 7(c) and (d). Moreover, in spire of the low
SNR value, outliers are localized accurately by PETRELS-ADMM even in the presence of high
corruptions, while GRASTA may yield many locations labeled as outliers, see Fig. 7(a) and
Fig. 8(b) for examples. Besides, GRASTA fails to detect outliers in the case of a low outlier
intensity (e.g. fac-outlier = 0.1), see Fig. 7(a).

3) Missing Scenarios: In order to illustrate the improvement of our iPETRELS for subspace
update and tracking in the case of incomplete observations, a performance comparison of our
method against the original PETRELS [10] and a well-known GROUSE algorithm [7] is con-
ducted. For a fair comparison, the effect of outliers is ignored in this task. We consider the two
system models, including large (n = 500, rank r = 10) and small (n = 30, rank r = 2). The
subspace in the two scenarios will be corrupted at the time index 3000 over a total of 5000
observations. The noise level SNR is fixed at two values of 10 dB and 20 dB. The number of
miss entries are very high, i.e., [70− 90]% the total number of data are not observed.

The results are shown as in Fig. 9 and 10. We can see that, three algorithms can track
the subspace for all tests, but iPETRELS outperforms the original PETRELS and GROUSE.
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Fig. 5: Outlier detection and data reconstruction: n = 50, r = 2, 90% entries observed, outlier
intensity fac-outlier = 5, and outlier density of 20%.

Particularly, for the large system, PETRELS-based algorithms converge faster than GROUSE
even with a small number of entries observed each time. Moreover, the iPETRELS yields a much
better subspace estimation performance than the original PETRELS in terms of SEP metric, see
Fig. 9. For the small system, GROUSE provides a very good convergence rate compared to that
of PETRELS, but no better than our method.

4) Robustness of PETRELS-ADMM: To investigate the robustness of PETRELS-ADMM, we
vary the outlier intensity, corruption fraction (i.e., outlier and missing density) and then measure
the SEP metric.

Impact of outlier intensity on algorithm performance: We fix n = 50, r = 2, 90% entries
observed, outlier density of 5%, SNR = 20 dB while varying fac-outlier in the range of [0.1, 10].
We can see from the Fig. 11 that PETRELS-ADMM always outperforms other state-of-the-art
algorithms in all testing cases with different fac-outlier values. At low outlier intensity (i.e.,
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Fig. 6: Effect of noise on outlier detection performance: n = 50, r = 2, outlier density of 20%

and outlier intensity fac-outlier = 1.

fac-outlier ≤ 1), all algorithms yield good acuracy with fast convergences, though ROSETA
obtains the higher SEP (i.e., ≈ 10−3) as compared to that of the four remaining algorithms. In
particular, PETRELS-ADMM provides the best subspace estimation accuracy, i.e., SEP ≈ 10−5

in the both cases (see Fig. 11(a)-(b)). At a high intensity level (e.g. fac-outlier = 5 or 10),
PETRELS-ADMM again provides the best performance in terms of both convergence rate and
accuracy. GRASTA performs similarly to ReProCS and slightly worse than PETRELS-CFAR (i.e.,
their SEP values are around 10−4). While ROSETA fails to recover the underlying subspace in
the presence of strong outliers. Remark that, in all four experiments above, PETRELS-ADMM
always obtains the best SEP value of around 10−5 and hence is robust to outlier intensity.

Impact of outlier density on algorithm performance: We fix n = 50, r = 2, 90% entries
observed, outlier intensity fac-outlier = 5, SNR = 20 dB while varying the outlier density from



ROBUST SUBSPACE TRACKING: A NOVEL ALGORITHM AND PERFORMANCE GUARANTEE 24

-2

-1

0

1

2

3

0 10 20 30 40 50

(a) Outlier intensity, fac-outlier = 0.1

-2

0

2

4

6

8

10

0 10 20 30 40 50

(b) Outlier intensity, fac-outlier = 1

-10

0

10

20

30

40

50

0 10 20 30 40 50

(c) Outlier intensity, fac-outlier = 5

-20

0

20

40

60

80

100

120

0 10 20 30 40 50

(d) Outlier intensity, fac-outlier = 10

Fig. 7: Effect of outlier intensity on outlier detection performance: n = 50, r = 2, SNR = 5 dB
and outlier density of 20%.

5% to 40%. The results are shown as in Fig. 12. Similar to the first investigation, PETRELS-
ADMM outperforms the four remaining algorithms in this task. In particular, our algorithm
performs very well even when the fraction of outliers is high (e.g. 40%). By contrast, three
algorithms including GRASTA, ROSETA and ReProCS may fail to track subspace in the case
of a high outlier density (see Fig. 12(d)). The PETRELS-CFAR works well but has a lower
convergence rate and accuracy in term of SEP metric than that of PETRELS-ADMM in this case.
When the measurement data is corrupted by a smaller number of outliers, PETRELS-ADMM
still provides better performance than the others, as shown in Fig. 12 (a)-(c).

Impact of corruption fraction on algorithm performance: Follow experiments above, we
change the fraction of corruptions in the measurement data while fixing the other attributes.
The results are reported in Fig. 13 and Fig. 14. In particular, the effect of missing density
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Fig. 8: Effect of outlier density on outlier detection performance: n = 50, r = 2, SNR = 5 dB
and fac-outlier = 1.

on algorithm performance is presented in the Fig. 13. Similarly, PETRELS-ADMM yields the
best performance in four cases of missing observations. Three algorithms including PETRELS-
CFAR, GRASTA and ReProCS provides good performance but with slower convergence rate
and accuracy, while ROSETA has failed again in this task due to the high outlier intensity (i.e.,
fac-outlier = 5). We continue to investigate deeper the impact of high corruption fractions on
algorithm performance. As can be seen from Fig. 14(a)-(c) that the state-of-the-art algorithms
only perform well when the number of corruptions is smaller than half the number of entries in
the data measurement. While PETRELS-ADMM still obtains the reasonable subspace estimation
performance in terms of SEP (i.e., ≈ 10−3) in the case of very high corruptions, see Fig. 14(d).
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Fig. 9: Performance comparison between the subspace tracking algorithms for handling missing
data: a large system with n = 500, r = 10.

B. Robust Matrix Completion

We compare the proposed algorithm of PETRELS-ADMM based robust matrix completion
(RMC) with GRASTA [9], LRGeomGC [44] and RPCA-GD [45].

The measurement data X = AS used for this task was the rank-2 matrices with size of
400 × 400. We generated the mixing matrix A ∈ R400×2 and the signal matrix S ∈ R2×400 at
random. The entries were Gaussian i.i.d. of N (0, 1). The measurement data X was added with
white Gaussian noise N ∈ R400×400 whose SNR is fixed at 40 dB. The matrix was corrupted by
different percentages of missing and outliers from 0%−90%. The location and value of corrupted
entries (including missing and outliers) were uniformly distributed.

Fig. 15 shows that the proposed algorithm of PETRELS-ADMM based RMC outperformed
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Fig. 10: Performance comparison between the subspace tracking algorithms for handling missing
data: a small system with n = 30, r = 2.

GRASTA and LRGeomGC and RPCA-GD. At low outlier intensity (i.e., fac-outlier = 0.1),
PETRELS-ADMM based RMC, LRGeomGC and RCPA-GD provide excellent performance even
when the data is corrupted by a very high corruption fraction. At high outlier intensity (i.e.,
fac-outlier ≥ 1), PETRELS-ADMM based RMC provided the best matrix reconstruction error
performance, GRASTA still retained good performance, while RPCA-GD and LRGeomGC failed
to recover corrupted entries.

C. Video Background/Foreground Separation

We further illustrate the effectiveness of the proposed PETRELS-ADMM algorithm in the
application of RST for video background/foreground separation, and compare with GRASTA
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Fig. 11: Impact of outlier intensity on algorithm performance: n = 50, r = 2, 90% entries
observed, outlier density of 5% and SNR = 20 dB.

and PETRELS-CFAR. We use four real video sequences for this task, including Hall, Lobby,
Sidewalk and Highway datasets. In particular, the two former datasets are from GRASTA’s
homepage5, while the two latter dataset are from CD.net20126 [46]. The Hall dataset consists
of 3584 frames of size 174 × 144 pixels, while the Lobby dataset has 1546 frames of size
144×176 pixels. The Sidewalk dataset includes 1200 frames of size 240×352 pixels. Highway
dataset has 1700 frames of size 240×320 pixels. We can see from Fig. 16, PETRELS-ADMM
is capable of detecting objects in video and provided competitive performance to GRASTA and
PETRELS-CFAR.

5https://sites.google.com/site/hejunzz/grasta
6http://jacarini.dinf.usherbrooke.ca/dataset2012



ROBUST SUBSPACE TRACKING: A NOVEL ALGORITHM AND PERFORMANCE GUARANTEE 29

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) Outlier density of 5%

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) Outlier density of 10%

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) Outlier density of 20%

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) Outlier density of 40%

Fig. 12: Impact of outlier density on algorithm performance: n = 50, r = 2, 90% entries observed,
outlier intensity fac-outlier = 5 and SNR = 20 dB.

VI. Conclusions

In this report, we proposed an efficient algorithm, namely PETRELS-ADMM, for the robust
subspace tracking problem to handle missing data in the presence of outliers. By converting the
original RST problem to a surrogate ones which facilitates the tracking ability, we derive an online
implementation for outlier rejection with a low computational complexity and a fast convergence
rate while still retaining a high subspace estimation performance. We established a theoretical
convergence which guarantees that the solutions generated by PETRELS-ADMM will converge
to a stationary point asymptotically. Experiments were conducted to evaluate the effectiveness
of PETRELS-ADMM in terms of both quantity and quality. The results have suggested that our
algorithm is more robust than state-of-the-art algorithm, e.g. GRASTA, ReProCS and PETRELS-
CFAR in robust subspace tracking task; GRASTA, PRCA-GD and LRGeomGC in robust matrix
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Fig. 13: Impact of missing density on algorithm performance: n = 50, r = 2, outlier density of
5%, outlier intensity fac-outlier = 10 and SNR = 20 dB.

completion task. The effectiveness of PETRELS-ADMM was also verified for background-
foreground separation.
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Fig. 14: Impact of corruption fraction on algorithm performance: n = 50, r = 2 and fac-outlier =

10 and SNR = 20 dB.

VIII. Appendix

A. Technical Propositions

Before providing full proofs of the propositions, lemmas and theorems in the main report,
we first give the following propositions which help us to derive several important results in the
proofs.

Proposition 4. ( [47, Lemma 13]): The function f is strongly convex if and only if for all
u,v ∈ dom(f) we always have

f(v)− f(u)− 1

2
‖v − u‖2

2 ≥ 〈v − u,θ〉, ∀θ ∈ ∂f(u).
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Fig. 15: Effect of outlier intensity on robust matrix completion performance. White colour denotes
perfect recovery, black colour denotes failure and gray colour is in between.

Proposition 5. ( [48]): The function f is m-strongly convex, with a constant m if and only if
for all u,v ∈ dom(f) we always have

|f(v)− f(u)| ≥ m

2
‖v − u‖2

2 .

Proposition 6. ( [48]): Every norm on Rn is convex and the sum of convex functions is convex.

Proposition 7. ( [49]): The Huber penalty function replaces the `1-norm ‖x‖1 ,x ∈ Rn is given
by the sum

∑n
i=1 f

Hub
µ (x(i)), where

fHub
µ (x(i)) =

{
x(i)2

2µ
, |x(i)| ≤ µ,

|x(i)| − µ/2, |x| > µ.
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Fig. 16: Results of background-foreground separation

There exists a smooth version of the Huber function fHub
µ , which has derivatives of all degrees,

i.e.,

ψµ(x) =
n∑
i=1

(
(x(i)2 + µ2)1/2 − µ

)
.

and the first derivative of the pseudo-Huber function ψµ is defined by

∇ψµ(x) =
[
x(1)(x(1)2 + µ2)−1/2, . . . , x(n)(x(n)2 + µ2)−1/2

]T
.
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Proposition 8. ( [50, Proposition 1.2.4]): Let {at}∞t=1 and {bt}∞t=1 be two nonnegative sequences
such that

∑∞
i=1 ai = ∞ and

∑∞
i=1 aibi < ∞, |bt+1 − bt| < Kat with some constant K, then

lim
t→∞

bt = 0 or
∑∞

i=1 bi <∞.

Proposition 9. If {ft}t≥1 and {gt}t≥1 are sequences of bounded functions which converge
uniformly on a set E , then {ft + gt}t≥1 and {ftgt}t≥1 converge uniformly on E .

B. Proof of Lemma 1

Follow the line as in previous convergence analysis of ADMM algorithms [39], [40], we can
derive the proof of Lemma 1 as follows

1) Proof of Proposition (P-1): The minimizer uk+1 defined in (13) satisfies

L(sk,uk+1, rk,wk, ek) ≤ L(sk,uk, rk,wk, ek)− cu‖uk − uk+1‖2
2. (P-1)

At the k-th iteration, the u-update in fact minimizes the objective function in Eq. (12), as

uk+1 = argmin
u
Lu,k(u, .) =

(
1 + ρ1

2
‖u‖2

2 − [Pt(xt −Ut−1w)− ρ1(s
k − rk)]Tu

)
.

The function Lu,k(u, .) is strongly convex with a positive constant (1 + ρ1), i.e., the Hessian of
Lu,k(u, .) is given by

∇2Lu,k(u, .) = (1 + ρ1)I.

Since uk+1 = argminu Lu,k(u, .), we have the fact Lu,k(u
k+1, .) ≤ Lu,k(u

k, .),. Therefore, we
obtain the following inequality

Lu,k(u
k, .)− Lu,k(u

k+1, .) ≥ 1 + ρ1

2
‖uk+1 − uk‖2

2,

thanks to Proposition 5. It results in the Proposition (P-1).

2) Proof of Proposition (P-2): The minimizer sk+1 defined in (16) satisfies

L(sk+1,uk+1, rk,wk, ek) ≤ L(sk,uk+1, rk,wk, ek)− cs‖sk − sk+1‖2
2. (P-2)

At the k-th iteration, the variable s is updated by minimizing the objective function Ls,k(s, .)

in Eq. (13), as

sk+1 = argmin
s
Ls,k(s, .) = ρ ‖s‖1 +

ρ1

2
‖s− (uk+1 + rk)‖2

2.

We exploit that if given uk+1 and rk, then both functions of the `1-norm ‖s‖1 and `2-norm∥∥s− (uk+1 + rk)
∥∥2

2
are convex, so the Ls,k(s, .) w.r.t. s is also convex. It is therefore that for

any sk, sk+1 ∈ S, we always have

Ls,k(s
k, .) ≥ Ls,k(s

k+1, .) + 〈sk − sk+1,∇Ls,k(s
k+1, .)〉+ 1

2
‖sk+1 − sk‖2

2,

thanks to the Proposition 4.
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Since sk+1 = argmins Ls,k(s, .), the first derivative ∇Ls,k(s
k+1, .) = 0 and hence

Ls,k(s
k, .) ≥ Ls,k(s

k+1, .).

In other word, there always exists a nonnegative number cs ≥ 0 such that

Ls,k(s
k, .) ≥ Ls,k(s

k+1, .) +
1

2
‖sk+1 − sk‖2

2.

As a result, we have
K∑
k=1

1

2
‖sk+1 − sk‖2

2 ≤
K∑
i=1

Ls,k(s
k, .)− Ls,k(s

k+1, .) = Ls,k(s
1, .)− Ls,k(s

K+1, .)

Let K →∞, we then have
∞∑
k=1

‖sk+1 − sk‖2
2 <∞.

It ends the proof of (P-2) and the second part of Lemma 1.

3) Proof of Proposition (P-3): The minimizer rk+1 defined in (14) satisfies

L(sk+1,uk+1, rk+1,wk, ek) ≤ L(sk+1,uk+1, rk,wk, ek)− cr‖rk − rk+1‖2
2. (P-3)

Follow the r-update in Eq. (14), it is easy to verify that

L(sk+1,uk+1, rk+1,wk, ek) = ρ1(r
k + sk+1 − uk+1)T (uk+1 − sk+1) + A

= ρ1(r
k)T (uk+1 − sk+1)− ρ1‖uk+1 − sk+1‖2

2 + A

= L(sk+1,uk+1, rk,wk, ek)− ρ1‖rk+1 − rk‖2
2,

where A = g(sk+1) + h(uk+1) + ρ1
2
‖uk+1 − sk+1‖. It implies the proposition (P-3).

4) Proof of Proposition (P-4): The minimizer wk+1 defined in (20) satisfies

L(sk+1,uk+1, rk+1,wk+1, ek) ≤ L(sk+1,uk+1, rk+1,wk, ek)− cw‖wk −wk+1‖2
2. (P-4)

Denote z = Pt(Utw+ sk+1− xt). In fact, the w-update minimizes the smooth version of the
objective function (19), as follows

Lz,k(z, .) =
n∑
i=1

((
(z(i)2 + 1)1/2 − 1

)
+
ρ2

2

(
(z(i)− ek(i))2 + 1)1/2 − 1

))
The first two derivatives of Lz,k(z, .) are given by

∇Lz,k(z, .) =
[
z(1)(z(1)2 + 1)−1/2, . . . , z(n)(z(n)2 + 1)−1/2

]T
+ ρ2

[
(z(1)− ek(1))((z(1)− ek(1))2 + 1)−1/2, . . . , (z(n)− ek(n))((z(1)− ek(1))2 + 1)−1/2

]T
,

and

∇2Lz,k(z, .) =diag

([
(z(1)2 + 1)−3/2, . . . , (z(n)2 + 1)−3/2

])
+ ρ2 diag

([
((z(1)− ek(1))2 + 1)−3/2, . . . , (z(n)− ek(n))2 + 1)−3/2

])
.
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The Hessian matrix ∇2Lz,k(z, .) then satisfies

ρ2I < ∇2Lz,k(z, .) ≤ (ρ2 + 1)I.

It is therefore that Lz,k(w, .) is strongly convex and Lipschitz continuous. In other word, it
implies that

L(sk+1,uk+1, rk+1,wk, ek)− L(sk+1,uk+1, rk+1,wk+1, ek) >
ρ2

2
‖wk −wk+1‖2

2.

which results in the Proposition (P-4), thanks to Proposition 5.

5) Proof of Proposition (P-5): The minimizer ek+1 defined in (22) satisfies

L(sk+1,uk+1, rk+1,wk+1, ek+1) ≤ L(sk+1,uk+1, rk+1,wk+1, ek)− ce‖ek − ek+1‖2
2. (P-5)

Similarly, we also have Le,k(e, .) is strongly convex, i.e.,

∇2Le,k(e, .) = ρ2 diag

([
((zk(1)− e(1))2 + 1)−3/2, . . . , (zk(n)− e(n))2 + 1)−3/2

])
.

Therefore we have

Le,k(e
k, .)− Le,k(e

k+1, .) ≥ ρ2

2

∥∥ek+1 − ek
∥∥2

2
.

It ends the proof.

C. Proof of Proposition 3

To prove that gt(U) is strongly convex, we state the following facts: gt(U) is continuous and
differentiable; its second derivative is a positive semi-definite matrix (i.e., ∇2

Ugt(U) ≥ mI); and
the domain of gt(U) is convex. In order to satisfy the Lipschitz condition, we show that the first
derivative of gt(U) is bounded.

Stage I: Prove that gt is a strong convex function: We show that there exists a positive number
m such that

|gt(Ut+1)− gt(Ut)| ≥ m1 ‖Ut+1 −Ut‖2
F .

In particular, we state the two claims as follows:

(C-1) gt(U) is continuous and differentiable.

Proof. Given two variables A,B ∈ U such that ‖A−B‖2
F < γ for some positive constant

γ. It is easy to verify that there exists a positive number θ such that |gt(A)− gt(B)| < θ.

Thanks to the triangle inequality, we have the following inequality:

|gt(A)− gt(B)| =1

t

∣∣∣∣ t∑
i=1

λt−i ‖Pi(Awi + si − xi)‖2
2 −

t∑
i=1

λt−i ‖Pi(Bwi + si − xi)‖2
2

∣∣∣∣
≤ 1

t

t∑
i=1

λt−i ‖Pi(A−B)wi‖2
2 ≤

1

t

t∑
i=1

λt−i ‖Pi(A−B)‖2
F ‖wi‖2

2

≤ 1

t

t∑
i=1

λt−i ‖A−B‖2
F ‖wi‖2

2 =
γ

t

t∑
i=1

λt−i ‖wi‖2
2 = θ,
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It is therefore that the set of functions {gt(U)}∞t=1 is equicontinuous on U .
Furthermore, for any U∗,H ∈ U , we show that the following limit exists:

lim
a→0

gt(U
∗ + aH)− gt(U∗)

a
= lim

a→0

1

ta

t∑
i=1

λt−i
(
‖Pi((U

∗ + aH)wi + si − xi)‖2
2

− ‖Pi(U
∗wi + si − xi)‖2

2

)
.

Specifically, let us denote yi = Pi(U
∗wi + si − xi), the limit can be written as follows:

lim
a→0

gt(U
∗ + aH)− gt(U∗)

a
= lim

a→0

1

ta

t∑
i=1

λt−i
(
‖yi − aPiHwi‖2

2 − ‖yi‖
2
2

)
= lim

a→0

1

ta

t∑
i=1

λt−i
(
‖aPiHwi‖2

2 − 2a〈ui,PiHwi〉
)

=
−2
t

t∑
i=1

λt−i〈yi,PiHwi〉 <∞.

As a result, the function gt(U) is differentiable and its first derivative ∇Ugt(U) can be given
by

∇Ugt(U) =
2

t

t∑
i=1

λt−iPi(Uwi + si − xi)w
T
i .

In the similar way, it is easy to verify that ∇Ugt(U) is also continuous and the second
derivative ∇2

Ugt(U) is given by

∇2
Ugt(U) =

2

t

t∑
i=1

λt−iPiwiw
T
i .

(C-2) The second derivative ∇2
Ugt(U) is a positive-define matrix. For all x ∈ Rp×1, we have

xT∇2
Ugt(U)x =

2

t

t∑
i=1

λt−iPi(w
T
i x)

T (wT
i x) =

2

t

t∑
i=1

λt−iPi(w
T
i x)

2 > 0, ∀λ, t > 0.

It implies that there always exist a positive constant m such that ∇2
Ugt(U) ≥ mI.

It follows to the claims (C-1), (C-2) and the assumptions showing that the domain of gt(U) is
a convex set that gt(Ut) is strongly convex [48, Section 3.1.4].
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Stage II: Prove that gt is a Lipschitz function:

|gt(Ut+1)− gt(Ut)| ≤ m2 ‖Ut+1 −Ut‖F .

Let us denote dt(U) = gt(U)−gt+1(U). Since Ut = argmin
U∈U

gt(U), we exploit that gt+1(Ut+1) ≤

gt+1(Ut) and hence

gt(Ut+1)− gt(Ut) = gt(Ut+1)− gt+1(Ut) + gt+1(Ut)− gt(Ut)

≤ (gt(Ut+1)− gt+1(Ut+1)︸ ︷︷ ︸
dt(Ut+1)

)− (gt(Ut)− gt+1(Ut)︸ ︷︷ ︸
dt(Ut)

).

The first derivative of dt(U) = gt(U)− gt+1(U) is given by

∇Udt(U) = ∇Ugt(U)−∇Ugt+1(U)

=
1

t

t∑
i=1

λt−iPi(Uwi + si − xi)w
T
i −

1

t+ 1

t+1∑
i=1

λt+1−iPi(Uwi + si − xi)w
T
i .

Let At =
∑t

i=1 λ
t−iPiUwiw

T
i and Bt =

∑t
i=1 λ

t−iPi(si − xi), we can rewrite ∇Udt(U) as

∇Udt(U) =

(
At

t
− At+1

t+ 1

)
+

(
Bt

t
− Bt+1

t+ 1

)
.

Under the assumptions in Section II-C, the subspace U, outlier {st}, signal {xt} and subspace
coefficients {wt} are bounded, then both At and Bt are bounded. It is therefore that

‖∇Udt(U)‖F ≤
∥∥∥∥At

t
− At+1

t+ 1

∥∥∥∥
F

+

∥∥∥∥Bt

t
− Bt+1

t+ 1

∥∥∥∥
F

≤ m2 = O(1/t).

Therefore dt(U) is Lipschiz with the constant m2,
|dt(Ut+1)− dt(Ut)|
‖Ut+1 −Ut‖F

≤ m2, hence
|gt(Ut+1)− gt(Ut)|
‖Ut+1 −Ut‖F

≤ m2.

This ends the proof.

D. Proof of Lemma 2

We prove that our update rule is an approximate interpretation of Newton’s method. Since
the objective function gt is strongly convex with respect to the variable U, our algorithm can
guarantee that the solution converges to the stationary point of the problem.

In order to estimate subspace, at each time instant t, we optimize the following minimization

um = argmin
um∈Rr×1

f̃t(u
m), with f̃t =

t∑
i=1

λt−iPi(m,m)(xre
i (m)−wT

i u
m)2 +

α

2t
‖um‖2

2 .

The first derivative of the objective function f̃t(um) can be determined by

∇f̃t(umt−1) = −2
t∑
i=1

λt−iPi(m,m)(xre
i (m)−wT

i u
m
t−1)w

T
i +

α

t
umt−1

= ∇f̃t−1(u
m
t−1)− 2Pt(m,m)(xre

t (m)−wT
t u

m
t−1)w

T
t +

α

t
(umt−1 − umt−2).
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Since umt−1 = argminum f̃t−1(u
m), the derivative ∇f̃t−1(u

m
t−1) = 0 and the Hessian at umt−1 is

then given by

Hf̃t(u
m
t−1) = ∇2f̃t(u

m
t−1) = 2

t∑
i=1

λt−iPi(m,m)wiw
T
i +

α

t
I.

Thanks to Newton’s method [48], a rule for subspace update can be obtained as

umt = umt−1 − ηt
(
Hf̃t(u

m
t−1)
)−1∇f̃t(umt−1).

Let us denote Rm
t =

∑t
i=1 λ

t−iPt(m,m)wiw
T
i + α

(
1
2t
− λt

2(t−1)

)
I , we have

Hf̃t(u
m
t−1) = 2Rm

t + α

(
λt

2(t− 1)
− 1

2t

)
I

. As a result, we can derive the inverse Hessian matrix easily as follows(
Hf̃t(u

m
t−1)
)−1

=
1

2
(Rm

t )
−1

(
O(1/t)

2
(Rm

t )
−1 + I

)−1

.

When t is large enough, the term
(O(1/t)

2
(Rm

t )
−1 + I

)−1 ≈ I+O
(

1
t

)
. It is therefore that the step

size can be approximated by(
Hf̃t(u

m
t−1)
)−1∇f̃t(umt−1) = −Pt(m,m)(xre

t (m)−wT
t u

m
t−1)(R

m
t )
−1wt +O

(1
t

)
.

It implies that umt can be updated by the following recursive update rule

umt = umt−1 + ηtPt(m,m)(xre
t (m)−wT

t u
m
t−1)(R

m
t )
†wt,

which is already defined in Eq. (25). In other word, the umt generated by our algorithm can
converge to the stationary point of f̃t(um).

Note that, the properties of the objective functions and assumptions we made in Section II-C
can guarantee the method will converge in practice. In particular, the objective functions g̃t(U) as
well as f̃t(u) and their first derivatives are continuously differentiable which can avoid derivative
issues in Newton’s method. In addition, the starting points in our algorithm are always chosen at
random. Further, since the objective functions {g̃t(U)}∞t=1 are always positive, PETRELS-ADMM
can ignore the cases when their roots approach to zero asymptotically. To sum up, the solution
Ut generated by PETRELS-ADMM will converge to the stationary point of the function g̃t(U).

The second part of the Lemma VIII-D can be easy to verify. Since gt(Ut) is strongly convex
and Lipschitz function as proved in Proposition 3, we have the following inequality

m1 ‖Ut+1 −Ut‖2
F ≤ |gt(Ut+1)− gt(Ut)| ≤ m2 ‖Ut+1 −Ut‖F

⇔ ‖Ut+1 −Ut‖F
(
‖Ut+1 −Ut‖F −

m2

m1

)
≤ 0

⇔ ‖Ut −Ut+1‖F ≤
m2

m1

.

Note that the positive number m2 = O(1/t) is already given in the Appendix VIII-C, so it ends
the proof .
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E. Proof of the Lemma 3

Inspired of the result of convergence analysis for online sparse coding framework in [38,
Proposition 2], we derive the convergence of gt(Ut) in the similar way. In particular, we first
denote the nonnegative stochastic process {ut} as follows

ut
∆
= gt(Ut) ≥ 0,

and then prove that it is a quasi-martingale, i.e., we have to prove the sum of the positive
difference of {ut}∞t=1 is bounded,

∞∑
t=1

∣∣E[ut+1 − ut]
∣∣ < +∞ a.s.

We can express gt+1(Ut) with respect to gt(Ut) as follows

gt+1(Ut) =
1

t+ 1

t+1∑
i=1

λt+1−i ‖Pi(Utwi + si − xi)‖2
2 + ρ ‖si‖1

=

(
λ

t+ 1

t∑
i=1

λt−i ‖Pi(Utwi + si − xi)‖2
2 + ρ ‖si‖1

)
+

(
1

t+ 1

(
‖Pt+1Ut + st+1 − xt+1‖2

2 + ρ ‖st+1‖1

))
=

λt

t+ 1
gt(Ut) +

1

t+ 1
`(Ut,Pt+1,xt+1).

Since Ut+1 = argminU gt+1(U), we have the fact gt+1(Ut+1)− gt+1(Ut) ≤ 0, ft(Ut) ≤ gt(Ut),
and hence

ut+1 − ut = gt+1(Ut+1)− gt(Ut) = gt+1(Ut+1)− gt+1(Ut)︸ ︷︷ ︸
≤0

+ gt+1(Ut)− gt(Ut)

≤ gt+1(Ut)− gt(Ut) =
1

t+ 1
`(Ut,Pt+1,xt+1)−

t(1− λ) + 1

t+ 1
gt(Ut).

It is therefore that

E[ut+1 − ut] ≤
E[`(Ut,Pt+1,xt+1)− (t(1− λ) + 1)gt(Ut)]

t+ 1

≤ E[`(Ut,Pt+1,xt+1)− gt(Ut)]

t+ 1
≤ E[`(Ut,Pt+1,xt+1)]− ft(Ut)

t+ 1

=
E[f(Ut)− ft(Ut)]

t+ 1
=

(
E[
√
t(f(Ut)− ft(Ut))]

)
︸ ︷︷ ︸

E[Gt(Ut)]

(
1√

t(t+ 1)

)
︸ ︷︷ ︸

at

,

because of ft(Ut) ≤ gt(Ut) and E[`(Ut,Pt+1,xt)] = f(Ut). In parallel, we exploit that Gt(Ut) =√
t(f(Ut) − ft(Ut)) is the scaled and centered version of the empirical measure, which con-

verges in distribution to a normal random variable, thanks to the center limit theorem. Hence
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E[
√
t(f(Ut) − ft(Ut))] is bounded with a constant α. Then, the sum of the positive difference

of ut becomes
∞∑
t=1

|E[ut+1 − ut]| <
∞∑
t=1

α√
t(t+ 1)

.

Furthermore, let us consider the convergence of the sum
∞∑
t=1

α√
t(t+ 1)

. We use the Cauchy-

MacLaurin integral test [51] for convergence, as∫ +∞

t=1

α√
t(t+ 1)

dt =

∫ ∞
x=1

α

(x2 + 1)
dx = α.arctan(x)|+∞1

= α.(arctan(∞)− arctan(1)) = α
π

4
<∞.

In other words, since the sum of at convergences, hence
∞∑
t=1

E[ut+1 − ut] <∞.

We complete the proof.

F. Proof of Lemma 4

We investigate the convergence of a surrogate sequence
{
(gt(Ut)− ft(Ut))

1
t+1

}
as follows

gt(Ut)− ft(Ut)

t+ 1
=ut − ut+1 + gt+1(Ut+1)− gt+1(Ut)︸ ︷︷ ︸

≤0

+
t(λ− 1)

t+ 1
gt(Ut)︸ ︷︷ ︸

≤0

+
`(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1

≤ ut − ut+1︸ ︷︷ ︸
(S-1)

+
`(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1︸ ︷︷ ︸
(S-2)

because of ut = gt(Ut) and λ ≤ 1. Note that, (S-1)− (S-2) converge almost surely:

• The sequence E[ut − ut+1] converges almost surely as proved in Lemma 3.
• The sequence (S-2) also converges, thanks to the fact E[`(Ut,Pt+1,xt+1)] = f(Ut) and the

convergence of E[f(Ut)−ft(Ut)]
t+1

as mentioned in the appendix VIII-E.

It is therefore that the sequence
{
(gt(Ut)− ft(Ut))

1
t+1

}
converges almost surely, i.e.,

∞∑
t=0

(
gt(Ut)− ft(Ut)

) 1

t+ 1
<∞.

On the other hand, the real sequence { 1
t+1
} diverges,

∑∞
t=0

1
t+1

=∞. It implies that gt(Ut)−
ft(Ut) convergences, thanks to the Proposition 8.
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