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I. PROOF OF LEMMA 1

Follow the line as in previous convergence analysis of ADMM algorithms [1], [2], we can derive the
proof of Lemma 1 as follows:

(P-1) The minimizer uk+1 defined in (15) in the main manuscript satisfies

L(sk,uk+1, rk,wk, ek) ≤ L(sk,uk, rk,wk, ek)− 1 + ρ1

2
‖uk − uk+1‖2

2. (1)

In particular, the u-update in fact minimizes the following objective function at the k-th iteration, as

uk+1 ∆
= argmin

u
Lu,k(u, .) =

1 + ρ1

2
‖u‖2

2 − [Pt(xt −Ut−1w)− ρ1(sk − rk)]>u. (2)

The function Lu,k(u, .) w.r.t the variable u in (2) is strongly convex with a positive constant (1+ρ1),
i.e., the Hessian of Lu,k(u, .) is given by

∇2Lu,k(u, .) = (1 + ρ1)I.

Since uk+1 = argmin
u
Lu,k(u, .), we have the fact Lu,k(u

k+1, .) ≤ Lu,k(u
k, .). Therefore, we obtain

the following inequality

Lu,k(u
k+1, .) ≤ Lu,k(u

k, .)− 1 + ρ1

2
‖uk+1 − uk‖2

2. (3)

(P-2) The minimizer sk+1 defined in (16) in the main manuscript satisfies

L(sk+1,uk+1, rk,wk, ek) ≤ L(sk,uk+1, rk,wk, ek)− cs‖sk − sk+1‖2
2, (4)

with a positive constant cs.
In particular, at the k-th iteration, the variable s is updated by minimizing the objective function
Ls,k(s, .) as

sk+1 ∆
= argmin

s
Ls,k(s, .) = ρ ‖s‖1 +

ρ1

2
‖s− (uk+1 + rk)‖2

2. (5)
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Because the two functions of the `1-norm ‖s‖1 and `2-norm
∥∥s− (uk+1 + rk)

∥∥2

2
are convex, so the

Ls,k(s, .) in (5) w.r.t. s is also convex. It is therefore that for any sk, sk+1 ∈ Rn, we always have

Ls,k(s
k, .) ≥ Ls,k(s

k+1, .) + 〈sk − sk+1,∇Ls,k(s
k+1, .)〉+

1

2
‖sk+1 − sk‖2

2. (6)

Since sk+1 = argmin
s
Ls,k(s, .), the first derivative ∇Ls,k(s

k+1, .) = 0, and hence the inequality

Ls,k(s
k+1, .) ≤ Ls,k(s

k, .)− 1

2
‖sk+1 − sk‖2

2.

As a result, we have
K∑
k=1

1

2
‖sk+1 − sk‖2

2 ≤
K∑
i=1

Ls,k(s
k, .)− Ls,k(s

k+1, .) = Ls,k(s
1, .)− Ls,k(s

K+1, .). (7)

Let K →∞, we then have
∞∑
k=1

‖sk+1 − sk‖2
2 <∞. (8)

It ends the proof of (P-2).
(P-3) The minimizer rk+1 defined in (14) satisfies

L(sk+1,uk+1, rk+1,wk, ek) ≤ L(sk+1,uk+1, rk,wk, ek)− cr‖rk − rk+1‖2
2. (9)

Follow the r-update in (14), it is easy to verify that

L(sk+1,uk+1, rk+1,wk, ek) = ρ1(rk − sk+1 + uk+1)>(uk+1 − sk+1) + A

= ρ1(rk)>(uk+1 − sk+1)− ρ1‖uk+1 − sk+1‖2
2 + A

= L(sk+1,uk+1, rk,wk, ek)− ρ1‖rk+1 − rk‖2
2,

where A = g(sk+1) + h(uk+1) + ρ1
2
‖uk+1 − sk+1‖. It results in (P-3).

(P-4) The minimizer wk+1 defined in (20) satisfies

L(sk+1,uk+1, rk+1,wk+1, ek) ≤ L(sk+1,uk+1, rk+1,wk, ek)− cw‖wk −wk+1‖2
2. (10)

The w-update minimizes the following objective function

wk+1 ∆
= Lw,k(w, .) =

ρ2

2
‖Pt(Utw + sk+1 − xt)− ek‖2

2

Since Lz,k(w, .) is strongly convex, it implies (P-4) that

L(sk+1,uk+1, rk+1,wk+1, ek) ≤ L(sk+1,uk+1, rk+1,wk, ek)− cw‖wk −wk+1‖2
2.

with a positive number cw.
(P-5) The minimizer ek+1 defined in (22) satisfies

L(sk+1,uk+1, rk+1,wk+1, ek+1) ≤ L(sk+1,uk+1, rk+1,wk+1, ek)− ce‖ek − ek+1‖2
2. (11)

Similarly, the Hessian matrix of Le,k(e, .) is a positive-define matrix, as

∇2Le,k(e, .) = diag

([
(e(1)2 + 1)−3/2, . . . , (e(n))2 + 1)−3/2

])
+
ρ2

2
I. (12)

From the Proposition 2, we have

Le,k(e
k+1, .) ≤ Le,k(e

k, .)− ρ2

2

∥∥ek+1 − ek
∥∥2

2
. (13)

It ends the proof.
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II. PROOF OF PROPOSITION 2

To prove that gt(U) is strongly convex, we state the following facts: gt(U) is continuous and differentiable;
its second derivative is a positive semi-definite matrix (i.e., ∇2

Ugt(U) ≥ mI); and the domain of gt(U) is
convex. In order to satisfy the Lipschitz condition, we show that the first derivative of gt(U) is bounded.

Stage I: Prove that gt is a strong convex function.

We show that there exists a positive number m such that

|gt(Ut+1)− gt(Ut)| ≥ m1 ‖Ut+1 −Ut‖2
F . (14)

In particular, we state the two claims as follows:

(C-1) gt(U) is continuous and differentiable.

Proof. Given two variables A,B ∈ U such that ‖A−B‖2
F < γ for some positive constant γ. It is

easy to verify that there exists a positive number θ such that |gt(A)− gt(B)| < θ.
Under the given assumptions, we have the following inequality:

|gt(A)− gt(B)| =1

t

∣∣∣∣ t∑
i=1

λt−ii ‖Pi(Awi + si − xi)‖2
2 −

t∑
i=1

λt−ii ‖Pi(Bwi + si − xi)‖2
2

∣∣∣∣
≤ 1

t

t∑
i=1

λt−ii ‖Pi(A−B)wi‖2 ‖Pi(A + B)wi + 2(si − xi)‖2

≤ 1

t

t∑
i=1

2λt−ii ‖wi‖2
2 ‖(A−B)‖F ‖(A + B)‖F ‖si − xi‖2 = θ,

where λi = λ(tr(Pi)/n)1/t−i, thanks to the triangle inequality. It is therefore that the set of functions
{gt(U)}∞t=1 is continuous on U .
Furthermore, for any U∗,∆ ∈ U , we show that the following limit exists:

lim
‖∆‖→0

|gt(U∗ + ∆)− gt(U∗)|
‖∆‖

= lim
‖∆‖→0

1

t‖∆‖

t∑
i=1

λt−ii

(
‖Pi((U

∗ + ∆)wi + si − xi)‖2
2

− ‖Pi(U
∗wi + si − xi)‖2

2

)
.

(15)

Specifically, let us denote yi = Pi(U
∗wi + si − xi), the limit can be written as follows:

lim
‖∆‖→0

|gt(U∗ + ∆)− gt(U∗)|
‖∆‖

= lim
‖∆‖→0

1

t‖∆‖

t∑
i=1

λt−ii

(
‖yi −Pi∆wi‖2

2 − ‖yi‖
2
2

)
= lim
‖∆‖→0

1

t‖∆‖

t∑
i=1

λt−ii

(
‖Pi∆wi‖2

2 − 2〈yi,Pi∆wi〉
)

= −2

t

t∑
i=1

λt−ii ‖yi‖2 cos(yi,Pi∆wi) <∞. (16)

As a result, the function gt(U) is differentiable and its first derivative ∇gt(U) can be given by

∇gt(U) =
2

t

t∑
i=1

λt−ii Pi(Uwi + si − xi)w
>
i . (17)
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In the similar way, it is easy to verify that ∇gt(U) is also continuous and the second derivative
∇2gt(U) is given by

∇2gt(U) =
2

t

t∑
i=1

λt−ii Piwiw
>
i . (18)

(C-2) The second derivative ∇2gt(U) is a positive-define matrix. For all x ∈ Rp×1, we have

x>∇2gt(U)x =
2

t

t∑
i=1

λt−ii Pi(w
>
i x)>(w>i x) =

2

t

t∑
i=1

λt−ii Pi(w
>
i x)2 > 0, ∀λ, t > 0. (19)

It implies that there always exist a positive constant m such that ∇2gt(U) ≥ mI.

It follows to the claims (C-1), (C-2) and the assumptions showing that the domain of gt(U) is a convex
set that gt(Ut) is strongly convex [3, Section 3.1.4].

Stage II: Prove that gt(U) is also a Lipschitz function:

|gt(Ut+1)− gt(Ut)| ≤ m2 ‖Ut+1 −Ut‖F . (20)

Let us denote dt(U) = gt(U)−gt+1(U). Since Ut = argmin
U

gt(U), we exploit that gt+1(Ut+1) ≤ gt+1(Ut)

and hence

gt(Ut+1)− gt(Ut) = gt(Ut+1)− gt+1(Ut) + gt+1(Ut)− gt(Ut)

≤
(
gt(Ut+1)− gt+1(Ut+1)︸ ︷︷ ︸

dt(Ut+1)

)
−
(
gt(Ut)− gt+1(Ut)︸ ︷︷ ︸

dt(Ut)

)
. (21)

The first derivative of dt(U) = gt(U)− gt+1(U) is given by

∇dt(U) = ∇gt(U)−∇gt+1(U)

=
1

t

t∑
i=1

λt−ii Pi(Uwi + si − xi)w
>
i −

1

t+ 1

t+1∑
i=1

λt+1−i
i Pi(Uwi + si − xi)w

>
i . (22)

Let At =
t∑
i=1

λt−ii PiUwiw
>
i and Bt =

t∑
i=1

λt−ii Pi(si − xi), we can rewrite ∇dt(U) as

∇dt(U) =

(
At

t
− At+1

t+ 1

)
+

(
Bt

t
− Bt+1

t+ 1

)
. (23)

Under the given assumptions, the subspace U, outlier {st}, signal {xt} and subspace coefficients {wt}
are bounded, then both At and Bt are bounded. It is therefore that

‖∇dt(U)‖F ≤
∥∥∥∥At

t
− At+1

t+ 1

∥∥∥∥
F

+

∥∥∥∥Bt

t
− Bt+1

t+ 1

∥∥∥∥
F

≤ m2 = O(1/t). (24)

Therefore dt(U) is Lipschiz with the constant m2,

|dt(Ut+1)− dt(Ut)|
‖Ut+1 −Ut‖F

≤ m2, hence
|gt(Ut+1)− gt(Ut)|
‖Ut+1 −Ut‖F

≤ m2. (25)

This ends the proof.
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III. PROOF OF THE LEMMA 3

Inspired of the result of convergence analysis for online sparse coding framework in [4, Proposition 2],
we derive the convergence of gt(Ut) in the similar way. In particular, we first denote the nonnegative
stochastic process {ut}, ut

∆
= gt(Ut) ≥ 0, and then prove that it is a quasi-martingale, i.e., we have to

prove the sum of the positive difference of {ut}∞t=1 is bounded,
∞∑
t=1

∣∣E[ut+1 − ut|Ft]
∣∣ < +∞ a.s. (26)

We can express gt+1(Ut) with respect to gt(Ut) as follows

gt+1(Ut) =
1

t+ 1

t+1∑
i=1

λt+1−i
i ‖Pi(Utwi + si − xi)‖2

2 + ρ ‖si‖1

=

(
λ

t+ 1

t∑
i=1

λt−ii ‖Pi(Utwi + si − xi)‖2
2 + ρ ‖si‖1

)
+

(
1

t+ 1

(
‖Pt+1Ut + st+1 − xt+1‖2

2 + ρ ‖st+1‖1

))
=

λit

t+ 1
gt(Ut) +

1

t+ 1
`(Ut,Pt+1,xt+1).

Since Ut+1 = argmin
U

gt+1(U), we have the fact gt+1(Ut+1)− gt+1(Ut) ≤ 0, ft(Ut) ≤ gt(Ut), and hence

ut+1 − ut = gt+1(Ut+1)− gt(Ut) = gt+1(Ut+1)− gt+1(Ut)︸ ︷︷ ︸
≤0

+ gt+1(Ut)− gt(Ut)

≤ gt+1(Ut)− gt(Ut) =
1

t+ 1
`(Ut,Pt+1,xt+1)− t(1− λi) + 1

t+ 1
gt(Ut). (27)

It is therefore that

E[ut+1 − ut|Ft] ≤
E[`(Ut,Pt+1,xt+1)− (t(1− λi) + 1)gt(Ut)|Ft]

t+ 1

≤ E[`(Ut,Pt+1,xt+1)− gt(Ut)|Ft]
t+ 1

≤ E[`(Ut,Pt+1,xt+1)]− ft(Ut)

t+ 1
=
f(Ut)− ft(Ut)

t+ 1

because of ft(Ut) ≤ gt(Ut) and E[`(Ut,Pt+1,xt)] = f(Ut).

Let us define the indicator function δt as follows

δt
∆
=

{
1 if E[gt+1(Ut+1)− gt(Ut)|Ft] > 0

0 otherwise,

we then have

E
[
δE[gt+1(Ut+1)− gt(Ut)|Ft]

]
≤ E[
√
t(f(Ut)− ft(Ut))]

1√
t(t+ 1)

. (28)

Under the given assumptions that {U,w, s,x} are bounded, we exploit that the set of measurable functions
{`(Ui,P,x)}i≥1, which is composed of a quadratic norm term and `1-norm term, is P-Donsker. Therefore,
the centered and scaled version of the empirical function ft(Ut) satisfies the following proposition:

E[
√
t(f(Ut)− ft(Ut))] = O(1), (29)

thanks to Proposition 9.
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Furthermore, let us consider the convergence of the sum
∞∑
t=1

α√
t(t+ 1)

. We use the Cauchy-MacLaurin

integral test [5] for convergence, as∫ +∞

t=1

α√
t(t+ 1)

dt = α

∫ +∞

x=1

1

x2 + 1
dx = α arctan(x)

∣∣+∞
1

= α
(

arctan(∞)− arctan(1)
)

= α
π

4
<∞.

It is therefore that
{

1√
t(t+ 1)

}
t>0

converges and hence

∞∑
t=1

E
[
δE[gt+1(Ut+1)− gt(Ut)|Ft]

]
<∞. (30)

According to quasi-martingale theorem as shown in Proposition 10, we can conclude that {gt(Ut)}∞t=1

converges almost surely
∞∑
t=1

E[gt+1(Ut+1)− gt(Ut)|Ft] <∞. (31)

We complete the proof.

IV. PROOF OF LEMMA 4

We investigate the convergence of a surrogate sequence
{(
gt(Ut)− ft(Ut)

) 1

t+ 1

}
as follows

gt(Ut)− ft(Ut)

t+ 1
= ut − ut+1 + gt+1(Ut+1)− gt+1(Ut)︸ ︷︷ ︸

≤0

+
t(λ− 1)

t+ 1
gt(Ut)︸ ︷︷ ︸

≤0

+
`(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1

≤ ut − ut+1︸ ︷︷ ︸
(S-1)

+
`(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1︸ ︷︷ ︸
(S-2)

(32)

because of ut = gt(Ut) and λ ≤ 1. Note that, (S-1)− (S-2) converge almost surely:

• The sequence E[ut − ut+1] converges almost surely as proved in Lemma 3.
• The sequence (S-2) also converges, thanks to the fact E[`(Ut,Pt+1,xt+1)] = f(Ut) and the conver-

gence of
E[f(Ut)− ft(Ut)]

t+ 1
as mentioned in the appendix III.

It is therefore that the sequence
{(
gt(Ut)− ft(Ut)

) 1

t+ 1

}
converges almost surely, i.e.,

∞∑
t=0

(
gt(Ut)− ft(Ut)

) 1

t+ 1
<∞. (33)

On the other hand, the real sequence
{

1

t+ 1

}
t≥0

diverges,
∞∑
t=0

1

t+ 1
=∞. It implies that gt(Ut)−ft(Ut)

convergences, thanks to the Proposition 7.
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V. PROOF OF COROLLARY 4

Let Ut = argmin
U

gt(U) when t→∞, we have

ft(Ut) ≤ ft(U) +
L

2
‖U−Ut‖2

F ,∀ U ∈ U , (34)

where L is a positive constant. In other words, Ut is the minimum point of f(U).

Proof. Let us denote the error function et(U) = gt(U) − ft(U). Then it is easy to have ∇et(U) =
∇gt(U)−∇ft(U) because the function ft(U) and its surrogate gt(U) are continuous and differentiable.

We first have the following facts

‖∇et(U)−∇et(Ut)‖ =
∥∥(∇gt(U)−∇gt(Ut)

)
−
(
∇ft(U)−∇ft(Ut)

)∥∥
=
∥∥(∇gt(U)

)
−
(
∇ft(U)−∇ft(Ut)

)∥∥
≤ ‖∇gt(U)− gt(Ut)‖+ ‖∇ft(U)−∇ft(Ut)‖, (35)

thanks to the triangle theorem.

As proved in the Proposition 2, the surrogate function gt(U) is strongly convex, but also Lipschitz and
its second derivative are given by

∇2gt(U) =
2

t

t∑
i=1

λt−ii Piwiw
>
i . (36)

Under the given assumption that the subspace coefficient vectors {vi}i≥1 are bounded, the ∇2
Ugt(U) is

then bounded. It is therefore that the first derivative ∇gt(U) is also a Lipschitz function, that means,

‖∇gt(U)−∇gt(Ut)‖ ≤ Lg‖U−Ut‖F . (37)

In parallel, we will show that the first derivative of the cost function ft(U) is Lipschitz too, as

‖∇ft(U)−∇ft(Ut)‖ ≤ Lf‖U−Ut‖F . (38)

For any two subspace variables U1,U2 ∈ U , we have

‖∇ft(U1)−∇ft(U2)‖ ≤ 1

t

t∑
i=1

λt−ii ‖∇`(U1,Pi,xi)−∇`(U2,Pi,xi)‖. (39)

For any signal x ∈ S at time instant t, we also have

‖∇`(U1,Pt,x)−∇`(U2,Pt,x)‖
≤ ‖PtU1w

∗(U1,Pt,x)w∗(U1,Pt,x)> −PtU2w
∗(U1,Pt,x)w∗(U1,Pt,x)>‖

+ ‖s∗(U1,Pt,x)w∗(U1,Pt,x)> − s∗(U2,Pt,x)w∗(U2,Pt,x)>‖+ ‖xw∗(U1,Pt,x)> − xw∗(U2,Pt,x)>‖.

where (w∗(U,P,x), s∗(U,P,x))
∆
= argminw,s `(U,P,x,w, s). Note that,

(
w∗(U,P,x), s∗(U,P,x)

)
can be seen as a continuous function of the two variables. As mentioned in the proof of Lemma 1, the
function is not only strongly convex, but also Lipschitz in terms of each variable s or w. Therefore, we
have the following facts:

‖w∗(U1,P,x)−w∗(U2,P,x)‖ ≤ c1‖P(U1 −U2)‖,
‖s∗(U1,P,x)− s∗(U2,P,x)‖ ≤ c2‖P(U1 −U2)‖,

where c1 and c2 are the Lipschitz number of w∗(U1,P,x) and w∗(U1,P,x) respectively.
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Denote the upper bound for x, s, w and U are α1, α2, α3 and α4 respectively. The first part of (E-5) can
be bounded as follows:

‖PtU1w
∗(U1,Pt,x)w∗(U1,Pt,x)> −PtU2w

∗(U1,Pt,x)w∗(U1,Pt,x)>‖
≤ ‖PtU1‖‖w∗(U1,Pt,x)‖‖w∗(U1,Pt,x)−w∗(U2,x)‖

+ ‖PtU1w
∗(U1,Pt,x)−PtU2w

∗(U1,Pt,x)‖‖w∗(U1,Pt,x)‖
≤ c1α3α4‖Pt(U1 −U2)‖+ ‖w∗(U1,Pt,x)‖

(
‖PtU1‖‖w∗(U1,Pt,x)−w∗(U2,Pt,x)‖

+ ‖Pt(U1 −U2)‖‖w∗(U1,Pt,x)‖
)

≤ α3α4‖Pt(U1 −U2)‖+ α3

(
c1α4‖Pt(U1 −U2)‖+ α3‖Pt(U1 −U2)‖

)
= (2c1α3α4 + α2

3)‖Pt(U1 −U2)‖ ≤ (2c1α3α4 + α2
3)‖(U1 −U2)‖, (40)

the bounds for the two latter terms are

‖s∗(U1,Pt,x)w∗(U1,Pt,x)> − s∗(U2,Pt,x)w∗(U2,Pt,x)>‖
≤ ‖s∗(U1,Pt,x)‖‖w∗(U1,Pt,x)> −w∗(U2,Pt,x)>‖+ ‖s∗(U1,Pt,x)− s∗(U2,Pt,x)‖‖w∗(U2,Pt,x)‖
≤ c1α2‖Pt(U1 −U2)‖+ c2α3‖Pt(U1 −U2)‖
≤ (c1α2 + c2α3)‖Pt(U1 −U2)‖+ α3‖(U1 −U2)‖, (41)

and
‖xw∗(U1,Pt,x)> − xw∗(U2,Pt,x)>‖ ≤ c1α1‖(U1 −U2)‖. (42)

From (40), (41) and (42), we can conclude the inequality (38).

From the three facts above above and gt(Ut)
a.s.→ ft(Ut) when t→∞, we have ∇et(Ut) = 0 and hence

the following inequality

|∇et(U)| ≤ L

2
‖U−Ut‖F .

It is therefore that
|et(U)− et(Ut)|
‖U−Ut‖F

≤ L

2
‖U−Ut‖F , (43)

thanks to the mean value theorem. In other word, we have |et(U)| ≤ L
2
‖U−Ut‖2

F because of et(Ut)
a.s.→ 0.

In addition, for all U ∈ Rn×r, we always have ft(Ut) ≤ gt(U). Therefore, we can conclude the corollary
as follows

ft(Ut) ≤ gt(Ut) = ft(U) + et(U) ≤ ft(U) +
L

2
‖U−Ut‖2

F . (44)

It ends the proof.

VI. TECHNICAL PROPOSITIONS

In this section, we would provide the following propositions which help us to derive several important
results in the proofs. Their details are provided in well-known materials. [3], [6]–[10].

Proposition 1. (Strongly Convex): The function f is strongly convex if and only if for all u,v ∈ dom(f)
we always have

f(v)− f(u)− 1

2
‖v − u‖2

2 ≥ 〈v − u,θ〉, ∀θ ∈ ∂f(u).
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Proposition 2. The function f is m-strongly convex, with a constant m if and only if for all u,v ∈ dom(f),
we always have

|f(v)− f(u)| ≥ m

2
‖v − u‖2

2 .

Proposition 3. Every norm on Rn is convex and the sum of convex functions is convex.

Proposition 4. (Lipschitz Function) A function f : V → R is called Lipschitz function if there exist a a
positive number L > 0 such that for all A,B ∈ V , we always have

|f(A)− f(B)| ≤ L‖A−B‖.

Proposition 5. (Huber Function): The Huber penalty function replaces the `1-norm ‖x‖1 ,x ∈ Rn is
given by the sum

∑n
i=1 f

Hub
µ (x(i)), where

fHub
µ (x(i)) =

{
x(i)2

2µ
, |x(i)| ≤ µ,

|x(i)| − µ/2, |x| > µ.

There exists a smooth version of the Huber function fHub
µ , which has derivatives of all degrees, i.e.,

ψµ(x) =
n∑
i=1

(
(x(i)2 + µ2)1/2 − µ

)
.

and the first derivative of the pseudo-Huber function ψµ is defined by

∇ψµ(x) =
[
x(1)(x(1)2 + µ2)−1/2, . . . , x(n)(x(n)2 + µ2)−1/2

]>
.

Proposition 6. Let V and W are two vector spaces, and U ⊂ V . A function f : U → W is called
(Frechet) differentiable at x ∈ U if there exists a bounded linear map A : V → W such that

lim
‖h‖→0

‖f(x + h)− f(x)−Ax‖W
‖h‖V

= 0.

Proposition 7. (Convergence): Let {at}∞t=1 and {bt}∞t=1 be two nonnegative sequences such that
∑∞

i=1 ai =
∞ and

∑∞
i=1 aibi <∞, |bt+1 − bt| < Kat with some constant K, then lim

t→∞
bt = 0 or

∑∞
i=1 bi <∞.

Proposition 8. (Convergence): If {ft}t≥1 and {gt}t≥1 are sequences of bounded functions which converge
uniformly on a set E , then {ft + gt}t≥1 and {ftgt}t≥1 converge uniformly on E .

Proposition 9. (P-Donsker classes, Donsker theorem [6, Section 19.2]): Let F = {`θ : X → R} be a
set of measurable functions defined on a bounded subset of Rn. For every θ1, θ2 and x, if there exists a
constant c such that

|`θ1(x)− `θ2(x)| < c ‖θ1 − θ2‖2 ,

then F is P-Donsker. For any function ` in F , let us define the following functions

ft =
1

t

t∑
i=1

`(Ui), and f = E[ft(U)].

Assume that for all `, ‖`‖∞ < M and random variables {Ui}i≥1 are Borel-measurable, we then have

E[
√
t‖ft − f‖∞] = O(1),

where ‖`‖∞
∆
= inf{C ≥ 0, |f(x)| < C ∀ x}.
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Proposition 10. (Quasi Martingales [11, Section 4.4]): Let (Ω,F ,P) be a probability space, {ut}t>0 be
a stochastic process on the probability space and {Ft}t>0 be a filtration by the past information at time
instant t. Let us define the indicator function δt as follows

δt
∆
=

{
1 if E[ut+1 − ut|Ft] > 0,

0 otherwise.

For all t, if ut ≥ 0 and
∑∞

i=1 E[δi(ui+1 − ui)|Fi] < ∞, then ut is a quasi-martingale and converges
almost surely, i.e.,

∞∑
t=1

E[ut+1 − ut|Ft] <∞.

VII. ADDITIONAL EXPERIMENTAL RESULTS

A. Convergence of PETRELS-ADMM

Fig. 1 shows the typical convergence behavior of PETRELS-ADMM at three noise levels (i.e. SNR =
{0, 10, 20} dB) w.r.t the two variables: fac-outlier and the weight ρ. The experimental results are practical
evidences of Lemma 1 in the main manuscript. Particularly, the variation of {sk}k≥1 always converges
in all testing cases (i.e., approximate 10−14 on average). When the regularization weight ρ ≥ 0.5, the
convergence rate is fast which the variation

∥∥sk+1 − sk
∥∥

2
can converge in 50 iterations in both low- and

high-noise cases. Similarly, the variations of the sequence {Ut}t≥0 generated by PETRELS-ADMM also
have asymptotic converged behavior as shown in Fig. 2.
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(c) SNR = 20 dB

Fig. 1: Convergence of PETRELS-ADMM in terms of the variation
∥∥sk+1 − sk

∥∥
2
: n = 50, r = 2, 90%

entries observed and outlier density of 5%.

B. Outlier Detection

To demonstrate the effectiveness of PETRELS-ADMM, we assess the outlier detection performance of
the proposed method in comparison with the well-known GRASTA algorithm [12]. We use a synthetic
data whose number of row n = 50, rank r = 2 and 5000 observations. Outlier density and intensity are
varied in the range [5% − 40%] and [0.1, 1, 10] respectively, while the value of SNR is set at high (20
dB), moderate (10 dB) and low (5 dB) level.

The results are shown as in Fig. 3-6. Particularly, at low outlier density (e.g. 20%) and high SNR (20
dB), both algorithms can detect outliers effectively. Their detection performance may be degraded when
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Fig. 2: Convergence of PETRELS-ADMM in terms of the variation ‖Ut+1 −Ut‖F : n = 50, r = 2, 90%
entries observed and outlier intensity fac-outlier = 10.

the effect of the noise is increased (i.e. low SNR). Although the location of outliers can be identified
correctly, PERTRELS-ADMM provides better results than GRASTA in terms of sparsity, see Fig. 3(b)-
(c). The effect of outlier intensity and density on their outlier detection performance are illustrated in
Fig. 4 and Fig. 5 respectively. Our method outperforms GRASTA again. We can see that, when the data
is corrupted by “strong” outliers, both methods are able to detect them efficiently. At low SNR, outliers
are effectively localized by PETRELS-ADMM even in the presence of high corruptions, while GRASTA
labels many locations as outliers, see Fig. 4(a) and Fig. 5(b) for examples. Besides, GRASTA fails to
detect outliers in cases of low outlier intensity (e.g. fac-outlier = 0.1), as shown in Fig. 4(a). The overall
detection performance of PETRELS-ADMM and GRASTA is reported in Fig. 6.
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Fig. 3: Effect of the noise on the outlier detection performance: n = 50, r = 2, outlier density of 20%
and outlier intensity fac-outlier = 1.
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Fig. 4: Effect of outlier intensity on the outlier detection performance: n = 50, r = 2, SNR = 5 dB and
outlier density of 20%.
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Fig. 5: Effect of outlier density on the outlier detection performance: n = 50, r = 2, SNR = 5 dB and
fac-outlier = 1.
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Fig. 6: Outlier detection accuracy versus the noise level: n = 50, r = 2, 80% entries observed and 20%
outliers, fac-outlier = 1.

C. Highly Incomplete Observations

In order to illustrate the efficiency and effectiveness of the proposed algorithm for subspace tracking
from (very) highly incomplete observations, a performance comparison of PETRELS-ADMM against the
original PETRELS [13] and a well-known GROUSE algorithm [14] is conducted. For a fair comparison,
effect of outliers is ignored in this task. Following the above experiments, we consider the same data
model of n = 500, rank r = 10 and 5000 observations. The underlying subspace is corrupted abruptly at
the time index 3000. The noise level SNR is set at 10 dB and 20 dB.

The results are shown as in Fig. 7. All three algorithms can successfully track the underlying subspace,
but PETRELS-ADMM provides better subspace estimation performance than the original PETRELS and
GROUSE. Particularly, PETRELS-based algorithms converge faster than GROUSE even with a small
number of entries observed at each time. PETRELS-ADMM yields a much better subspace estimation
accuracy than the original PETRELS in terms of SEP metric, see Fig. 7.

D. Robustness of PETRELS-ADMM at low Signal-to-Noise Ratio (SNR)

Following the same experiment setup in the main manuscript, we demonstrate the effectiveness of PETRELS-
ADMM against the-state-of-the-art algorithms at low SNR levels (e.g. SNR ∈ {0, 5, 10} dB). In particular,
the performance of PETRELS-ADMM is investigated with respect to three main aspects: (i) impact of
outlier intensity, (ii) impact of outlier density, and (iii) impact of missing density on the subspace estimation
accuracy. The results are illustrated in Fig. 8, 9, and 10. In the same manner as in cases of high SNR
(20 dB), PETRELS-ADMM outperforms the state-of-the-art subspace tracking algorithms again.
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Fig. 7: Performance comparison between the subspace tracking algorithms from highly incomplete
observation: n = 500, r = 10.
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Fig. 9: Impact of outlier density on algorithm performance at different (low) noise levels (SNR is chosen
among {0, 5, 10} dB): n = 50, r = 2, 90% entries observed, outlier intensity fac-outlier = 10.
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Fig. 10: Impact of the density of missing entries on algorithm performance at different (low) noise levels
(SNR is chosen among {0, 5, 10} dB): n = 50, r = 2, outlier density ωoutlier = 0.05, outlier intensity
fac-outlier = 1.


