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Abstract—Tensor decomposition has been demonstrated to be successful in a wide range of applications, from neuroscience and wireless
communications to social networks. In an online setting, factorizing tensors derived from multidimensional data streams is however nontrivial due
to several inherent problems of real-time stream processing. In recent years, many research efforts have been dedicated to developing online
techniques for decomposing such tensors, resulting in significant advances in streaming tensor decomposition or tensor tracking. This topic is
emerging and enriches the literature on tensor decomposition, particularly from the data stream analystics perspective. Thus, it is imperative to
carry out an overview of tensor tracking to help researchers and practitioners understand its developments and achievements, summarise the
current trends and advances, and identify challenging problems. In this article, we provide a contemporary and comprehensive survey on
different types of tensor tracking techniques. We particularly categorize the state-of-the-art methods into three main groups: streaming CP
decompositions, streaming Tucker decompositions, and streaming decompositions under other tensor formats (i.e., tensor-train, t-SVD, and BTD).
In each group, we further divide the existing algorithms into sub-categories based on their main optimization framework and model architectures.
Finally, we present several applications, research challenges, open problems, and potential directions of tensor tracking in the future.

Index Terms—Tensor decomposition, CP, Tucker, tensor-train, t-SVD, BTD, data stream, online optimization, low-rank tensor approximation.

✦

1 INTRODUCTION

T ENSOR decomposition (TD) has attracted much attention
from the signal/image processing and machine learning

communities [1]. As a tensor is a multiway array, it provides a
natural representation for multidimensional data. Accordingly,
TD which factorizes a tensor into a set of basis components
(e.g., vectors, matrices, or simpler tensors) has become a popular
tool for multivariate and high-dimensional data analysis. In
particular, we have witnessed significant advances in TD and
a rapid growth in its applications over the last two decades [2].
Several types of TD, such as CANDECOMP/PARAFAC (CP) [3],
high-order SVD (HOSVD)/Tucker [4], tensor train/network [5],
t-SVD [6], and block-term decomposition (BTD) [7], have been
developed and successfully applied to various domains, from
neuroscience [8], [9] and wireless communications [10], [11] to
social networks [12], [13].

The demand for (near) real-time stream processing has been
increasing over the years since many modern applications (e.g.,
Internet-of-Things) generate massive amounts of streaming data
over time and analytical insights from such data can bring
several benefits, e.g., for real-time decision making [14]. As
its name implies, (near) real-time stream processing needs to
immediately deliver and analyse data streams upon their arrival.
Since streaming data grow bigger, faster, and become more
complex by the time, there exist several inherent problems which
are still challenging issues, such as (i) the unbounded size of
streaming data, (ii) time-varying model, concept drift, or dataset
shift, and (iii) uncertainty and imperfection, etc. We refer the
readers to [14], [15] for good surveys on data stream analysis.

When using tensors to represent data streams, TD is gener-
ally referred to as dynamic tensor analysis, tensor tracking or
adaptive/online/streaming tensor decomposition. Specifically,
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factorizing a streaming tensor is nontrivial due to several com-
putational challenges. First, as tensor streams are continuously
generated, their volume grows significantly over time and pos-
sibly to infinity. Applying the conventional batch TD methods
to such tensors is not possible as they require data to be stored
and processed offline. Second, properties of streaming tensors
(e.g., the low-rank approximation model) can vary with time in
unforeseen ways. Moreover, tensor streams often happen in real-
time, so retransmission of a stream is difficult, even impossible.
Accordingly, batch tensor estimation and decomposition become
less accurate when time passes. Last but not least, some mod-
ern applications require high-speed data acquisition systems to
rapidly acquire and process massive data streams. In such a case,
very fast and (near) real-time processing is highly important.
However, batch TDs are often of high complexity, and hence turn
out to be inefficient. These characteristics make tensor tracking
much different from batch tensor decomposition and lead to
several distinguishing requirements for tensor trackers, such as
low latency and memory storage, high scalability, adaptation to
time variation, and robustness, to name a few.

As the literature of tensor tracking has dramatically ex-
panded in recent years, it is imperative to conduct an extensive
overview of the state-of-the-art tensor tracking algorithms to
help researchers and practitioners to identify: (i) which topics
in tensor tracking are significant and emerging, (ii) what kind
of tracking models and related analysis techniques have already
been deployed to date and how to apply them in specific tasks,
and (iii) main research challenges, open problems, and potential
directions of tensor tracking in the future.

1.1 State-of-the-art Tensor Surveys
The very first introduction to TD was provided by Rasmus
in [16] two decades ago. This reference offered a tutorial on
CP decomposition covering features, properties, methods, and
applications in chemometrics. Since then, there have been many
published survey papers which provided different points of view
on tensor computation. We can broadly divide them into three
classes, including (i) surveys on models, methods, and tools for
factorizing tensors, (ii) surveys on general tensor problems, e.g.,
tensor operations, uniqueness, ranks, filtering, spectral analysis,
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TABLE 1
The State-of-the-art Surveys on Tensor Decompositions and Applications

Class Review (Year) Objects & Topics Key Contributions

Su
rv

ey
s

on
te

ns
or

fa
ct

or
iz

at
io

n
m

od
el

s,
m

et
ho

ds
,a

nd
to

ol
s

[16] (1997) CP/PARAFAC
decomposition

An overview of CP decomposition with respect to aspects: features, properties, methods, and
applications in chemometrics.

[17] (2008) CP & Tucker
decomposition

A literature survey on unsupervised multiway data analysis: multiway models (i.e., CP family
and Tucker family), their workhorse algorithms and applications.

[18] (2009) CP & Tucker
decomposition

An extensive survey on main algorithms, properties and applications of CP, Tucker
decompositions and their variants + A list of software and toolboxes for tensor processing.

[19] (2010) Tucker/HOSVD
decomposition

An overview of numerical methods for Tucker/HOSVD decomposition and its applications
in signal processing.

[20] (2013) Low-rank tensor
approximations A literature survey on low-rank tensor approximation models and algorithms.

[21] (2014) Incomplete tensor
decomposition

A survey on numerical methods for factorizing incomplete tensors and their connections to
signal processing applications.

[22] (2016) Tensor network An extensive tutorial on tensor networks, their operations and algorithms.

[23] (2020) Tucker/HOSVD
decomposition A survey on randomized algorithms for computing Tucker/HOSVD decomposition.

[24] (2020) Structured tensor
decomposition

A unified nonconvex optimization perspective for computing large-scale matrix and tensor
decompositions with structured factors.
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[25] (2007) Tensor filtering A review of tensor signal algebraic filtering methods.

[26] (2009) CP & Tucker
decompositions

A review of theoretical results on the existence, uniqueness, degeneracies, and numerical
complexities of alternating least-squares and other tales.

[27] (2013) Complexity of
tensor problems

An in-depth survey on theoretical and complexity results of some tensor problems: e.g., tensor
ranks, tensor eigen/singular values, and the best rank-1 approximation.

[28] (2014) Tensor formats &
tensor ranks A brief introduction on different types of tensor formats and tensor ranks.

[1] (2017) Fundamentals &
backgrounds

An comprehensive overview of tensor decompositions w.r.t. aspects: uniqueness, tensor ranks,
algorithms, bounds, and applications + A list of software and toolboxes for tensor processing.

[29] (2018) Tensor PCA An introduction to tensors and tensor decompositions in the lens of PCA.

[30] (2022) Reproducibility A review of critical issues and solutions for guaranteeing the computational reproducibility
in matrix and tensor factorizations.
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[31] (2011) Data analysis An overview of tensor applications for a wide variety of data and problem domains.
[32] (2015) Signal processing A comprehensive survey on tensor decompositions for signal processing.
[33] (2015) EEG applications A brief survey on tensor decompositions of EEG signals.
[9] (2015) Neuroscience A survey on tensor analysis and fusion of multimodal brain images.
[34] (2016) Anomaly detection An interdisciplinary survey on tensor-based anomaly detection.
[35] (2016) Biomedical science A brief survey on matrix- and tensor-based component analysis methods for biomedical data.
[36] (2017) Data fusion A review of tensor decompositions with emphasis on data fusion applications.

[37] (2017) Machine learning
& data analysis

An tutorial on tensor network models for super-compressed representation of data and their
applications in machine learning and data analytics.

[38] (2019) Machine learning An overview of tensor techniques and applications in machine learning.
[39] (2021) Multisensor processing A comprehensive survey on tensor methods for multisensor signal processing.

[11] (2021) Wireless
communications A comprehensive overview of tensor decompositions for wireless communications.

[13] (2021) Social networks A survey on tensor decomposition for analysing time-evolving social networks.

[40] (2021) Computer vision &
deep learning A practical overview of tensor methods for computer vision and deep learning

[41] (2022) System identification A tutorial on tensor methods for nonlinear system identification.
[2] (2022) Data analysis A systematic and up-to-date overview of tensor decompositions from the engineer’s view

This paper
Streaming tensor

decomposition
(Tensor tracking)

A contemporary and comprehensive survey on methods for factorizing tensors derived
from data streams under CP, Tucker, TT, t-SVD, and BTD formats.
Applications, research challenges, open problems, and future directions for tensor tracking.

and complexity, and (iii) surveys on tensor applications. We refer
the readers to Tab. 1 for the main contributions of the state-of-
the-art surveys on tensors.

Among them, the most cited survey paper is the work of
Kolda et al. in [18] that was published more than a decade ago.
The survey presented basic multiway models (i.e., CP family
and Tucker family) and workhorse algorithms for factorizing
tensors under these models. Some applications and software
for tensors were also mentioned. The second key survey in the
literature is the work of Sidiropoulos et al. in [1] that appeared
five years ago. To fill some gaps in the existing surveys on CP
and Tucker decompositions of that time, the authors provided
an in-depth overview of tensors with respect to the following
aspects: uniqueness, ranks, bounds, algorithms, and applica-

tions. Moreover, an up-to-date list of software and toolboxes
for tensor computation was provided therein. To extend beyond
the two standard multiway models, Cichocki et al. conducted a
comprehensive tutorial on tensor networks in [22], [37]. Particu-
larly, its coverage includes tensor network models, the associated
operations and algorithms, and their applications. Besides, it also
highlighted connections of tensor networks to dimensionality
reduction and large-scale optimization problems. Very recently,
Liu et al. provided a general overview of tensors from the engi-
neer’s point of view in the book [2]. It covers various aspects
of tensor computations and decompositions, from operations
and well-known multiway representations to tensor-based data
analysis techniques and practical applications.

However, to date, we are not aware of any survey paper
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Fig. 1. Structure of this survey.

TABLE 2
Notational conventions.

Notations Descriptions

x,x,X,X scalar, vector, matrix, and tensor, respectively
xi1,...,iN / [X ]i1...iN (i1, . . . , iN )-th entry of X
x = vec(X) vectorization of X
X = diag(x) diagonal matrix X with x on the main diagonal
X(i, :),X(:, j) i-th row and j-th column of X
X⊤, X−1, X# transpose, inverse, and pseudo-inverse of X
X(n) = unfoldn(X ) mode-n unfolding of X
Y = bcirc(X ) block circulant tensor Y specified by X
U(n) n-th loading factor/matrix
◦, ⊙, ⊛ outer, Khatri-Rao, and Hadamard product
X ×n U n-mode product of X with U,
X ⊞n Y concatenation of X with Y along the n-th mode
X ×1

n Y mode-(n, 1) contracted product of X with Y
X ∗Y t-product of X with Y (defined in [6])
X ⊆ Y X is a sub-tensor of Y
X ∪Y union of X and Y
X\Y relative difference between X and Yq
{U(n)}Nn=1

y ∑r
i=1 U

(1)(:, i) ◦U(2)(:, i) ◦ · · · ◦U(N)(:, i)q
X ; {U(n)}Nn=1

y
X ×1 U(1) ×2 U(2) ×3 · · · ×N U(N)⊙N

n=1 U
(n) U(N) ⊙U(N−1) ⊙ · · · ⊙U(1)⊗N

n=1 U
(n) U(N) ⊗U(N−1) ⊗ · · · ⊗U(1)

∥.∥F , ∥.∥p, ∥.∥∗ Euclidean norm, ℓp norm, and nuclear norm
FFT, iFFT Fast Fourier transform and its inverse

specifically reviewing the problem of streaming tensor decom-
position or tensor tracking. Therefore, it is of great interest to
carry out an overview of this topic to enrich the tensor literature.

1.2 Main Contribution
In this paper, we present a contemporary and comprehensive
survey on the state-of-the-art online techniques which are capa-
ble of factorizing tensors derived from data streams.

Our survey begins with basic coverage of five common
tensor decompositions and their main features. They are
CP/PARAFAC, HOSVD/Tucker, BTD, tensor-train, and t-SVD.
Two kinds of streaming models are then introduced to repre-
sent streaming tensors, namely single-aspect and multi-aspect.
Next, we review four main groups of streaming CP decompo-
sition algorithms: (i) subspace-based, (ii) block-coordinate de-
scent, (iii) Bayesian inference, and (iv) multi-aspect streaming
CP decomposition. Under the Tucker format, we categorize
currently available single-aspect tensor tracking algorithms into
two main classes: online tensor dictionary learning and tensor
subspace tracking. Multi-aspect streaming Tucker decomposition
algorithms are then overviewed. In addition, we provide a short
survey on other online techniques for tracking tensors under

tensor-train, t-SVD, and BTD formats. Finally, we discuss a
number of important challenges and open problems as well as
highlight potential directions for the problem of tensor tracking
in the future. To the best of our knowledge, our survey offers
for the first time a thorough review of techniques for factorizing
tensors in an online fashion. Fig. 1 depicts the organization of the
paper. For ease of reference, we summarize in Tab. 2 notations
which are frequently used in this paper.

2 TENSOR DECOMPOSITIONS

In this section, we briefly describe the background of the five
popular tensor decompositions which have already been de-
ployed to factorize streaming tensors in an online fashion. They
are CP, Tucker, BTD, tensor-train, and t-SVD.

2.1 CP Decomposition

Under the CP format [16], a tensor X ∈ RI1×I2×···×IN can be
decomposed into a set of N matrices {U(n)}Nn=1 sharing the
same number of columns as follows

X ∆
=

q
{U(n)}Nn=1

y
=

r∑
i=1

U(1)(:, i) ◦ · · · ◦U(N)(:, i), (1)

where the so-called tensor factor U(n) is of size In × r with
1 ≤ n ≤ N . The smallest integer r satisfying (1) is referred
to as the CP-rank of X . CP is among the best memory-saving
format for representing high-order tensors, and hence, it can
overcome the curse of dimensionality which particularly limits
the order of tensors to be analysed. Under certain conditions,
CP decomposition is essentially unique up to a permutation and
scale. However, its main disadvantage is that finding the true
rank r is known as an NP-hard problem [27]. Even though the
CP-rank is given in advance, the best rank-r approximation of a
tensor may not exist [42]. To compute the CP decomposition, one
of the most widely-used approaches is based on the alternating
least-squares (ALS) technique [18].

2.2 Tucker Decomposition

Under the Tucker format [4], we can factorize X into a core
tensor G of a smaller size and N factors {U(n)}Nn=1 as

X ∆
=

q
G; {U(n)}Nn=1

y
= G ×1 U

(1) ×2 · · · ×N U(N), (2)

where G is of size r1 × r2 × · · · × rN (rn ≤ In) and U(n) ∈
RIn×rn is an orthogonal matrix. The vector r = [r1, r2, . . . , rN ] is
called the multilinear rank or rank-(r1, r2, . . . , rN ) of X . Tucker
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decomposition is more flexible than CP in the sense that we can
write any X in the form (2) and its computation can be done
effectively. The two most popular algorithms for computing (2)
are HOSVD and Higher-order Orthogonal Iteration (HOOI) [43].
Both HOSVD and HOOI offer a good rank-(r1, r2, . . . , rN ) tensor
approximation for X and they can be efficiently implemented in
practice. In general, the Tucker representation is not unique but
the subspace covering U(n) is physically unique. Therefore, the
main interest in Tucker decomposition is for finding subspaces of
the tensor factors, and hence, for approximation, dimensionality
reduction, and feature extraction [1].

2.3 Block-Term Decomposition
Block-term decomposition (BTD) allows to represent X as a sum
of low multilinear-rank tensors [7]:

X =
L∑

l=1

q
Gl; {U(n)

l }
N
n=1

y
, (3)

where {Gl}Ll=1 with Gl ∈ Rr1×r2×···×rN is the set of core tensors,
U(n) =

[
U

(n)
1 , . . . ,U

(n)
L

]
with U

(n)
l ∈ RIn×rn is the n-th tensor

factor, and rn ≤ In ∀ l, n. The BTD format (3) can be considered
as a combination of CP and Tucker. As its name reveals, the basic
components in BTD are rank-(r1, r2, . . . , rN ) blocks while they
are rank-1 terms in CP. When these blocks are rank-1 tensors
(i.e., rn = 1 ∀n), it boils down to CP. When it has only one block
(i.e., L = 1), BTD becomes the standard Tucker decomposition.
It is worth noting that the number of blocks L relies on the
block’s size. Like CP, BTD is essentially unique [7]. The common
approach to find (3) is also based on the ALS technique [44].

2.4 Tensor-train Decomposition
Tensor-train (TT) decomposition expresses X as a multilinear
product of third-order tensors {G(n)}Nn=1 according to

X = G(1) ×1
1 G(2) ×1

2 · · · ×1
N G(N), (4)

where G(n) ∈ Rrn−1×In×rn is the n-th TT-core (aka tensor car-
riage) with n = 1, 2, . . . , N . Here, r0 = rN = 1 and the quantities
{rn}N−1

n=1 are called TT-ranks [5]. This type of TD offers several
appealing benefits for representing tensors, especially high-order
tensors. Given an arbitrary tensor X , we always find a set of TT-
cores {G(n)}Nn=1 satisfying (4) with suitable TT ranks. Besides, its
TT-ranks can be effectively estimated in a stable way in contrast
to the CP-rank determination [27]. TT also offers a memory-
saving representation for tensors and can break the curse of
dimensionality like CP. With respect to the implementation, the
workhorse algorithm to compute TT is TT-SVD [5].

2.5 T-SVD Decomposition
Tensor SVD (t-SVD) is another multiway extension of SVD for
decomposing tensors in which X is factorized into three tensors
U ,G, and V of the same order:

X = U ∗ G ∗ VH , (5)
where U and V are unitary tensors, and G is a rectangle f -
diagonal tensor whose frontal slices are diagonal matrices [6].
To define the low-rank tensor approximation under the t-SVD
format, the so-called tubal-rank rt is determined as the number
of non-zero tubes of G (e.g., when the tensor X is of order 3,
rt(X ) =

∑
i 1[G(i, i, :) ̸= 0] where 1 is an indicator func-

tion). The t-SVD algebraic framework is quite different from
the classical multilinear algebra in other types of TD. Thanks to
the t-product and Fourier transform, several linear, multilinear
operators and other transformations are successfully extended
from matrices to tensors, such as transpose, orthogonality, and

inverse. In particular, t-SVD can be obtained by computing SVDs
in Fourier domain and its performance (i.e., exact recovery with
high probability) can be guaranteed under mild conditions [6].

3 TENSOR TRACKING FORMULATION

In this section, the problem of tensor tracking is formulated.
Specifically, we first divide streaming tensor tracking models into
two classes and then construct some terminologies to support
the problem statement. They are single-aspect and multi-aspect
streaming models. After that, we formulate the general tensor
tracking problem which is suitable for many applications.

3.1 Single-aspect Streaming Model
In the classical online setting, we are interested in the decomposi-
tion of an N -order streaming tensor Xt fixing all but one dimen-
sion. Without loss of generality, we suppose the last dimension is
temporal, and hence, we can write Xt ∈ RI1×···×IN−1×It

N where
ItN is increasing with time.

The following definition of temporal slices is useful to formu-
late the problem of single-aspect tensor tracking.
Definition 1 (Temporal slice). Given a streaming tensor Xt ∈

RI1×I2×···×It
N , we say Yτ = Xt(:, . . . , :, τ) ∈ RI1×I2×···×IN−1

is the τ -th temporal slice of Xt for 1 ≤ τ ≤ ItN .

Without loss of generality, we assume that ItN = t meaning that
at each time instant one new slice of the tensor is observed.
Accordingly, the streaming tensor Xt can be viewed as a set of
temporal slices {Yτ}tτ=1. In other words, Xt is derived from
appending the new comming temporal slice Yt to the previous
observations Xt−1 along the time dimension, i.e.,

Xt = Xt−1 ⊞N Yt and ItN = It−1
N + 1 = t. (6)

Generally, Yt has the form
Yt = Pt ⊛

(
Lt +Nt +Ot

)
, (7)

where Lt is a low-rank component, Pt is a binary tensor, Nt is
a noise tensor, and Ot is a sparse tensor. The data model (7)
is a general form which is suitable for many scenarios. For
example, Pt represents missing and observed entries of Yt; Nt

is an additive white Gaussian noise; and Ot denotes the sparse
outliers. Meanwhile, the low-rank Lt, which can be formulated
by any tensor formats, can be static or time-varying.

Based on these terminologies, the problem of single-aspect
tensor tracking can be formally stated as follows:

Single-aspect Tensor Tracking: At time t, given a temporal
slice Yt and old estimates of Xt−1 (e.g., core tensors and
tensor factors), we want to track the new estimates of Xt =
Xt−1 ⊞N Yt in time.

3.2 Multi-aspect Streaming Model
In some modern online applications, tensor data may evolve
in multiple dimensions/modes over time, and thus, the single-
aspect streaming model is not useful for modelling such stream-
ing data. In [45], Fanaee-T et al. for the first time introduced the
concept of multi-aspect streaming tensors to represent streaming
data having more than one dimension increasing with time. Since
then, some online algorithms have been developed to deal with
the problem of multi-aspect streaming tensor decomposition.

For convenience, we first introduce the definitions of multi-
aspect streaming tensors and temporal tubes.
Definition 2 (Multi-aspect streaming tensor). A set of N -

order tensors {Xt}t≥1 is called a multi-aspect streaming
tensor sequence denoted as {X} when Xt ∈ RIt

1×It
2×···×It

N ,
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Itn = It−1
n + W t

n where W t
n ≥ 0, 1 ≤ n ≤ N , and Xt−1 is a

sub-tensor of Xt. If Xt belongs to such a sequence {X}, we
say that Xt is a multi-aspect streaming tensor.

Definition 3 (Temporal tube). Given two successive tensors Xt−1

and Xt derived from the same multi-aspect streaming tensor
sequence {X}, the coming data at time t can be represented
by Yt = Xt\Xt−1 of the same size as Xt with entries[

Yt

]
i1,...,iN

=

{[
Xt

]
i1,...,iN

if It−1
n < in ≤ Itn,

0 otherwise,
(8)

for 1 ≤ n ≤ N . We say that the non-zero entries in Yt are
temporal tubes.

Now, we can state the problem of multi-aspect tensor tracking
as follows:

Multi-aspect Tensor Tracking: At time t, given temporal
tubes in Yt, and old estimates of Xt−1 (e.g., core tensors
and tensor factors), we want to track the new estimates of
Xt = Xt−1 ∪Yt in time.

It is worth noting that the single-aspect tensor tracking prob-
lem also belongs to the class of multi-aspect tensor tracking
where most of the tensor dimensions In are constant by setting
W t

n = 0, except the last one ItN . Besides, temporal slices may be
regarded as frontal slices of the tensor Yt defined as in (8).

3.3 General Formulation of Optimization
We here provide a general formulation of tensor tracking which
can be used in many applications. In particular, the optimization
problem can be written as

min
{G},{U},O

[
t∑

τ=1

βτ ℓ
(
Yτ ,Pτ , {G}, {U},O

)
︸ ︷︷ ︸

Minimize residual errors

+ ρGRG

(
{G}

)︸ ︷︷ ︸
Regularize cores

+ ρURU

(
{U}

)︸ ︷︷ ︸
Regularize factors

+ ρORO

(
O
)︸ ︷︷ ︸

Promote sparsity

+ λGLG
(
{G}

)
+ λULU

(
{U}

)︸ ︷︷ ︸
Application dependent constraints

]
. (9)

Here, {G} and {U} denote the set of core tensors and tensor
factors respectively, while O is to represent data corruptions by
impulsive noise or outliers. Specifically, the three terms in the
second line of (9) are used to present regularizations or penalty
terms imposed on parameters of interest. The last two penalty
terms of (9) are for the application orientation. The main loss
function ℓ(.) is defined to minimize the residual errors between
the estimations and observations.

4 STREAMING CP DECOMPOSITION

The primary objective of this section is to provide technical de-
scriptions of the-state-of-the-art online techniques for factorizing
streaming tensors under the CP format. In the literature, there
are many streaming CP algorithms and they can be categorized
into the following groups: (i) subspace-based methods, (ii) block-
coordinate descent methods, (iii) Bayesian inference, and (iv)
multi-aspect streaming CP decompositions. The three former
groups are particularly developed for single-aspect streaming
models, while the latter is dedicated to the factorization of
tensors having more than one temporally varying mode. The
readers are referred to Tabs. 3 and 4 for quick comparisons of
the existing streaming CP decomposition algorithms. In what
follows, we take each group into consideration.

New Observations

Fig. 2. Single-aspect streaming CP decomposition of a 3rd-order tensor. Here,
the core I is an identity tensor in which the main diagonal entries (i.e.,
[I]j,...,j ) are equal to 1 and the remaining ones are zeros.

4.1 Subspace-based Methods
The very first study addressing the problem of streaming CP
decomposition is of Nion and Sidiropoulos in [46]. Specifically,
the authors introduced the two novel adaptive CP algorithms
called PARAFAC-SDT and PARAFAC-RLS capable of tracking
third-order streaming tensors having one temporal dimension.
Both algorithms are based on the subspace-based approach in
which we first track a low-dimensional tensor subspace, and
then recover the loading matrices from exploiting its Khatri-
Rao structure. Following the same line, some other adaptive
CP algorithms were proposed for tensor tracking such as CP-
PETRELS [53], 3D-OPAST [47], and SOAP [50]. In the follow-
ing, we describe their subspace-based framework for factorizing
streaming tensors with time.

First, we recall that the low-rank Lt of Yt has the form Lt =q
{U(n)

t }N−1
n=1 ,u

(N)
t

y
, where u

(N)
t is the last row of U(N)

t . Thus,
Lt can be recast into the form:

ℓt
∆
= vec(Lt) =

[N−1⊙
n=1

U
(n)
t

](
u
(N)
t

)⊤
= Ht

(
u
(N)
t

)⊤
, (10)

where Ht ∈ RI1...IN−1×r plays a role as a mixing matrix while
u
(N)
t can be viewed as a coefficient vector in subspace tracking

problems. Accordingly, streaming CP decomposition can boil
down to a constrained problem of subspace tracking where the
basis matrix has a Khatri-Rao structure. Particularly for N = 3,
the authors in [46], [47], [50], [53] proposed to solve the following
objective function:

min
{U(n)}3

n=1

t∑
τ=1

βt−τ
∥∥pτ ⊛

(
yτ −H(u(3)

τ )⊤
)∥∥2

2
(11)

where H = U(1) ⊙U(2), yτ = vec(Yτ ), pτ = vec(Pτ ), and uτ

is the τ -th row of the temporal factor U(3)
t , and β is a forgetting

factor aimed at discounting the impact of distant observations.
Specifically, (11) can be effectively solved by applying the follow-
ing procedure:

• Stage 1 : Estimate Ht and u
(3)
t , given U

(1)
t−1 and U

(2)
t−1;

• Stage 2 : Find U
(1)
t , U(2)

t satisfying Ht ≃ U
(1)
t ⊙U

(2)
t , and

then re-update Ht ← U
(1)
t ⊙U

(2)
t ;

• Stage 3 : Update U(3)
t =

[
(U

(3)
t−1)

⊤(u
(3)
t )⊤

]⊤
where u(3)

t can
be re-estimated as in Step 1 (optional).

In stage 1, the authors in [46] proposed two solvers for
estimating Ht and ut, namely recursive least-squares (RLS)
and simultaneous diagonalization tracking (SDT). Chinh et al.
in [53] adopted a well-known subspace tracking algorithm called
PETRELS. Dung et al. in [47] applied another subspace tracking
algorithm for this task, namely OPAST. In [50], the same authors
introduced another tracker to estimate Ht with rank-1 updates.

In stage 2, all the existing subspace-based methods used
the bi-SVD procedure introduced in [69] to recover U

(1)
t and

U
(2)
t from Ht. Particularly, we can represent each column of Ht

as Ht(:, i) = vec(U
(1)
t (:, i)(U

(2)
t (:, i))⊤). Thus, the right and left
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TABLE 3

Main Features of the State-of-the-art Single-aspect Streaming CP Decomposition Algorithms.

Algorithm Missing
Data?

Sparse
Outliers?

High-order Convergence Warm Computational Additional Information
(N ≥ 4)? Guarantee? Start? Complexity (approaches + supports)

PARAFAC-
✗ ✗ ✗ ✗ ✓ O

(
r2I2

) - Subspace-based
RLST/SDT [46] - Tracking using RLST/SDT

3D-OPAST [47] ✗ ✗ ✗ ✗ ✓ O
(
rI2

) - Subspace-based
- Tracking using OPAST

TeCPSGD [48] ✓ ✗ ✗ ✗ random O
(
r2|Ω|

)
- BCD + SGD

OLCP [49] ✗ ✗ ✓ ✗ ✓ O
(
r2IN−1

)
- BCD + SGD

SOAP [50] ✗ ✗ ✗ ✗ ✓ O
(
rI2

) - Subspace-based + Second-
order estimation

- Supports nonnegativity

CP-NLS [51] ✗ ✗ ✗ ✗ ✓ O(r2I2) - Nonlinear least-squares

BRST [52] ✓ ✓ ✓ ✗ ✓ unavailable - Variational Bayesian

CP-PETRELS [53] ✓ ✗ ✗ ✗ ✓ O
(
r2|Ω|

) - Subspace-based
- Tracking using PETRELS

CP-stream [54] ✗ ✗ ✓ ✗ random O
(
r2IN−1

) - ADMM + tuning-free
- Supports sparsity

POST [55] ✓ ✗ ✓ ✗ ✓ O
(
r3NIN−1

)
- Variational Bayesian

OLSTEC [56] ✓ ✗ ✗ ✓ random O
(
r2I2

)
- BCD + RLS

iPARAFAC [57] ✗ ✗ ✗ ✗ ✓
O
(
r2|S|

)
- Apache Sparka

|S|: size of the selected set - Randomized MTTKRP

TensorNOODL [58] ✗ ✗ ✗ ✓ ✓ O(r2I2)
- Online dictionary learning
- Supports sparsity

SPADE [59] ✗ ✗ ✓ ✗ ✓ O(r3IN−1) - Streaming PARAFAC2b

SliceNStitch [60] ✗ ✗ ✓ ✗ random O
(
rN |S|+ (rN)2 +Nr3

)
- Sparse decomposition|S|: no. of non-zero elements

SOFIA [61] ✓ ✓ ✓ ✗ ✓ O
(
r3IN−1

) - Holt-Winters fittingc

- Supports seasonality

STF [62] ✓ ✗ ✓ ✗ ✓ O
(
(N + r)Nr|Ω|+NIr3

)
- BCD + SGD

ACP [63], [64] ✓ ✗ ✓ ✓ random O
(
r2|S|

)
- Random sampling

|S|: size of the selected set - BCD + RLS

RACP [65] ✓ ✓ ✓ ✓ random O
(
r2IN−1

) - ADMM + RLS
- ℓ1-norm penalty

Online CPDL [66] ✗ ✗ ✓ ✓ ✓ O
(
r2IN−1

) - Nonnegative decomposition
- Markovian data
- Online dictionary learning

− Suppose that I1 = I2 = · · · = I , rCP = r, and |Ω| is the number of observed elements.
− Abbreviations: RLS (recursive least-squares), SDT (simultaneous diagonalization tracking), BCD (block-coordinate descent), PETRELS (parallel
estimation and tracking by recursive least squares), ADMM (alternating direction method of multipliers), SGD (stochastic gradient descent), and
MTTKRP (matricized-tensor times Khatri-Rao product).
a Apache Spark is a unified data analytics framework that supports distributed storage and large-scale processing: https://spark.apache.org/.
b PARAFAC2 is a flexible variant of CP [67]. While the classical CP model requires the tensor factors to be the same for all tensor slices, PARAFAC2
only requires their cross product to be the same and these factors can be different in size slice by slice.
c Holt-Winters is an effective time series forecasting procedure [68].

singular vector of the reshaped matrix from Ht(:, i) can provide
a good estimate of U(1)

t (:, i) and U
(2)
t (:, i), respectively, i.e.,

•
[
bi, λi,ai

]
← SVD

(
reshape(Ht(:, i), [I2 I1])

)
• U

(1)
t (:, i) ← a∗i and U

(2)
t (:, i)← λibi

Computation of SVD may be expensive when dealing with large-
scale streaming tensors, we can use the alternative update based
on power iteration as follows

• H
(i)
t ← reshape

(
Ht(:, i), [J × I]

)
• U

(1)
t (:, i)← (H

(i)
t )⊤U

(2)
t−1(:, i)

• U
(2)
t (:, i)← H

(i)
t U

(1)
t (:, i)∥∥H(i)

t U
(1)
t (:, i)

∥∥ .

As these algorithms are only designed for tracking third-order
streaming tensors, there are still rooms to develop subspace-
based methods capable of handling N ≥ 4.

4.2 Block-Coordinate Descent
The second approach is based on the block-coordinate descent
(BCD) framework in which we decompose the main optimiza-

tion into two main stages at each time t: (i) estimate the temporal
factor U(N)

t given {U(n)
t−1}

N−1
n=1 , and (ii) update the non-temporal

factor U
(n)
t with 1 ≤ n ≤ N − 1 in sequential or parallel given

U
(N)
t and the remaining factors. Many tracking algorithms adopt

this approach for estimating the low-rank approximation of
streaming tensors over time in the literature. We can list here
some: TeCPSGD [48], OLCP [49], OLSTEC [56], CP-stream [54],
SPADE [59], SOFIA [61], iCP-AM [70], ACP [64], and RACP [65].
In what follows, we review their strategy in each stage.

In stage 1, the general formulation of the optimization to
estimate the last row u

(N)
t of U(N)

t can be given by

min
u(N),O

∥∥∥Pt ⊛
(
Yt −O −

q{
U

(n)
t−1

}N−1

n=1
,u(N)

y)∥∥∥2
F

+ ρu
∥∥u(N)

∥∥2
2
+ ρO

∥∥O∥∥
1
, (12)

where ρu∥u∥22 is for avoiding the ill-posed computation and
ρO∥O∥1 promotes the sparsity in O. Then, the temporal factor
U

(N)
t is obtained by appending the recent updated u

(N)
t to the
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old estimate U
(N)
t−1. Most of the existing BCD-based tracking al-

gorithms suppose that observations are outlier-free (i.e., without
O), and hence, they apply the regularized/randomized least-
squares methods for solving (12). In the presence of sparse out-
liers, (12) can be effectively minimized by ADMM or shrinkage-
thresholding solvers, as presented in SOFIA [61] and RACP [65].

In stage 2, the non-temporal factors {U(n)
t }N−1

n=1 can be de-
rived from solving the following optimization

min
U(n)

t∑
τ=1

βt−τ
∥∥∥P(n)

τ ⊛
(
U(n)

(
W(n)

τ

)⊤
+O(n)

τ −Y(n)
τ

)∥∥∥2
F

+ ρURU

(
U(n)

)
, (13)

where ρURU(.) is a regularization term on U(n) and

W(n)
τ =



( N−1⊙
i=1,i̸=n

U
(i)
t−1

)
⊙ u⊤

τ [Jacobi],

( n−1⊙
i=1

U
(i)
t

)
⊙

( N−1⊙
i=n+1

U
(i)
t−1

)
⊙ u⊤

τ [Gauss-Seidel].

Here, we can apply one of the two iterative schemes to update
U

(n)
t : the Jacobi scheme supports the parallel and/or distributed

processing while the Gauss-Seidel scheme is useful for a sequen-
tial (serial) one. The regularization can be ∥U(n)∥2F for smooth-
ness, ∥U(n) −U

(n)
t−1∥2F for slow time-variation, or U(n) ⪰ 0 for

non-negativity constraints. Next, we review two common types
of solver for optimizing (13): adaptive least-squares filters and
stochastic gradient solvers.

a) Adaptive Least-Squares (LS) Filters. We can see that the
first term of (13) is of a weighted LS form very common in
adaptive filtering while the second one is to regularize the
estimators. Accordingly, (13) can be effectively minimized by
adaptive LS filters in general and recursive least-squares (RLS)
filters in particular.

In [56], Kasai proposed an exponential RLS algorithm called
OLSTEC to minimize (13) when the observations are outlier-
free. OLSTEC is, however, designed for third-order streaming
tensors only and its complexities are relatively high compared
to other algorithms. Thanh et al. in [64] proposed another RLS
algorithm called ACP which is capable of dealing with big
streaming tensors of higher order (N ≥ 4). ACP is fast and
requires much lower complexity than OLSTEC. Very recently, the
same authors in [65] proposed a sliding-window version of ACP
robust to both sparse outliers and missing data, namely RACP.
Interestingly, three algorithms belong to the class of provable
online CP algorithms in which their convergence is guaranteed
under certain conditions. In [51], Vandecappelle et al. introduced
a nonlinear least-squares (NLS) algorithm for computing the
streaming CP decomposition of third-order tensors. In particular,
the authors recast the objective function of (13) into a truncated
exponential window one by incorporating a weighting matrix
L = diag

(
[0, . . . , 0, βL−1, βL−2, . . . , β, 1]

)
and applied a NLS

solver to track the tensor factors with time. Following the same
line, Smith et al. in [54] proposed another online CP algorithm
called CP-stream. This algorithm has the potential to factorize
higher-order streaming tensors as well as support constraints on
the CP tracking such as smoothness and nonnegativity.

b) Stochastic Gradient Solvers. Instead of optimizing (13)
directly, we can minimize its t-th summand:

min
U(n)

∥∥∥P(n)
t ⊛

(
Y

(n)
t −O

(n)
t −U(n)

(
W

(n)
t

)⊤)∥∥∥2
F

+ ρURU

(
U(n)

)
. (14)

Three algorithms TeCPSGD [48], OLCP [49], and SOFIA [61]

adopt this replacement for tracking tensor factors with time. The
main difference among them is the type of RU(.). Besides, they
obtain different forms of update:

[SOFIA] : U
(n)
t = U

(n)
t−1 + γt∆U

(n)
t , (15)

[TeCPSGD] : U
(n)
t =

(
1− βt

tηt

)
U

(n)
t−1 +

1

ηt
∆U

(n)
t , (16)

[OLCP] : U
(n)
t = P

(n)
t

(
Q

(n)
t

)−1
with (17)

P
(n)
t = P

(n)
t−1 +∆P

(n)
t and

Q
(n)
t = Q

(n)
t−1 +∆Q

(n)
t .

Here, γt, ηt, ∆U
(n)
t , ∆P

(n)
t , and ∆Q

(n)
t can be obtained from{

U
(m)
t−1

}N−1

m=1
and the error tensor ∆Yt = Pt ⊛

(
Yt − Ot −q

{U(n)
t−1}

N−1
n=1 ,u

(N)
t

y)
. It is worth noting that SOFIA is capable

of dealing with sparse corruptions. TeCPSGD has the ability to
track tensors from missing observations, while OLCP can handle
streaming tensors of order greater than 3.

In [70], Zeng et al. proposed an incremental ALS algorithm
called iCP-AM to minimize a reinforced version of (14) which is
defined as

min
U(n)

∥∥∥∥∥
[
Y

(n)
t U

(n)
t−1

(
U

(N)
t−1 ⊙V

(n)
t−1

)⊤
]

−U(n)

([
u
(N)
t

Ū
(n)
t

]
⊙V

(n)
t

)⊤∥∥∥∥∥
2

F

, (18)

where V
(n)
τ =

(⊙n−1
i=1 U

(i)
τ

)
⊙

(⊙N−1
i=n+1 U

(i)
τ

)
. An appealing

feature of iCP-AM against other online CP algorithms is that it
has a strategy to deal with the variation of the CP rank over time,
i.e., to change the number of low-rank components throughout
the tracking process.

In parallel, Gujral et al. in [59] proposed an online algorithm
called SPADE for tracking tensors under the PARAFAC2 format.
Specifically, SPADE tracks a fixed (non-temporal) factor along
one mode and allows the other tensor factors (modes) to vary
with time. Thanks to its stochastic design, SPADE is fast and
memory-efficient. However, the stationary assumption that time
variation or concept drift is not allowed limits its applicability.

4.3 Bayesian Inference
Besides, another good approach for dealing with the problem of
streaming CP decomposition is Bayesian inference. The state-of-
the-art Bayesian-based streaming CP decomposition algorithms
are POST [55], BRST [52], and SBDT [71]. In general, three
algorithms start with a prior distribution of unknown param-
eters and then infer a posterior that best approximates the joint
distribution of these parameters on the arrival of new streaming
data. The estimated posterior is then used as the prior for the
next update. In this subsection, we briefly describe the two
online Bayesian inference frameworks which were already used
for tensor tracking: (i) streaming variational Bayes (SVB) and
(ii) assumed-density filtering (ADF). Also, prior distributions of
parameters of interest are reviewed.

a) Streaming Variational Bayes. The two former algorithms
POST and BRST adopted the SVB framework [72] which is based
on the following Bayes’ rule:

p
(
Θ
∣∣Xt−1 ⊞N Yt

)
� p

(
Yt

∣∣Θ)
p
(
Θ
∣∣Xt−1

)
, (19)

where Θ denotes the parameters of interest, e.g., tensor factors,
CP rank, and other parameters. On the arrival of Yt, SVB first
uses the current posterior qt−1(Θ) := p

(
Θ|Xt−1

)
as the prior of

Θ, and then integrates with the likelihood of Yt to obtain
p̃t(Θ) = p

(
Yt

∣∣Θ)
qt−1(Θ), (20)
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which can be served as an approximation of the joint distribution
p(Θ,Yt) up to a scale factor. The variational posterior qt(Θ)
is derived from maximizing the variational model evidence
lower bound (ELBO) L(q(Θ)) = Eq

[
log

(
p̃t(Θ)/q(Θ)

)]
which is

equivalent to minimizing the Kullback-Leibler (KL) divergence:

min
q

[
KL

(
q
(
Θ
)∥∥p̃t(Θ)

)
=

∫
q(Θ) log

{
q(Θ)

p̃t(Θ)

}
dΘ

]
. (21)

The optimized form of qt(Θi) of (21) can be given by
log qt(Θi) = Eq(Θ/Θi)

[
log p̃t(Θ)

]
+ const, (22)

where Eq(Θ/Θi)[.] is an expectation w.r.t. q over all but Θi.
b) Assumed-Density Filtering. The latter algorithm, SBDT,

applied the ADF framework to infer the posterior distribution
qt(Θ) over time. Particularly, ADF is an incremental learning
framework that allows for computing the approximate poste-
riors in Bayesian inference for stochastic processes [73]. The
ADF framework is also grounded on the Bayes’ rule (19) but
utilizes a distribution from the exponential family (e.g., Gaussian
distribution) to approximate the current posterior. Instead of
minimizing the KL divergence or maximizing the variational
ELBO like SVB, ADF projects p̃t(Θ) into the selected distribution
through moment matching to obtain qt(Θ).

c) Prior Distributions over Θ. We list common prior distri-
butions over Θ which were used by POST, BRST, and SBDT.

Prior distribution of tensor factors: All three algorithms
assume that the prior over tensor factors is derived from the
following Gaussian distribution which is controlled by the hy-
perparameter λ = [λ1, λ2, . . . , λr]:

p
(
U(n)

∣∣λ) = In∏
i=1

N
(
u
(n)
i

∣∣0,Λ−1
)
,∀n ∈ [1, N ], (23)

where u
(n)
i is the i-th row of U(n) and Λ = diag(λ) denotes

the inverse covariance matrix. Here, λ is supposed to follow a
Gamma distribution:

p(λ) =
r∏

j=1

Gam
(
λj |cj , dj

)
, (24)

where Gam
(
λj |cj , dj

)
=

dj
cj

Γ(cj)
λj

cj−1e−djλj with Γ(z) =∫∞
0 xz−1e−xdx. Specifically, the mean and variance of
Gam(λj |cj , dj) are, respectively, cj/dj and cj/d

2
j which aim to

control the magnitude of λ.
Prior distribution of noises: The noise is often assumed to

be Gaussian, i.e., Nt ∼
∏

i1...iN
N (0, τ−1) with a noise precision

τ > 0. The parameter τ is further assigned to another Gamma
distribution p(τ |a, b) = Gam

(
τ |a, b

)
in the same way as for λ.

Prior distribution of sparse components: Only BRST in [52]
has the ability to handle sparse outliers. Here, BRST places a
Gaussian prior distribution over the sparse Ot as

p
(
Ot

∣∣γ) = I1∏
i1

· · ·
IN∏
iN

N
([
Ot

]
i1...iN

∣∣∣0, γ−1
i1...iN

)[Pt]i1...iN

. (25)

where γ is the sparsity precision parameter. If the value of γi1...iN
is large, the corresponding entry in Ot is likely to have a small
magnitude. By controlling the value of γi1...iN , we can control
the sparsity of Ot.

Prior distribution of NN’s weights: SBDT in [71] incorporates
neural networks (NN) into tensor factorization. SBDT assigns a
spike-and-slab prior distribution over NN weights to sparsify
the network. Each weight ωmjt = [Wm]jt of NN is particularly
sampled from
p
(
ωmjt|smjt

)
= smjtN

(
ωmjt|0, σ2

0

)
+ (1− smjt)δ(ωmjt), (26)

where δ(.) denotes the delta function and the binary selection

TABLE 4
Main Features of Multi-aspect Streaming CP Decomposition Algorithms.

Algorithm MAST OR-MSTC InParTen2 DisMASTD
(2017 [74]) (2019 [75]) (2020 [76]) (2021 [77])

Missing? ✓ ✓ ✗ ✗

Outliers? ✗ ✓ ✗ ✗

High-order?
(N ≥ 4) ✓ ✓ ✗ ✓

Distributed? ✗ ✗ ✓ ✓

indicator smjt is derived from p(smjt) = Bern(smjt|ρ0) =
ρ
smjt

0 (1− ρ0)
1−smjt .

4.4 Multi-aspect Streaming CP Decomposition
In the literature, there are some algorithms capable of tracking
multi-aspect streaming tensors under the CP format, such as
MAST [74], OR-MSTC [75], InParTen2 [76], and DisMASTD [77].
We refer the readers to Tab. 4 for their key features. In what fol-
lows, we first describe the main dynamic tensor decomposition
(DTD) framework shared by most of these algorithms and then
highlight their characteristics in the following text.

For ease of reference, we denote by Xt−1 ∈ RI1×···×IN and
Xt ∈ R(I1+d1)×···×(IN+dN ) the two successive snapshots at t− 1
and t, see Fig. 5 for an illustration (when Gt = I). At time t,
given Xt and the old estimates {U(n)

t−1}Nn=1 of Xt−1, we wish to
update {U(n)

t }Nn=1 such that Xt ≈
q
{U(n)

t }Nn=1

y
.

The DTD introduced in [74] offers an online framework
for the problem of multi-aspect streaming CP decomposition.
Particularly, DTD relaxes the CP representation of Xt in the sense
that if Xt is expressed by J{U(n)

t }Nn=1

y
, then its sub-tensor Xt−1

can be approximated by J{Ū(n)
t }Nn=1

y
where Ū

(n)
t ∈ RIn×r is

the sub-matrix of U(n)
t ∈ R(In+d)×r . Accordingly, DTD enables

us to divide Xt into two parts Xt−1 and Yt = Xt\Xt−1 in
order to take advantages of old estimates. We can first update
Ū

(n)
t incrementally from U

(n)
t−1 with a low cost and then estimate

the remaining part Û(n)
t ∈ Rd×r of U(n)

t . The tensor factors are
particularly derived from

min
{U(n)}N

n=1

[
ℓ
(
Yt,

{
U(n)

}N
n=1

)
+ ρ

( N∑
n=1

∥∥U(n)
∥∥
∗

)]
, (27)

where the loss function ℓ(.) is defined as

ℓ
(
Yt,

{
U(n)

}N
n=1

)
= µ

∥∥∥q{U(n)
t−1}Nn=1

y
−

q
{Ū(n)}Nn=1

y∥∥∥2
F

+
∥∥∥PΩt

(
Yt

)
− PΩt

(q
{U(n)}Nn=1

y)∥∥∥2
F
. (28)

Here, Ωt denotes the set of observed entries and µ, ρ > 0 are two
regularized parameters. Depending on the type of constraints,
additional information imposed and the method of optimization,
we can obtain several types of estimators for tracking multi-
aspect streaming tensors with time under the DTD framework.

In [74], Song et al. developed the so-called MAST algorithm
for tracking multi-aspect streaming tensors. The authors re-
cast (27) into a constrained minimization and then formed the
following Lagrangian function

L
(
Yt,Θ

)
= ℓ

(
Yt,

{
U(n)

}N
n=1

)
+

N∑
n=1

(
ρ
∥∥Z(n)

∥∥
∗

+
〈
Λ(n),Z(n) −U(n)

〉
+

η

2

∥∥Z(n) −U(n)
∥∥2
F

)
, (29)

where Θ = {U(n),Z(n),Λ(n)}Nn=1 with auxiliary matrices
{Z(n)}Nn=1 and Lagrange multiplier matrices {Λ(n)}Nn=1, and
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New Observations

Fig. 3. Online tensor dictionary learning.

η > 0 is a regularization parameter. Since terms of (29) are all
convex, it can be effectively minimized by several methods. In
particular, MAST applies an ADMM solver to minimize (29)
in order to balance the trade-off between effectiveness and ef-
ficiency in tracking process.

Since MAST is not designed for handling sparse outliers,
Najafi et al. in [75] introduced a robust version of it called OR-
MSTC. In the presence of sparse outliers, they proposed to
regularize the objective function of (27) by adding an ℓ1-norm
regularization term λ∥O∥1 and replacing Yt with Yt −O in the
first term of ℓ(.) in (29). Because the term λ∥O∥1 is convex,
OR-MSTC also adopts the well-known ADMM method in a
similar way to MAST.

In [76], Yang et al. proposed a distributed version of MAST
called InParTen2. Thanks to Apache Spark1, it can handle large-
scale streaming tensors efficiently with a limited memory. How-
ever, the use of InParTen2 is limited for 3-order streaming tensors
only. In [77], Yang et al. introduced another distributed method
called DisMASTD capable of dealing with tensors of higher
order. One of appealing feature of DisMASTD is that it can avoid
repetitive computation and reduce network communication cost.

5 STREAMING TUCKER DECOMPOSITION

We can broadly categorize the streaming Tucker decomposi-
tion algorithms into three main classes: (i) online tensor dic-
tionary learning, (ii) tensor subspace tracking, and (iii) multi-
aspect streaming Tucker decomposition. Specifically, the first
two classes are designed for two specific cases of single-aspect
streaming Tucker decompositions, while the latter class is for
multi-aspect streaming tensors.

5.1 Online Tensor Dictionary Learning

In the class of online tensor dictionary learning methods, we
are particularly interested in a specific case of single-aspect
streaming Tucker decomposition where the underlying tensor
XT ∈ RI1×···×IN−1×T – which represents a set of T data streams
{Yt}Tt=1 of the same size I1 × I2 × · · · × IN−1 – is supposed to
be modelled by

XT =
r
GT ;

{
U(n)

}N−1

n=1
, IT

z
, (30)

where the core GT is of size r1 × · · · × rN−1 × T (i.e., rN = T ),
the tensor factors {U(n)}N−1

n=1 ,U
(n) ∈ RIn×rn are of fixed size,

and the last factor U(N) is an identify matrix. Specifically, the
t-th temporal slice Yt of XT is expressed as

Yt =
r
Gt;

{
U(n)

}N−1

n=1

z
, t = 1, 2, . . . , T, (31)

where Gt ∈ Rr1×r2×···×rN−1 is the t-th slice of the core tensor GT .
The primary objective here is to estimate Gt and incrementally
update {U(n)}N−1

n=1 on the arrival of Yt at each time t. In what
follows, we review two main approaches to handle this problem.

1. Apache Spark: https://spark.apache.org/

a) Incremental Subspace Learning on Tensor Unfolding
Matrices. A natural and very first approach for streaming Tucker
decomposition is to incrementally update the subspaces covering
unfolding matrices of the underlying tensor. The central idea of
this approach stems from the fact that the n-th tensor factor U(n)

t

which is derived from the standard HOSVD is given by

U
(n)
t = EVD

([
X

(n)
t−1,Y

(n)
t

][
X

(n)
t−1,Y

(n)
t

]⊤)
, (32)

where X
(n)
t−1 =

[
Y

(n)
1 , . . . ,Y

(n)
t−1

]
with Y(n)

τ is the mode-n un-
folding matrix of Yτ . Accordingly at time t, we can apply the
following dynamic tensor analysis (DTA) framework introduced
in [78], [79] to estimate Gt and update {U(n)

t }N−1
n=1 :

C
(n)
t ← βC

(n)
t−1 +

(
Y

(n)
t

)⊤
Y

(n)
t , (33a)

U
(n)
t ← eig

(
C

(n)
t , r

)
, (33b)

Gt ←
r
Yt,

{
(U

(n)
t )⊤

}N−1

n=1

z
, (33c)

where 0 < β ≤ 1 is a forgetting factor and eig(C
(n)
t , r) computes

the top r principal eigenvectors of C(n)
t . Since the two steps (33a)

and (33b) are generally expensive, there have been some studies
offering good modifications or fast alternatives for (33).

In [78], [79], Sun et al. proposed a streaming tensor analysis
(STA) algorithm for tracking U

(n)
t with time, instead of taking

the orthonormal step (33b) directly. Particularly on the arrival
of Yt, STA first divides its unfolding matrix Y

(n)
t into column

vectors {y(n)
m,t} and then performs the following steps on each

vector y(n)
m,t: (i) projects it onto the subspace U

(n)
t−1, (ii) evaluates

the corresponding residual error and the energy for each entry
of y(n)

m,t, and (iii) updates the matrix U
(n)
t . Intuitively, the larger

the residual error is, the more U
(n)
t is updated. The computa-

tional complexity of STA is moderate while its effectiveness was
demonstrated with the problem of anomaly detection and multi-
way latent semantic indexing.

In [80], [81], Hu et al. introduced the so-called IRTSA algo-
rithm to track the dominant subspaces {U(n)

t }N−1
n=1 . Specifically,

instead of computing (33a), IRTSA applies a fast incremental
SVD (ISVD) proposed by Ross et al. in [100] on the mode-n
unfolding matrix X

(n)
t =

[
X

(n)
t−1,Y

(n)
t

]
in (32). Thanks to ISVD,

IRTSA shares the same order of computational complexity with
STA while offers a better estimation than STA for the problem
of background modelling and object tracking. Although the
current version of IRTSA is designed for factorizing three-order
streaming tensors, it is not difficult to extend IRTSA for dealing
with higher-order tensors. Besides, a modified version of IRTSA
was introduced by Zang et al. in [82] for the problem of web
service recommendation.

In [83], Kuang et al. also proposed an incremental SVD-based
streaming Tucker decomposition, namely IHOSVD. In particular,
this algorithm performs the following three processes in a serial
manner: (i) applies a recursive SVD method to compute singular
values and singular vectors of unfolding matrices of the new
tensor, (ii) merges the new results with the old estimations
from past observations, and (iii) obtains the core tensor with n-
mode products. Theoretical analyses and experimental results on
transportation applications demonstrate the use of IHOSVD.

In [101], Li et al. modified slightly the recursive update of the
covariance matrix C

(n)
t in (33a) as follows

C
(n)
t = (1− α)C

(n)
t−1 + α

(
Y

(n)
t

)⊤
Y

(n)
t , (34)

with a weight 0 < α ≤ 1 and then introduced a robust incre-
mental algorithm called RTSL which has the potential to model
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TABLE 5

Main Features of the State-of-the-art Streaming Tucker Decomposition Algorithms.

Algorithm Missing Sparse High-order Convergence Computational Complexity Additional Information
Data? Outliers? (N ≥ 4)? Guarantee? (approaches + supports)

STA [78], [79] ✗ ✗ ✓ ✗ O
(
(N − 1)rIN−1

)
- Subspace tracking + deflation

IRTSA [80], [81] ✗ ✗ ✗ ✗ O
(
3rI3

)
(with N = 3) - ISVD-based tracking

ITF [82] ✗ ✗ ✗ ✗ O
(
3rI3

)
(with N = 3) - ISVD-based tracking

IHOSVD [83] ✗ ✗ ✓ ✗ O
(
Nr2IN

)
- Adopts recursive matrix SVD

ALTO [84] ✗ ✗ ✗ ✓
O
(
3(r + k)6I3

)
- Adds noise perturbation

k: no. of randomly selected columns - Uses tensor sequential mapping

LRUT [85] ✗ ✗ ✓ ✗
O
(
N(r + k)2N IN

)
- Adds noise perturbation

k: no. of randomly selected columns - Supports parallel computing

Riemannian-
✓ ✗ ✗ ✗ unavailable - Computes SGD on Riemannian

based Tucker [86] manifold

HO-RLSL [87] ✗ ✓ ✓ ✗ 3I2O
(
I3

)
- For N = 4 only

IHOSVD [88] ✗ ✗ ✓ ✗ O
(
N(I/d)2(N−1)) - Supports distributed computing

d: number of cores - Adopts RoundRobin process +
columnwise Jacobi-rotation

MIHOSVD [89] ✗ ✗ ✓ ✗ O
(
N(I/d)2(N−1)) - Supports distributed computing

d: number of cores - Adopts tree-based integration +
columnwise Jacobi-rotation

SIITA [90] ✓ ✗ ✓ ✗
O
(
K(rN |Ω|+NIMr)

)
- Multi-aspect streaming method

K,M : no. of iterations and columns - Supports side information +
of side information matrices nonnegativity + sparsity

eOTD [91] ✗ ✗ ✓ ✗
O
(
rd2(m−1)I2(N−m)

)
- Multi-aspect streaming method

d: no. of coming temporal slices - Adopts SGD + MGS + block
m: no. of temporal modes tensor matrix multiplications

OTL [92] ✗ ✗ ✓ ✓ O
(
d(N − 1)(Ir2)

N−1) - Promotes sparse coding

d: no. of coming temporal slices - Supports nonnegativity +
orthogonality

Singleshot [93] ✗ ✗ ✓ ✓
O
(
pNrN IN−1 +Nr2N

) - Uses tensor sketching

p: dimensionality of new coming tensor - Supports multiple coming
temporal slices + nonnegativity

TTMTS [94] ✗ ✗ ✓ ✓
O
(
(Nk + d)IN

)
- Uses tensor random projection

d = (s(1− (s/I)N )/(1− s/I) - Supports one/two-pass
k, s: parameters of random projection approximations

SNBTD [95] ✗ ✗ ✓ ✓
O(IN−1(NIr +MR+ 4M2)) - Nonlinear decomposition with

M : no. of pseudo inputsa Fourier features
R: size of the pseudo input - Uses Bayesian inference + ADF

D-L1-Tucker [96] ✗ ✓ ✓ ✗
O
(
K(rIN−1 + I2rN−1)

)
- Applies threshold-based outlier

K: no. of iterations detection + L1-HOOI

BASS-Tucker [97] ✗ ✗ ✓ ✗ O
(
r3(N−1) + (Ir)N−1 +Nr3IN−1

) - Sparse decomposition
- Uses Bayesian inference + ADF

SBDT [71] ✗ ✗ ✓ ✗
O
(
NIr +KIN−1

)
- Uses Bayesian inference + ADF

K: no. of weights in NNs - Incorporates NNs

Zoom-Tucker [98] ✗ ✗ ✓ ✗
O
(
KBNrIN−1 +KN2(rN+1 + r2I)

) - Supports multiple coming

K,B: no. of iterations and blocks temporal slices
- Requires a preprocessing phase

RI/BK-NTD [99] ✗ ✗ ✓ ✗
O
(
KN(Ir)N

)
- Nonnegative decomposition

K: no. of iterations - Uses NNLS + BCD

ATD [64] ✓ ✗ ✓ ✓
O
(
r|Ω|+ r2(IN−2 + |S1|) + r2N |S2|

)
- Uses BCD + Randomized sampling

|S1|, |S2|: size of the sampling sets - Supports parallel computing
− Suppose that I1 = I2 = · · · = IN = I , r1 = r2 = · · · = rN = r, and |Ω| is the number of observed elements.
− Abbreviations: ISVD, (incremental SVD), SGD (stochastic gradient descent), MGS (modified Gram-Schmidt process), BCD (block-coordinate descent),
ADF (assumed-density filtering), NN (neural network), and NNLS (nonnegative constrained least-squares solver).
a Pseudo inputs: a small active pseudo set, which is not necessarily required to be a subset of the real data, is introduced to break the dependencies
between outputs and hence avoid the explicit computation of the full covariance matrix.

background and detect anomalies in applications of computer
vision. Since RTSL still applies directly the DTA framework, its
complexity is relatively high. Thus, it may become inefficient for
handling large-scale and high dimensional streaming data.

Some other algorithms for streaming Tucker decomposition
belonging to this group were presented in [87]–[89], [102], fo-
cusing on specific applications such as dynamic brain analysis,
smart city services, cyber-physical-social networks and systems.

b) Online Multimodal Dictionary Learning. Another good
strategy for the problem of single-aspect tensor tracking is to ap-

ply online multimodal dictionary learning (OMDL) techniques.
As OMDL is a stochastic version of the multimodal dictionary
(multilinear subspace) learning [103], it allows estimating dictio-
naries (i.e., tensor factors) with one-pass processing. In the liter-
ature, there exist some algorithms applying OMDL for tracking
the low multilinear-rank component of streaming tensors with
time, such as OTDL [92], ODL [104], ORLTM [105], OLRTR [106],
D-L1-Tucker [96], and ROLTD [107].

The two former algorithms OTDL and ODL adopt the typical
two-step learning procedure to track the tensor factors over time,
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namely (i) tensor coding or inference of coefficients in the core
tensor and (ii) dictionary update per each tensor mode.

Step 1: Tensor Coding. When Yt is observed, the general
formulation of optimization for this step is given by:

min
G

∥∥∥Yt −
q
G;

{
U

(n)
t−1

}N−1

n=1

y∥∥∥2
F
+ ρGRG(G), (35)

where ρGRG(.) is a regularization term on the core tensor G to
promote sparsity or nonnegativity for instance. Since the first
term of (35) is differentiable while the second term may admit
a proximal operator (e.g., ℓp-norm), OTDL, ODL, and ROLTD
applied proximal methods to minimize it.

Step 2: Dictionary Update. When Gt is estimated, the BCD
framework can be used to update U

(n)
t . Specifically, both algo-

rithms optimize the following minimization:

min
U(n)

t∑
τ=1

βt−τ
∥∥∥Yτ −

q
Gτ ;

{
U

(n)
t−1

}N−1

n=1

y∥∥∥2
F
+ ρURU

(
U(n)

)
, (36)

with a penalty term ρURU(.) on U(n). Interestingly, (36) can
be recast into the standard least-squares cost function which is
very common in adaptive filtering theory. Accordingly, OTDL
introduced an effective recursive least-squares (RLS) solver to
optimize it. Meanwhile, ODL used the stochastic gradient de-
scent method to estimate U

(n)
t with a low cost.

The next two algorithms ORLTM and OLRTR, on the other
hand, estimated the tensor factors without the need of tensor
coding. In particular, the tensor factor U(n) is directly derived
from the following optimization

min
U(n)

t∑
τ=1

βt−τ ℓ
(
Yτ ,U

(n)
)
+ ρURU

(
U(n)

)
, (37)

where the loss function ℓ(.) is defined as

ℓ
(
Yτ ,U

(n)
)
= min

R(n),O(n)

∥∥∥Y(n)
τ −U(n)R(n) −O(n)

∥∥∥2
F

+ λ1

∥∥O(n)
∥∥
1
+ λ2RR(R

(n)). (38)

Here, R(n) and O(n) play the role of the coefficient and the
error, respectively. The main difference between ORLTM and
OLRTR is the type of RR(.) used. Specifically, OLRTR uses the
simple Frobenius norm regularization RR(R

(n)) = ∥R(n)∥2F ,
while ORLTM reinforces R(n) = W(n)Z(n) and then forms
RR(R

(n)) = ∥W(n)∥2F + ∥Z(n)∥2F . Intuitively, the minimization
(37) may be regarded as a robust version of (36) which aims
to deal with sparse corruptions. Also, the minimization (38) is
not difficult to solve since its terms are all convex. Hence, both
OLRTR and ORLTM applied the RLS method to update U

(n)
t

over time.
In [96], Chachlakis et al. proposed a streaming Tucker decom-

position called D-L1-Tucker for dealing with streaming tensors.
D-L1-Tucker shares the same objective function with ORLTM
and OLRTR, but adopts a different approach to handle data
corruptions. Particularly on the arrival of Yt, D-L1-Tucker first
identifies whether Yt is an anomaly or not based on its reliability
which is defined as

rt =
∥∥∥qYt;

{
(U

(n)
t−1)

⊤}N−1

n=1

y∥∥∥2
F

∥∥∥Yt

∥∥∥−2

F
. (39)

If rt ≤ τ where τ ∈ [0, 1] is a predefined threshold, Yt is labelled
as an outlier slice and then it is disregarded. Otherwise, Yt is
considered as reliable and useful for tracking process. In such a
case, D-L1-Tucker appends Yt to the memory set Zt = Zt−1∪Yt

and then applies the batch L1-HOOI algorithm proposed in [108]
for factorizing Zt in order to obtain tensor factors. After that,
Zt is re-updated by removing the oldest measurement for the
next processing. D-L1-Tucker requires a good batch initialization

New Observations

(fixed size)

Fig. 4. Online tensor subspace learning.

and its tracking ability is dependent on the threshold τ and the
memory size M to store Zt.

5.2 Tensor Subspace Tracking
Apart from the model (30), XT ∈ RI1×···×IN−1×T and its t-th
temporal slice Yt with 1 ≤ t ≤ T can be modelled as follows

XT =
q
G;

{
U(n)

}N
n=1

y
, Yt =

q
G;

{
U(n)

}N−1

n=1
,u

(N)
t

y
, (40)

where the core tensor G ∈ Rr1×r2×···×rN and {U(n)}N−1
n=1 with

U(n) ∈ RIn×rn are of fixed size except the last factor U(N) ∈
RT×rN , and u

(N)
t ∈ R1×rN is the t-th row of U(N), see Fig. 4 for

an illustration (when N = 3). At time t, given old estimations
Gt−1 and {U(n)

t−1}
N−1
n=1 , we are interested in tracking Gt, u

(N)
t , and

{U(n)
t }N−1

n=1 which can compactly represent the temporal slice Yt.
We refer this problem to as tensor subspace tracking.2

It is worth mentioning that single-aspect streaming CP meth-
ods also belong to this class as the core tensor G is constrained
to be identity. In the literature, there exist some tensor subspace
tracking methods which have the potential to deal with a general
case of G. Each method adopts a different strategy to factorize
streaming tensors. In what follows, we briefly describe their
main features in chronological order.

a) Augmented Projection. In [85], Baskaran et al. introduced
the so-called LRUT algorithm (which stands for Low-Rank Up-
dates to Tucker decomposition) using a randomized projection
technique for tracking the low multilinear-rank approximation
of streaming tensors over time. When a data stream arrives,
LRUT first projects it onto an extended tensor subspace and then
forms an augmented core tensor. Specifically, LRUT adds a few
more random dimensions to the current tensor subspace defined
by old estimations of the tensor factors. The inclusion of some
random vectors here plays a role of noise perturbation aimed to
prevent the main optimization from getting stuck in local op-
tima. Next, LRUT performs the standard Tucker decomposition
(e.g., batch HOSVD or HOOI) on the resulting augmented core
tensor to update tensor factors. In this way, we can avoid the
computation of SVD on unfolding matrices of the full tensor
which is highly expensive in an online setting. However, its
computational complexity is still relatively high since LRUT
uses several orthogonalization operations on augmented tensor
factors and unfolding matrices of the projected tensor slice.

b) Riemannian Optimization. In [86], Kasai et al. developed
a Riemannian manifold preconditioning approach for tensor
completion. Specifically, its stochastic version can be adapted for

2. This name stems from the following observation: we can recast (40)
into the standard vector-matrix form yt = Dut, where yt = vec(Yt),
ut = (u

(N)
t )⊤ and D is the transpose of the mode-N unfolding matrix ofq

G; {U(n)}N−1
n=1

y
. Intuitively, it may be regarded as the data model which is

very common and widely used in the problem of subspace tracking where we
wish to incrementally update D on the arrival of yt at each time t. Since the
subspace matrix D has a tensor structure, we label this problem as ”tensor
subspace tracking” without hesitation.
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factorizing incomplete streaming tensors in an online fashion.
Since the Tucker format provides an effective representation for
tensors in the manifoldMr =

{
X ∈ RI1×I2×···×IN | rank(X ) :=

r = [r1, r2, . . . , rN ]
}

, Riemannian optimization can offer a good
approach for tensor decomposition and completion [109]. Ac-
cordingly, the authors proposed an efficient Riemannian gradient
based method to estimate the low multilinear-rank component of
tensors. The proposed method consists of a rank-one Riemannian
gradient computation and a retraction step. Specifically, a novel
Riemannian metric on the tangent space ofMr and its quotient
manifold was introduced to enable the Riemannian optimization
framework. Furthermore, a map that combines all retractions on
the individual manifolds of tensor factors was used to transform
the estimations to the tensor manifold.

c) Bayesian Inference. In [97], Fang et al. introduced a
Bayesian streaming Tucker decomposition method called BASS-
Tucker for handling streaming sparse tensors. Similar to
Bayesian methods for streaming CP decomposition, BASS-
Tucker adopts the streaming variational Bayes (SVB) framework
to infer the posterior of parameters of interest (e.g., tensor core,
tensor factors, and nuisance parameters) over time. In addition,
BASS-Tucker also utilizes the same priors for the tensor factors
and noise variance except that of the core tensor. Here, the
following spike-and-slab prior is used to model the core tensor:

p
(
S|ρ0

)
=

r1∏
j1=1

· · ·
rN∏

jN=1

Bern
(
sj1...jN |ρ0

)
, (41)

p(G|S) =
r1∏

j1=1

· · ·
rN∏

jN=1

sj1...jNN
(
gj1...jN |0, σ2

0

)
+ (1− sj1...jN )δ(gj1...jN ) , (42)

where S ∈ Rr1×r2×···×rN is a binary tensor, Bern(.|ρ0) is the
Bernoulli distribution with probability ρ0, and δ(.) is the Delta
function. We refer the readers to subsection 4.3 for details on
prior distributions of {U(n)}N−1

n=1 and other model parameters as
well as how the SVB framework works.

d) Block-Coordinate Descent. There are three online Tucker
algorithms using the BCD framework, including ATD [64], RT-
NTD [99] and BK-NTD [99]. In general, they go through the
following stages when Yt arrives:

Stage 1: Estimate the vector u(N)
t given old estimations Gt−1

and {U(n)
t−1}

N−1
n=1 . Generally, u(N)

t can be derived from

min
u(N)

∥∥∥Yt −
q
Gt−1; {U(n)

t−1}
N−1
n=1 ,u

(N)
y∥∥∥2

F
+ ρuRu(u

(N)). (43)

Stage 2: Estimate the tensor factor U
(n)
t given u

(N)
t , old

estimation of U(n)
t−1 and the remaining factors, 1 ≤ n ≤ N − 1.

The main optimization can be given by

min
U(n)

t∑
τ=1

βt−τ ℓ(Yτ ,U
(n)) + ρURU

(
U(n)

)
, (44)

where ℓ(Yτ ,U
(n)) =

∥∥Y(n)
τ −U(n)W

(n)
τ

∥∥2
F

, Y(n)
τ and W

(n)
τ are

respectively the mode-n unfolding matrices of Yτ and Wτ . Here,
Wτ is defined as Wτ =

q
Gt−1; {U(m)

t−1}
N−1
m=1,m ̸=n,u

(N)
τ

y
.

Stage 3: Estimate the core tensor Gt given Gt−1, u(N)
t , and

{U(n)
t }N−1

n=1 particularly from

min
G

t∑
τ=1

βt−τ
∥∥∥Y(1)

τ −U
(1)
t G(1)Zτ

∥∥∥2
F
+ ρGRG(G), (45)

where Zτ = uτ ⊗
(⊗N

n=2 U
(n)
t

)
.

Here, RU(.), RU(.), and RG(.) are regularization terms on
the coefficient u

(N)
t , the factor U

(n)
t , and the core tensor Gt,

New Observations

(fixed size)

Fig. 5. Multi-aspect streaming Tucker decomposition of a 3rd-order Xt.

respectively. These penalties can be nonnegativity, smoothness,
or sparsity depending on the specific application.

The former ATD algorithm was proposed by Thanh et al.
in [64] which is capable of tracking the low multilinear-rank
approximation of streaming tensors from highly incomplete
observations. In stage 1, ATD particularly recasts (43) into a
standard LS optimization and then applies a randomized LS
technique to minimize it. In stage 2, ATD introduces a recursive
LS solver to optimize (44) in an efficient way. Instead of solving
(45) directly, ATD applies the stochastic gradient descent to
obtain its solution.

The two latter RI-NTD and BK-NTD algorithms were pro-
posed by Zdunek et al. in [99] for factorizing nonnegative tensors
from streaming data. Both algorithms perform nonnegative least-
square (NNLS) solvers to incrementally update the tensor factors
and the core tensor. Particularly, RI-NTD utilizes a recursive
strategy involving the nonnegatively constrained Gauss–Seidel
method while BK-NTD adopts the block Kaczmarz method. Sim-
ilar to ATD, both RI-NTD and BK-NTD estimate the core tensor
using only the new coming data via a stochastic optimization.

5.3 Multi-aspect Streaming Tucker Decomposition

Besides single-aspect streaming Tucker decomposition meth-
ods, few online techniques are capable of tracking multi-aspect
streaming tensors under the Tucker format over time, such as
SITTA in [90] and eOTD in [91].

SIITA in [90] offers an online inductive framework for track-
ing the low-rank tensor approximation of multi-aspect streaming
tensors as well as completing their missing data with side infor-
mation. On the arrival of new data, SIITA particularly minimizes
the following optimization

min
G,{U(n),A(n)}N

n=1

ft
(
Yt, {S(n)

t }Nn=1,G, {U(n)}Nn=1

)
,

with ft
(
Yt, {S(n)}Nn=1,G, {U(n)}Nn=1

)
=∥∥∥PΩt

(
Yt

)
− PΩt

(q
G;

{
S
(n)
t U(n)

}N
n=1

y)∥∥∥2
F

+ ρG
∥∥G∥∥2

F
+

N∑
n=1

ρn
∥∥U(n)

∥∥2
F
, (46)

where {S(n)
t }Nn=1 with St ∈ RMn×In is the set of side information

matrices and ρG, {ρi}Ni=1 are regularization parameters. Here,
SIITA incorporates the side information into the data model by
using {S(n)

t }Nn=1 as multiplicative terms. Accordingly, SIITA can
accelerate the tracking process because the product S

(n)
t U(n)

transforms the dimensionality of variables from In to Mn, and
typically with Mn ≪ In. As every term of (46) are convex, SITTA
adopts the gradient descent to minimize it. Besides, a simple
variant of SIITA namely NN-SITTA was also obtained for non-
negative tensor decomposition. NN-SITTA is specifically derived
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Fig. 6. Single-aspect streaming tensor-train decomposition.

from projecting the estimates of SIITA into their nonnegative
orthant at each time t.

In [91], Xiao et al. proposed the so-called eOTD algorithm
for the multi-aspect tensor tracking problem. Unlike SIITA,
eOTD adopts the divide and conquer paradigm to deal with
multi-aspect streaming tensors. In particular, it divides the
underlying tensor Xt into 2N sub-tensors X (i1,...,iN )

t with
in ∈ {0, 1}, 1 ≤ n ≤ N , and X (0,...,0)

t = Xt−1, see Fig. 5 for
an illustration. These sub-tensors are grouped into N classes
{Dn}Nn=1 based on the sum of sub-indices. For example, for a
third-order tensor, we have D1 =

{
X (1,0,0)

t ,X (0,1,0)
t ,X (0,0,1)

t

}
,

D2 =
{
X (1,1,0)

t ,X (1,0,1)
t ,X (0,1,1)

t

}
, and D3 = {X (1,1,1)

t }. If a
sub-tensor X (i1,...,in,...,iN )

t ∈ Xn, factorizing it will results in
X (i1,...,in,...,iN )

t =
q
Gt, {V(n)

t }Nn=1

y
where V

(n)
t = Û

(n)
t if in = 1

and V
(n)
t = U

(n)
t if in = 0. Here, the matrix Û

(n)
t is constantly

updated as follows

Û(n)
new = αÛ

(n)
old + (1− α)Xt

(i1,...,in,...,iN )
n

(
G

(n)
in

)#
. (47)

The factor U
(n)
t is derived from U

(n)
t = orth

(
[U

(n)
t−1; Û

(n)
new]

)
=(

[Ū
(n)
1 ; Û

(n)
t ]

)
where the modified Gram-Schmidt process was

applied to compute the orth(.) operation. Finally, the tensor core
Gt of fixed size is estimated by

Gt =
q
Gt−1;

{(
Ū

(n)
t

)⊤
U

(n)
t−1

}N
n=1

y

+
∑

(i1,...,iN )̸=(0,...,0)

q
X (i1,...,iN )

t ;
{
Û

(n)
t

}N
n=1

y
. (48)

An appealing feature of eOTD is that throughout the tracking
process, eOTD only uses cheap tensor-matrix multiplications and
pseudo-inverse operations instead of computing the expensive
SVDs on big matrices. This makes eOTD easy for applying to
large-scale applications.

6 OTHER STREAMING TENSOR DECOMPOSITIONS

Apart from the two most popular streaming CP and Tucker
decompositions, some methods are capable of tracking tensors
under other multiway models. This section focuses on tracking
algorithms that exploit TT, BTD, and t-SVD formats to construct
the low-rank tensor approximation in the streaming model.

6.1 Streaming Tensor-Train Decomposition
Despite success in the batch setting, TT decomposition has not
gained in popularity as CP and Tucker for tensor tracking. In the
literature, there exist few tracking algorithms developed for the
problem of single-aspect tensor tracking under the TT format,
see Fig. 6 for an illustration.

In [110]–[112], Thanh et al. proposed three adaptive TT algo-
rithms called TT-FOA, ATT, and ROBOT for factorizing tensors
in an online fashion. Particularly, TT-FOA in [110] is, to the best
of our knowledge, the very first of its kind in the literature.
However, its practical use is limited due to the lack of robustness
to data corruption. To overcome the drawback, ATT in [111] and
ROBOT in [112] were developed to deal with missing data and
sparse outliers, respectively.

All three algorithms share the same optimization framework
where BCD and RLS methods are utilized to minimize the cost
function. In particular, a general formulation of the optimization
problems can be written as

min
{G(n)}N

n=1,O

t∑
τ=1

βt−τ

(∥∥∥Pτ ⊛
(
G(1) ×1

2 · · · ×1
N−1 G(N−1)

×1
N G(N)

τ +Oτ −Yτ

)∥∥∥2
F
+ ρORO

(
Oτ

))
+ ρGRG

({
G(n)

}N−1

n=1

)
, (49)

where β ∈ (0, 1] is a forgetting factor to reduce the impact of
old observations; ρORO(Oτ ) and ρGRG

(
{G(n)}N−1

n=1

)
are two reg-

ularization terms. Specifically, TT-FOA does not impose the two
penalties; ATT adoptsRG

(
{G(n)}N−1

n=1

)
=

∑N−1
n=1

∥∥G(n)−G(n)
t−1

∥∥2
F

to control the smoothness of TT-cores over time; and ROBOT
applies the ℓ1-norm regularizationRO(Oτ ) = ∥Oτ∥1 to promote
the sparsity on Oτ .

Thanks to the BCD framework, (49) can be effectively de-
composed into two main stages: (i) estimate the temporal TT-
core G

(N)
t and outlier Ot, and (ii) update non-temporal TT-cores

{G(n)
t }N−1

n=1 . In stage 1, TT-FOA and ATT apply the regularized
least-squares method to estimate G

(N)
t under the assumption

that Yt is outlier-free. Meanwhile ROBOT adopts an effective
ADMM solver to account for the sparse outlier Ot. In stage 2,
an effective RLS solver was introduced to estimate {G(n)

t }N−1
n=1

when G
(N)
t and Ot (if any) are given in stage 1.

In parallel, Liu et al. in [113] proposed an incremental TT
method called iTTD to factorize tensors having one temporal
mode. Specifically, iTTD considers coming data streams as in-
dividual tensors and then factorizes them into TT-cores. The
results are appended to old estimates derived from past obser-
vations. In [114], Wang et al. also developed an incremental TT
method called AITT to decompose tensors from industrial IoT
data streams. By exploiting a relationship between the directly
reshaped matrix and integration of tensor unfolding matrices,
AITT can estimate effectively the underlying TT-cores. How-
ever, the two frameworks of iTTD and AITT are not really
online streaming learning ones but incremental batch learning.
Therefore, they are not useful for data streams from dynamical
observations in time-varying environments.

6.2 Streaming Block-Term Decomposition

The block-term decomposition (BTD) unifies the two well-known
CP and Tucker decompositions, and thus, the tracking algo-
rithms under the CP and Tucker formats principally belong to
the class of the streaming BTD with one block. When the number
of blocks is greater than 2, there are only two BTD methods able
to deal with streaming tensors, including OnlineBTD [115] and
O-BTD-RLS [116].

The former method was proposed by Gujral et al. in [115] for
tensor tracking under the generalized BTD format of L blocks
and a multilinear rank-(r1, r2, . . . , rN ). On the arrival of the tem-
poral slice Yt, OnlineBTD performs the following minimization:

min
{Gl}L

l=1,{U
(n)}N

n=1

∥∥∥∥Yt −
L∑

l=1

r
Gl;

{
U

(n)
l

}N
n=1

z∥∥∥∥2
F

, (50)

where U(n) =
[
U

(n)
1 ,U

(n)
2 , . . . ,U

(n)
L

]
with U

(n)
l ∈ RIn×rn and

Gl ∈ Rr1×r2×···×rN ∀ l, n. Here, {U(n)}N−1
n=1 are supposed to

remain unchanged with time except the last tensor factor U(N).
Prior information of r and rank-(r1, r2, . . . , rN ) are known in
advance. Old estimates of the core tensors and tensor factors of
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Fig. 7. Tracking the rank-(r, r, 1) BTD of the 3-rd order streaming Xt.

Xt−1 are used as a “warm start” for OnlineBTD at each time
t. To speed up the tracking process, OnlineBTD utilizes (i) an
accelerated matricized tensor times Kronecker product, (ii) the
pseudo-inverse operator using LU decomposition, and (iii) a
dynamic programming strategy introduced by Zhou et al. in [49]
to avoid the re-computation of duplicated Kronecker products.

The second method was introduced by Rontogiannis et al.
in [116]. Specifically, O-BTD-RLS is designed for tracking the
low rank-(r, r, 1) terms of three-order streaming tensors (i.e.,
r1 = r2 = r and r3 = 1), see Fig. 7 for an illustration. In particu-
lar, the tensor factors of the underlying tensor are incrementally
updated by minimizing the following objective function:

min
{U(n)}3

n=1

t∑
τ=1

βt−τ

∥∥∥∥Yτ −U(1)Wτ

[
U(2)

]⊤∥∥∥∥2
F

(51)

+ ρ1

L∑
l=1

r∑
k=1

√∥∥u(1)
l,k

∥∥2
2
+

∥∥u(2)
l,k

∥∥2
2
+ η2 + ρ2

√∥∥Ξul

∥∥2
2
+ η2,

Here, U(n) =
[
U

(n)
1 ,U

(n)
2 , . . . ,U

(n)
L

]
with U

(n)
l ∈ RIn×r is the

n-th tensor factor of interest and u
(n)
l,k is the k-th column of U(n)

l ,
n = 1, 2; uτ and ul are the τ -th row and l-th column of the
temporal factor U(3) ∈ Rt×L, respectively; Wτ = diag(uτ )⊗ Ir
and Ξ = diag(βt−1, . . . , β, 1); ρ1 and ρ2 are two regularization
parameters; and η2 is a small positive number to promote
smoothness at zero. Specifically, the former term of (51) has the
form of weighted least-squares while the two latter terms are
regularizations. Accordingly, an efficient recursive least-squares
solver was introduced to minimize (51) effectively. An appealing
feature of O-BTD-RLS is that it has the abiltity to reveal the
BTD ranks (i.e., r and L) over time by specifying the number
of columns of the tensor factors which are non-negligible in
magnitude at each time t.

6.3 Streaming t-SVD Decomposition
Similar to TT and BTD, streaming t-SVD is still in its early stage.
In the literature, there exists only two works of Zhang et al.
in [117] and Gilman et al. in [118] addressing the problem of
tensor tracking under the t-SVD format.

In [117], Zhang et al. introduced an online tensor PCA for
sequential 2D data based on the t-SVD structure. When Yt

arrives, the proposed algorithm updates:
Step 1: The coefficient matrix Wt and the sparse outlier Ot

from solving the following minimization

min
W,O

1

2

∥∥Yt − Ut−1 ∗W −O
∥∥2
F
+

λ1

2
∥W∥2F + λ2∥O∥1. (52)

Step 2: The low tubal-rank tensor Ut (a.k.a. basis dictionary)
from taking iFFT of the tensor Ût along the third dimension
where Ût is specifically derived from

min
Û

1

2
tr
[
Û⊤(Ât + I3λ1I

)
Û
]
− tr

[
Û⊤B̂t

]
. (53)

Here, Ât = diag(FFT(At)) with At = At−1 +Wt ∗W⊤
t , B̂t =

diag(FFT(Bt)) with Bt = Bt−1 + (Yt − Ot) ∗W⊤
t , and the

solution Û is a matricization of Ût.

As the online tensor PCA above is not designed for handling
missing data, Gilman et al. in [118] proposed another algorithm
called TOUCAN which is capable of tracking tensors from miss-
ing observations. Specifically, the authors proposed to solve the
constrained minimization

min
U,w

t∑
τ=1

∥∥∥FΩτ

(
yτ −Uwτ

)∥∥∥2
2

s.t. U⊤U = IrI3 , (54)

where yτ = unfold(Yτ ) ∈ CI1I3×1, wτ = unfold(Wτ ) ∈ CrI3×1,
FΩτ

= PΩτ

(
F−1

I3
⊗ II1

)
∈ C|Ωτ |×I1I3 is the subsampled inverse

Fourier transform, Fn ∈ Cn×n denotes the Discrete Fourier
Transform matrix, the mixing matrix U ∈ RI1I3×rI3 is defined
as U =

(
FI3 ⊗ II1

)
bcirc(U) F−1

I3
.

Motivated by the so-called GROUSE algorithm for subspace
tracking in [119], TOUCAN applies the incremental gradient
descent on the tensor Grassman manifold to track Ut with time.
It is worth noting that the objective function (54) is very common
in subspace tracking problems. Therefore, we can apply any
subspace tracking algorithms which are capable of dealing with
missing data to minimize (54) effectively.

7 APPLICATIONS
Tensor tracking or dynamic tensor analysis has already been
found several online applications and this section provides some
typical examples in different research fields, from computer
vision and neuroscience to anomaly detection.

7.1 Computer Vision

We begin this section with one of the earliest and most popular
applications of tensor tracking: visual tracking which is an im-
portant task in computer vision [120]. Naturally, video datasets
can be represented as 4-th order streaming tensors of dimen-
sionality, width × height × channel × time. Accordingly, there
are several studies devoted to developing tensor-based visual
trackers for better modeling the appearance of target objects,
such as [80], [121]–[123], to name a few. For example, Hu et al.
in [80] proposed the so-called IRTSA tracker using incremental
tensor subspace learning to capture the appearance of objects.
Zhang et al. in [121] introduced another visual tracker called
DTAMU which stands for dynamic tensor analysis with mean
update. Weiming et al. in [122] developed a semi-supervised
tensor-based visual tracker using graph embedding. Khan et al.
in [123] built an online spatio-temporal tensor learning model for
visual tracking using Bayesian inference. It is worth noting that
most of the existing tensor-based visual trackers correspond to
the streaming Tucker decomposition and its variants.

Another notable application of tensor tracking in computer
vision is video background and foreground separation which
is quite related to visual tracking, but with a different aim of
modeling the scene background and detecting the information
of changes in the scene. Similar to visual tracking, many tensor-
based separators were proposed, such as [65], [105], [112], [124],
[125]. Particularly in [65], Thanh et al. proposed a robust adaptive
CP method called RACP which is capable of modeling video
background and detecting moving objects. Li et al. in [105] in-
troduced an online robust low-rank tensor modeling (ORLTM)
method and found its success in video background subtraction.
Andrews et al. in [124] developed an online stochastic tensor de-
composition for background subtraction in multispectral video
sequences. A robust streaming tensor-train algorithm was devel-
oped in [112] which also has the potential to detect foreground
in video. Salut et al. in [125] proposed an online tensor robust
principal component analysis and validated its effectiveness with
the problem of background and foreground separation.
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In parallel, there are other interesting computer vision appli-
cations of dynamic tensor analysis, such as visual data recov-
ery [56], [126], online video denoising [127], [128], and segmen-
tation/classification [94], [129].

7.2 Neuroscience
The brain can be viewed as a complex system with various
interacting regions that can produce large multivariate data
over time [130]. Many types of brain data can be represented
by tensors, such as electroencephalography (EEG), magnetoen-
cephalography (MEG), functional magnetic resonance imaging
(fMRI), and near-infrared spectroscopy (NIRS) [131]. Apart from
three intrinsic modes (i.e., frequency, channel, and time), brain
data can have higher-order modes, such as, subjects, conditions,
and trials [131]. Together with the fact that brain activities can
change over time, dynamic tensor analysis has become an useful
tool to study the structure and function of brain from such data.

In what follows, we list some appealing brain-computer
interface applications to demonstrate the use of dynamic tensor
analysis in neuroscience. First, for the problem of detecting dy-
namic functional connectivity networks (DFCNs), Ozdemir et al.
in [87] introduced a recursive tensor-based framework capable of
tracking DFCNs over time. The proposed framework was then
applied for studying error-related negativity – a brain potential
response when patients make errors during cognitive tasks [132].
Mahyari et al. in [133] developed a two-step approach using
incremental tensor subspace analysis for detecting DFCNs. Par-
ticularly, they first detect change points at which the functional
connectivity across subjects presents abrupt changes and then
summarize DFCNs between successive change points. Recently,
Acar et al. in [134] proposed to use the Parafac2 model for
tracking the evolution of connectivity networks and compared
its performance with ICA and IVA. For the problem of localizing
dynamic brain sources over time, Ardeshir et al. in [135] utilized
the boundary element method (BEM) [136] and the adaptive
PARAFAC-RLST tracker [46] with two operational windowing
schemes. A variant using augmented complex statistics in [137]
also has the ability to track moving EEG sources with time.
For the problem of online EEG completion, Trung et al. in [138]
proposed an adaptive CP algorithm called NL-PETRELS capable
of tracking and imputing incomplete EEG data. Thanh et al.
in [64], [65] also demonstrated the use of ACP and RACP with
real data by applying them for online EEG completion. Other
neuroscience applications of tensor analysis were reviewed in [9],
[33], [35].

7.3 Anomaly Detection
Anomaly detection, which corresponds to identifying patterns
and data points that do not conform to normal behavior, plays an
essential role in many applications, such as cyber security, statis-
tics, and finance, to name a few [139]. Here, we provide some
notable tensor-based anomaly detectors which are customized to
specific online applications.

Shi et al. in [140] developed the so-called STenSr algorithm
for anomaly detection and pattern discovery in spatio-temporal
tensor streams from sensor networks. STenSr utilizes an incre-
mental HOSVD and a metric based on Euclidean distance to
detect abrupt changes when new data comes. Kasai et al. in
[141] introduced an online time-structured traffic tensor tracking
framework to detect network-level anomalies from link indirect
measurements over time. In particular, it is based on a robust
adaptive CP decomposition that uses RLS for tensor tracking
and ADMM for detecting abnormal flows. Cao et al. in [142]
designed an interactive system called Voila for detecting and

monitoring visual anomalies. Voila is a tensor-based anomaly
detector with an interaction design that can ranks anomalous
patterns based on user input. Lin et al. in [143] proposed a
novel method called TBAD to localize anomalous events. TBAD
employs a spatial-feature-temporal tensor model and analyses
latent patterns through unsupervised learning. Xu et al. in [144]
introduced a tensor-based framework, namely SWTF, capable
of detecting multiple types of anomalies in road networks. We
refer the readers to [34] for a broader interdisciplinary survey of
tensors for anomaly detection.

7.4 Others
Apart from online applications in the domains above, tensor
tracking also found success in some other research fields, namely
wireless communications (e.g., channel tracking [145], DOA
tracking [146], and time delay estimation [147]), network anal-
ysis (e.g., link prediction [12], internet scale monitoring [148],
and bot activities and network intrusions [149]), data analytics
of chemical and biological manufacturing processes and com-
ponents [150], [151], performance monitoring [152], [153], and
transportation [154], [155].

8 RESEARCH CHALLENGES, OPEN PROBLEMS, AND
FUTURE DIRECTIONS

In this section, we first discuss some advantages and disad-
vantages of the state-of-the-art tensor tracking models. Then,
we present several research challenges and open problems that
should be considered for the development of tensor tracking
in the future. They are data imperfection and corruption; rank
revealing and tracking; efficient and scalable tensor tracking;
and other aspects such as theoretical analysis, symbolic data,
and tracking under some less common tensor formats. Possible
solutions for these challenges are also discussed.

8.1 Discussions on State-of-the-art Tensor Tracking Models
As reviewed in previous sections, most of the state-of-the-art
tensor tracking methods were developed for streaming CP and
Tucker decompositions. Indeed, the CP tracking model can be
seen as a special case of streaming Tucker decomposition when
the core tensor is constrained to be an identity tensor. There-
fore, the complexity (w.r.t. computation and memory storage) of
streaming CP decomposition is generally much lower than that
of Tucker. In other words, CP trackers are often faster than Tucker
ones in practice. Another interesting feature of the CP tracking
model over Tucker’s online variants is the uniqueness in which
tensor factors of CP are unique up to a permutation and scale
under certain conditions, similar to batch CP decomposition.
This feature is a useful property in several applications, e.g., for
source separation or to recover exact components and individu-
als hidden in the underlying data. However, CP is not really a
practical model because finding the true CP rank of streaming
tensors is nontrivial even when we have enough resources to
process multiple snapshots at a time. The problem of tensor rank
tracking will be discussed later in subsection 8.3.

Streaming Tucker decomposition is, however, more flexible
than CP. It stems from the fact that we here only need to track the
column spaces of tensor factors over time, instead of a particular
basis. In addition, the Tucker rank determination may be “easier”
than that of CP as we can take advances of rank estimation in
the problem of subspace tracking (e.g., [156], [157]). However,
when we deal with large-scale and high-dimensional streaming
tensors, the size of the core tensor can be large which makes
Tucker trackers less efficient for stream processing. The BTD
tracking model lies between CP and Tucker in the sense that
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the core tensor is block diagonal. Thus, it has the advantages
of both CP and Tucker tracking models. Despite having that,
tracking the underlying BTD approximation of streaming tensors
may be harder than CP and Tucker as it takes several types of
rank into account, i.e., the number of blocks and their size. The
tensor-train tracking model shares the same drawback with BTD
as it must estimate several TT-cores and their rank. An appealing
advantage of streaming TT decomposition is that it can deal
with tensors of a very high order, thanks to its memory-saving
representation which is linear to the order of tensor [5]. The t-
SVD tracking model has its own advantage and disadvantage.
As its algebraic framework is in the Fourier domain, t-SVD
can utilize fast operations (e.g., FFT and its inverse) to speed
up the tracking process. Generalizing the t-SVD to tensors of
order greater than three can be done via recursion [158] or hot-
HOSVD [159] which are quite expensive. It becomes a bottleneck
that can make tracking higher-order streaming tensors under the
t-SVD model inefficient.

8.2 Data Imperfection and Corruption
Dealing with data imperfection and corruption has been a critical
issue in many applications and tracking problems in particular
[160]. We here present two main types of imperfect data that
either remain unsolved or are still challenging for tensor track-
ing: (i) non-Gaussian and colored noises; (ii) outliers and missing
data.

a) Non-Gaussian and Colored Noises. Most of the existing
tensor tracking algorithms were proposed under the additive
white Gaussian noise assumption. This assumption however
does not always hold in practice. For example, impulsive noises
(e.g., burst, alpha-stable, and spherically invariant random vari-
able noise), which are introduced by human activities and natu-
ral sources, are one of the most common non-Gaussian noises
that often appear in tracking applications such as direction
of arrivals [161], OFDM systems [162] and adaptive system
identification [163]. This type of noise can significantly impact
the tracking ability of estimators and it requires specific treat-
ments [164]. In parallel, colored noises that indicate types of
noise that are correlated in space and/or time may reduce the
performance of tracking algorithms [165]. Accordingly, standard
tracking algorithms may be less effective in estimation accuracy
in the presence of these noises. They need to be readapted or
redesigned for more robustness.

To the best of our knowledge, we are not aware of any
tensor tracking algorithm capable of handling such noises in
the literature. Some potential approaches have been success-
fully demonstrated in subspace tracking problems (i.e., tracking
tensors of order 2), see [164] for a brief survey. In particular,
adaptive Kalman filtering and weighted RLS approaches can be
adopted for dealing with impulsive noises. Oblique projection
and instrumental variable-based techniques can handle colored
noises. Therefore, it is desirable to extend these approaches from
subspace tracking to tensor tracking.

b) Outliers and Missing Data. They are now becoming
more and more ubiquitous in modern datasets. Outliers are data
points that appear to be inconsistent with or exhibit abnormal
behaviour different from others. Missing observations are often
encountered during the data acquisition and collection. Both
outliers and missing data can cause several issues (e.g., they
introduce bias in estimation) for knowledge discovery from data
in general and data streams in particular [166]. Accordingly,
dealing with them is an essential task in the analysis of cor-
rupted datasets which has been still a hot topic in data mining
for decades. In general, handling such corruptions involves

removing/ignoring them after detection or replacing them with
alternative values.

There exist few tensor tracking algorithms robust to sparse
outliers in the literature. Under the CP format, SOFIA [61]
applies the robust Holt-Winters forecasting model using a
pre-cleaning mechanism to identify and down-weight outliers.
RACP [65] introduces a ℓ1-norm penalty to promote the sparsity
on outliers and then uses an ADMM solver to estimate them.
Under the Tucker format, ORLTM [105], OLRTR [106], and D-
L1-Tucker [96] are able to deal with sparse outliers. Both ORLTM
and OLRTR propose to regularize the main objective function
with a ℓ1-norm regularization. Meanwhile, D-L1-Tucker adopts
a threshold-based method to detect outliers. Except for RACP,
most of the mentioned algorithms above are not designed for
dealing with missing data. In parallel, most of the existing online
tensor completion and tracking are sensitive to outliers, such as
TeCPSGD [48], OLSTEC [56], and ACP [64]. Accordingly, there
are plenty of opportunities to develop robust tensor tracking
from incomplete observations as it is still in its early stage.

8.3 Rank Revealing and Tracking
Most of the state-of-the-art tensor tracking algorithms suppose
that the tensor rank (e.g., CP, Tucker, BTD, TT, or tubal rank) is
given as prior information. In practice, it is however a difficult
assumption due to the facts that: (i) the tensor rank may change
over time and (ii) a good rank determination at the initialization
stage is not always guaranteed when the number of training
samples is limited and (iii) the exact rank determination may
be intractable (e.g., CP rank is NP-hard [27]). Therefore, it is
essential to develop tracking algorithms that are capable of
revealing the rank over time.

In the literature, there have been many heuristic methods
developed for the problem of tensor rank estimation. Most of
them adopt the Bayesian approach to infer the tensor rank from
data, such as [167]–[169]. Theoretically, Bayesian inference offers
a good recipe for the tensor rank estimation as we can integrate
the low-rank promoting prior as well as the tensor rank into the
learning framework. Another possible approach to determine the
tensor rank is to use neural networks (NNs), such as [170]–[172].
Since the rank can be considered as one type of data feature,
NNs which can extract hidden features within data can be used
to solve the tensor rank determination. Although these methods
often require the tensor data to be fully observed, it is possible to
readapt or modify them such that their variant are able to handle
tensors in an online fashion. For example, we can adopt online
Bayesian inference or online learning algorithms for training
NNs. Finally, robustness against rank overestimation errors is an
issue that, to the best of our knowledge, has not been considered
yet in practice.

8.4 Efficient and Scalable Tensor Tracking
Tabs. 3 and 5 indicate that most of the existing tensor track-
ing algorithms are of high complexity. When we deal with
large-scale and high-multidimensional streams, they may be-
come less efficient. Thus, it is necessary to develop efficient
and scalable tracking techniques of low cost w.r.t. both com-
putational complexity and memory storage. In what follows,
we present three potential approaches which are theoretically
capable of accelerating the tracking process, namely (a) random-
ized sketching, (b) parallel and distributed computing, and (c)
neural networks-based methods.

a) Randomized Sketching. It is very well-known that ran-
domized methods can reduce the computational cost of their
counterparts while still achieving reasonable estimation [173].
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Accordingly, many attempts have been made to take their advan-
tages in computation for tensor decomposition in the literature,
we refer the readers to [23] for a good overview. Among them,
there are a few online algorithms utilizing successfully random-
ized techniques to speed up the tracking process, such as [57],
[63], [64], [174]. Particularly, these algorithms involve solving
several overdetermined least-squares (LS) problems. Thanks to
the CP and Tucker structures, they use random sampling to
build the sampled Khatri-Rao and Kronecker products, and then,
recast the original LS problems into randomized ones. Solving
the new LS problems can save a lot of computational complex-
ity. Other randomized techniques (e.g., random projections and
count sketch) with other tensor formats have not yet been inves-
tigated for tensor tracking and they deserve next investigations
in the future.

b) Parallel and Distributed Computing. The second ap-
proach is to develop parallel and distributed computing frame-
works for streaming tensor decomposition. It stems from the
fact that we can leverage several computational resources to
facilitate the tracking process. Moreover, computing systems in
a parallel and distributed environment can offer more reliability
than their counterparts in a central one as they can avoid the
single point of failure which is a fundamental mistake from flaws
in the implementation or design of a system. Besides, another
appealing advantage of this computing is the scaling up-and-
out process in which we can add and/or replace computational
resources to the system. We refer the readers to [175] for a good
reference.

In the tensor literature, there are several parallel and dis-
tributed systems for processing large-scale tensors. We can list
here some efficient tools for: (a) distributed CP decomposition
(e.g., DFacTo [176], SPLATT [177]), (b) distributed Tucker de-
composition (e.g., DHOSVD [88], SGD-Tucker [178]), and (c)
distributed TT decomposition (e.g., ADTT [114], ATTAC [179]),
etc. These tools mainly distribute the unfolding matrices or
sub-tensors among several clusters and integrate their low-rank
tensor approximations to find the overall low-rank approxima-
tion of the underlying tensor. However, most of the existing
distributed tensor decompositions are not suitable for handling
streaming data. Therefore, it is of great interest to develop prac-
tical distributed systems for tracking tensors from data streams.

c) Neural Networks-based Methods. Another potential ap-
proach is to incorporate neural networks (NNs) into tensor fac-
torization to benefit from their significant advances in computa-
tional power. On the one hand, the connection between TDs and
NNs has been established in some studies, such as [180], [181].
For example, Cohen et al. in [180] showed that the convolutional
NNs with ReLU activation and max/average pooling can be
represented by tensor decomposition models. Wang et al. in
[181] introduced two NN models for finding the low-tubal-rank
approximation of three-order tensors. Accordingly, NN tools can
be used to model and learn high-order interactions for tensors,
and hence, for tensor factorization and tracking. On the other
hand, NNs can directly map data streams (temporal slices) as
input to the approximation result as output by applying some
online learning techniques. In the literature of machine learning,
there exist several kinds of learning capable of dealing with
data streams, such as incremental learning, lifelong learning, and
online continual learning, to name a few. They can be specifically
adapted for tensor tracking.

8.5 Others
Next, we present some other issues and problems which also
deserve future investigations.

a) Provable Tensor Tracking. Although the existing tensor
tracking methods can provide competitive performance w.r.t.
estimation accuracy and/or convergence rate in practice, most
of them lack performance guarantees. The gap between practical
uses/implementations and theoretical results in tensor tracking
may be caused by the fact that most tensor problems are NP-
hard [27], e.g., the best rank-1 tensor approximation is NP-
hard even when all observations (temporal slices) are fully
observed. Despite several difficulties, there are still attempts
to bridge the gap in the literature. Under certain conditions
(e.g., the underlying low-rank model remains unchanged over
time), some studies established successfully theoretical results
to analyse the convergence behavior of their methods, such as
[56], [58], [64], [65], [93]. These initial results encourage us to
investigate deeper theoretical aspects in tensor tracking, such
as time variation, asymptotic convergence, and non-asymptotic
convergence in low-sample-size settings.

b) Symbolic Tensor Tracking. In some applications, data may
no longer be represented by single (certain) values, but need to
be formatted or grouped within sets, intervals, histograms, etc.
It leads to the so-called symbolic data analysis (SDA) paradigm
in data mining and statistics to deal with such data [182]. In
SDA, several new variables types and processing tools have
been introduced to represent and analyse symbolic data, such as
interval-valued, histogram-valued, and categorical modal vari-
ables, to name a few. The readers are referred to [182] for a
good survey on SDA. In the tensor literature, Mauro et al. in
[183] proposed for the first time a symbolic tensor decomposition
for factorizing interval-valued tensors under the tensor-train
format. Specifically, the authors extended a set of tools aiming
to handle interval-valued matrices for high-order tensors and
introduced efficient decomposition and reconstruction strategies.
As the symbolic tensor decomposition is in its very early stage
of development in both batch and online settings, there are a lot
of aspects that need to be investigated in the future.

c) Tensor tracking under BTD, t-SVD, tensor network
formats, and other variants. Despite great success in the batch
setting, BTD, t-SVD, and tensor networks (e.g., tensor-train,
tensor chain, and tensor ring) have not attracted much attention
in real-time stream processing until recently. Thus, developing
online methods for tracking tensors under these tensor formats
and their variants is essential to take advantage from their
advantage in representing large-scale tensors as well as fulfil the
gap between the two most common formats and others.

9 CONCLUSIONS
Tensor tracking has recently gained increasing attention as a
powerful tool for multidimensional data stream analysis. In this
survey, we have provided a technical overview of online tech-
niques for tracking streaming tensors over time. We highlighted
the two most popular streaming CP and Tucker decomposi-
tions. Specifically, four main groups of streaming CP decompo-
sition algorithms were emphasized, which are subspace-based,
block-coordinate descent, Bayesian inference, and multi-aspect
streaming decompositions. We categorized the current streaming
Tucker decomposition methods into three major classes based
on their model architecture. They are online tensor dictionary
learning, tensor subspace tracking, and multi-aspect streaming
decompositions. Recent years have also witnessed significant
advances in other types of tensor decomposition such as tensor-
train, BTD, and t-SVD. A brief survey on the existing methods
which are capable of tracking tensors under these formats was
presented. Finally, we discussed several research challenges,
open problems, and future directions for tensor tracking.
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gineering Degree from École Polytechnique, France,
in 1990, the Engineering Degree from École Nationale
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