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Abstract—Canonical Polyadic (CP) decomposition is a powerful
multilinear algebra tool for analyzing multiway (a.k.a. tensor)
data and has been used for various signal processing and machine
learning applications. When the underlying tensor is derived from
data streams, adaptive CP decomposition is required. In this
paper, we propose a novel method called robust adaptive CP
decomposition (RACP) for dealing with high-order incomplete
streaming tensors that are corrupted by outliers. At each time
instant, RACP first performs online outlier rejection to accurately
detect and remove sparse outliers, and then performs tensor
factor tracking to efficiently update the tensor basis. A unified
convergence analysis of RACP is also established in that the
sequence of generated solutions converges asymptotically to a
stationary point of the objective function. Extensive experiments
were conducted on both synthetic and real data to demonstrate
the effectiveness of RACP in comparison with state-of-the-art
adaptive CP algorithms.

Index Terms—CANDECOMP/PARAFAC (CP) decomposition,
adaptive algorithm, streaming tensor, missing data, outlier.

I. INTRODUCTION

Nowadays, many modern datasets can be represented by mul-
tiway arrays which are referred to as tensors, e.g., a color
video surveillance sequence can be represented as a 4th-order
tensor of dimensionality, width × height × channel × time.
Accordingly, tensor decomposition, which factorizes a tensor
into a sequence of basic components, has become a popular
analysis tool for processing high-dimensional and multivariate
data [1]–[4].
CANDECOMP/PARAFAC (CP) decomposition and Tucker
decomposition are well-known and widely-used types of tensor
decomposition [1], [5] . Under CP decomposition, a tensor can
be expressed as a linear combination of rank-1 tensors, which
are formed by an outer product of vectors. As a result, this
decomposition offers several nice properties [1], [4]. Among
them are the following: (i) CP only requires a linear space
complexity w.r.t. the tensor order; (ii) hence, it can avoid the
“curse of dimensionality”, a phenomenon whereby the memory
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storage grows drastically when the dimension increases; (iii)
under certain conditions, its expression is essentially unique up
to a permutation and scale. The merits of CP decomposition
have already been demonstrated in various applications, such
as wireless communications [6]–[8], neuroscience [9]–[11],
and remote sensing [12]–[14].
In recent years, the demand for adaptive (i.e., online) process-
ing has been increasing due to the fact that many applications
generate a huge number of data streams over time [15]–
[17]. Such data streams are often with high veracity and high
velocity. Veracity requires robust algorithms so as to deal with
uncertain, noisy and imperfect data, while velocity requires
online real-time processing [15]. These characteristics lead to
several critical computational issues: (i) increase in size of
the data streams over time, (ii) time-dependent and varying
models, and (iii) uncertainty and incompleteness. A robust
variant of tensor decomposition for tensors derived from such
data streams, namely robust tensor tracking (RTT), has been
emerging as a good approach. The main goal of this paper is
to propose a scalable and effective method for RTT under the
CP model.

A. Related Work

Many methods for CP decomposition have been proposed,
and standard algorithms and their applications have been
nicely surveyed in [1], [2], [5], [18]. However, most CP
algorithms are either sensitive to data imperfection or designed
only for batch processing. Online or adaptive algorithms are
needed when tensors are derived from data streams. The very
first adaptive CP algorithms were developed by Nion and
Sidiroppoulos in [19] more than a decade ago. Specifically, the
authors proposed to track the low-dimensional subspace of the
underlying streaming tensor and then reconstruct the loading
factors by exploiting its Khatri-Rao structure. Since then, many
adaptive CP algorithms have been proposed for factorizing
tensors derived from data streams, such as [20]–[23], to name
a few. Vandecappelle et al. in [20] developed a nonlinear least-
squares (NLS)-based adaptive CP algorithm for factorizing
streaming tensors of order 3. In [21], Zhou et al. introduced
the so-called OLCP algorithm which is capable of tracking
higher-order streaming tensors. Smith et al. in [22] proposed
an adaptive algorithm specifically for streaming sparse ten-
sors, namely CP-stream. In [23], Rambhatla et al. introduced
another adaptive CP algorithm called TensorNOODL using
online dictionary learning. Nevertheless, none of them are
designed for dealing with missing data and outliers.
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In the context of missing data, there exist some online CP algo-
rithms that are able to deal with incomplete streaming tensors.
Morteza et al. developed an online stochastic CP algorithm for
RTT of third-order tensors, called TeCPSGD [24]. Thanks to
the stochastic gradient descent method, the algorithm can effi-
ciently update the loading factors. Kasai proposed an effective
recursive estimator, OLSTEC, to learn low-rank components of
the underlying data streams [25]. It yields a better estimation
accuracy than TeCPSGD, but its complexity is much higher.
Both TeCPSGD and OLSTEC are, however, not capable of
tracking higher-order streaming tensors. To overcome this
drawback, we recently proposed a new adaptive algorithm that
is able to handle higher-order incomplete streaming tensors,
called ACP [26], [27]. In spite of their computational merits,
the above algorithms are sensitive to outliers.
To deal with outliers, Zhang et al. introduced an online
Bayesian-based CP algorithm, namely BRST [28]. To capture
sparse components or outliers affecting the tensor, BRST
uses a Bayesian statistical model. However, BRST has high
computational complexity and hence proves to be ineffi-
cient when dealing with fast-arriving and big data streams.
Najafi et al. proposed another robust estimator for adaptive
CP decomposition, called OR-MSTC [29]. Leveraging the
alternating direction method of multipliers (ADMM), OR-
MSTC is capable of handling gross corruptions in multi-
aspect streaming tensor data. Lee et al. developed the so-called
SOFIA method which is specifically designed for dealing
with seasonal tensor streams with missing values and sparse
corruptions [30]. SOFIA employs the Holt-Winters procedure,
a well-known forecasting model for time series capable of
dealing with trend and seasonality [31]. Convergence analysis
of OR-MSTC and SOFIA is, however, not available.
Some other studies attempted to extend online robust PCA
and subspace learning for high-order tensor data. Hu et al.
proposed an incremental tensor subspace learning algorithm,
called IRTSA, and applied it to robust visual tracking in video
streams [32]. Li et al. presented a robust algorithm that can
update the tensor dictionary and detect anomalies in an online
manner, namely RTSL [33]. Sobral et al. introduced an online
stochastic tensor algorithm for learning low-rank structure and
sparse components in the tensor data [34]. Another incremental
tensor decomposition was designed for video background
and foreground separation in [35]. Li et al. developed an
adaptive algorithm for robust low-rank tensor learning, called
ORLTM [36]. Very recently, Dimitris et al. proposed the
first robust online Tucker decomposition that can deal with
streaming tensors in the presence of outliers [37]. However,
none of the above algorithms are designed for handling missing
data. The problem of robust tensor tracking for high-order
incomplete streaming tensors remains largely unexplored.

B. Main Contributions

Since there exist several robustification methods for batch
tensor decompositions with performance guarantees (see, for
examples, [38]–[41]), we designed our algorithm in such a way
that it casts such robustness guarantees on RTT. Our method
involves the two well-known optimization frameworks: block-
coordinate descent (BCD) [42] and majorization-minimization

(MM) [43], [44]. To adapt to online learning, the iteration
step of MM coincides with the arrival of a new tensor slice
over time. Specifically, at each time instant, we decompose
RACP into two stages: (i) online outlier rejection and (ii)
tensor factor tracking. In the first stage, sparse outliers living
in the underlying data streams are first detected by optimizing
an `1-norm regularized loss function. Since the proposed
loss function not only promotes sparsity but also remains
convex, its convergence is guaranteed. Next, based on the
past estimates, the second stage enables us to update the
tensor basis by minimizing a majorizing surrogate of the
main objective function. Accordingly, an efficient recursive
estimator is developed to update the loading factors as well
as to track their variation over time.
Our main contributions are summarized as follows. First,
we propose a scalable and effective online CP algorithm
with ability to (i) estimate low-rank components of streaming
tensors derived from imperfect and noisy data streams due
to missing observations and outlier corruptions, (ii) adapt
the changes of the underlying data streams in dynamic and
nonstationary environments, (iii) separate and reject sparse
outliers in an online fashion with high accuracy, (iv) be
capable of tracking tensor components derived from large data
streams, and (v) easily incorporate prior information to deal
with specific constraints on the tensor model, e.g., smoothness
and nonnegativity.
Secondly, we show that RACP is a provable adaptive CP al-
gorithm with a convergence guarantee. Under mild conditions,
we prove that the sequence of solutions generated by RACP
converges asymptotically to a stationary point of the empirical
loss function. Moreover, the asymptotic variation of the solu-
tions and the almost-sure convergence of the objective function
values are also analyzed. To the best of our knowledge, this
is a pioneer convergence analysis for RTT algorithms in the
presence of missing data and outliers.
Finally, we provide several experiments on both synthetic and
real data to illustrate the effectiveness of RACP and its variant
in comparison with state-of-the-art algorithms.
Compared to our companion work on tensor tracking in [27],
there are several differences between ACP and RACP. First,
ACP is not designed for handling sparse corruptions, thus its
tracking ability diminishes considerably when observations are
corrupted by outliers. By contrast, RACP which is a robust
version of ACP is capable of tracking the underlying tensor
model as well as detecting sparse corruptions successfully
over time.
Technically, the data model and the objective function consid-
ered in Section II are different from that in [27] due to the
presence of sparse outliers. A `1-norm regularization term and
a truncated sliding window are particularly introduced in this
work, which leads to several different technical specifications
in optimization methodology and convergence analysis. More
concretely, we here derive an ADMM solver to estimate the
tensor dictionary coefficients and sparse outliers while ACP
adopts a randomized least-squares method for this task.
Next, we propose to use a truncated window of a flexible
size Lt varying from 1 to t, instead of using an exponential
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one as in [27]. In the adaptive signal processing literature,
it is well known that the exponential window is only useful
for stationary and slowly time-varying environments where
the underlying low-rank model is either static or changes
slowly with time [45]. To enhance the tracking ability of
RACP in more complicated scenarios (e.g., fast time-varying
or abrupt changes at some points), the use of a truncated
window is preferable. Accordingly, a more elaborate recursive
rule for updating each tensor factor is designed up to row-
wise level which can further support parallel and distributed
processing and implementations. It also helps accelerate the
tracking process, e.g., we can ignore or skip the update of some
factor rows without affecting the others if the corresponding
observations are seriously disrupted by strong corruptions.

C. Paper Organization & Notations

The rest of this paper is organized as follows. Section II
formulates the RTT problem of interest. Section III presents
the proposed RACP algorithm and its convergence analysis is
established in Section IV. Section V provides experiments to
evaluate the performance of RACP. Section VI concludes the
paper. For clarity, the frequently used notations are summa-
rized in Table I.

TABLE I: Notational conventions.

x,x,X,X scalar, vector, matrix, and tensor
xi1...iN or [X ]i1...iN (i1, . . . , iN )-th entry of X
x = vec(X) vectorization of X
X = diag(x) diagonal matrix X with x on the main diagonal
X(i, ∶),X(∶, j) i-th row and j-th column of X
X⊺, X−1 X# transpose, inverse, and pseudo-inverse of X
X(n) mode-n unfolding of X
U(n) n-th loading factor/matrix
○, ⊙, ⊛ outer, Khatri-Rao, and Hadamard product
X ⊞n Y concatenation of X with Y along the dimension n
X ×nU n-mode product of X with U,
X ∏Nn=1 ×nU(n) X ×1 U(1) ×2 ⋅ ⋅ ⋅ ×N U(N)

⊙Nn=1 U
(n) U(N) ⊙U(N−1) ⊙ ⋅ ⋅ ⋅ ⊙U(1)

∥.∥ Euclidean norm

II. PROBLEM STATEMENT

In this study, we consider an incomplete streaming tensor
X [t] ∈ RI1×I2×⋅⋅⋅×IN×t whose slices are serially observed
with time. At each time t, X [t] is particularly obtained by
concatenating a new incoming “slice” Xt ∈ RI1×I2×⋅⋅⋅×IN×1

into the previous X [t − 1] along the time dimension, i.e.,
X [t] = X [t−1]⊞N+1 Xt. In particular, we assume to observe
the tensor slice Xt satisfying the following model:

Pt ⊛Xt = Pt ⊛ (Yt +Ot +Nt), (1)

where Pt is a binary mask tensor, Yt is a low-rank tensor, Ot

is a sparse tensor containing outliers, Nt is a Gaussian noise
tensor, and all these tensors are of the same size with Xt.
Specifically, the observation mask Pt indicates whether the
(i1, i2, . . . , iN)-th entry of Xt is observed or missing, i.e.,

pi1i2...iN =

⎧⎪⎪
⎨
⎪⎪⎩

0, if xi1i2...iN is missing,
1, otherwise.

The low-rank tensor Yt is generated according to the follow-
ing model1:

Yt = (I
N

∏
n=1

×nU(n)) ×N+1 u⊺t , (2)

where I ∈ Rr×r×⋅⋅⋅×r is an identity tensor, ut ∈ Rr×1 is a weight
vector2 and {U(n)}Nn=1, with U(n) ∈ Un ⊆ RIn×r, are loading
factors. For short, we write D ∶= U1 ×U2 × ⋅ ⋅ ⋅ ×UN and denote
D = [(U(1))⊺, (U(2))⊺, . . . , (U(N))⊺]⊺ the tensor dictionary
containing all loading factors.
Next, we define a loss function `(⋅) that not only promotes
sparsity but also preserves convexity. For a fixed D and a
tensor slice X under a binary observation mask P , the loss
function w.r.t. D and {P ,X} is defined as

`(D,P ,X ) = min
u,O

˜̀(D,P ,X ,O,u), with (3)

˜̀(D,P ,X ,O,u) = ∥O∥
1
+
ρ

2
∥P ⊛ (X −O −H ×N+1 u⊺)∥

2

F
,

where H = I∏Nn=1 ×nU(n). The `1-norm is to promote the
sparsity on O and ρ > 0 is a regularized parameter.
Now, given a streaming set of incomplete tensor slices {Pk ⊛

Xk}
t
k=1, robust tensor tracking (RTT) can be stated as the

following optimization problem:

Dt = argmin
D

[ft(D) =
1

Lt

t

∑
k=t−Lt+1

λt−k`(D,Pk,Xk)], (4)

where Lt is the length of a sliding window and λ is a forgetting
factor. When Lt = t, λ = 1, the minimization of (4) boils
down to its counterpart in batch setting. When 0 < Lt < t
or λ < 1, it reduces the impact of past observations, and
hence facilitates the tracking ability of RTT estimators in time-
varying conditions.
We make some assumptions to support the proposed algo-
rithm in Section III. First, entries of tensor slices {Xt}t≥1

are Frobenius-norm bounded, i.e., ∥Xt∥F ≤ Mx < ∞ ∀t.
This prevents arbitrarily large values in observations and
ill-conditioned computation. Next, the tensor rank r is as-
sumed to remain unchanged over time. In addition, tensor
factors {U

(n)
t }Nn=1 are bounded and full column rank, i.e.,

rank(Ū
(n)
t ) = r < In and ∥Ū

(n)
t ∥F ≤ κU < ∞ ∀n. Besides,

the variation between two consecutive time instants is small,
i.e., 0 ≤ sin θ(U

(n)
t ,U

(n)
t−1) ≪ 1 ∀n, t, where θ(U(n)t ,U

(n)
t−1)

denotes the canonical angle (the largest principal angle) be-
tween two subspaces spanning U

(n)
t and U

(n)
t−1, respectively.

This assumption permits the estimation of the outliers and the
coefficient vector from the previous estimation with reasonable
accuracy. Under these assumptions, our optimization algorithm
is capable of accurately estimating tensor factors, but also
successfully tracking their variation over time.

1Since the CP format can be viewed as a special case of the Tucker format,
we have the following equivalence:

I
N

∏
n=1

×nU(n) ≡
r

∑
i=1

U(1)(∶, i) ○U(2)(∶, i) ○ ⋅ ⋅ ⋅ ○U(N)(∶, i),

where U(n)(∶, i) is the i-th column of U(n) ∈ RIn×r .
2In batch setting, the weight vector ut in (2) is seen as the t-th row of the

last loading factor U(N+1) ∈ RIN+1[t]×r of the underlying tensor X [t].
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III. PROPOSED METHODS

In this section, we first propose the robust adaptive CP (RACP)
algorithm for the RTT problem in the presence of missing
data and outliers. Then, we introduce two simple extensions
of RACP in order to deal with the smoothness condition and
nonnegative constraints.

A. Proposed RACP Algorithm

Finding the global optimal solution of (4) is difficult since
ft(⋅) is nonconvex. We here adapt it using the majorization-
minimization (MM) framework [43], which has been suc-
cessfully applied to several signal processing problems in
general [44] and online learning problems in particular [46]–
[49]. In essence, we decompose it into two main stages: (i)
online outlier rejection and (ii) tensor factor tracking.
On the arrival of Xt at each time t, we first estimate the
outlier tensor Ot and the coefficient vector ut based on
the old estimation Dt−1. Specifically, we solve the following
optimization:

{Ot,ut} = argmin
O,u

˜̀(Dt−1,Pt,Xt,O,u). (5)

From the past statistics {Dk,Pk,Xk,Ok,uk}k≥1, the set of
loading factors Dt = {U

(n)
t }Nn=1 can be updated by minimizing

the following majorizing surrogate f̃t(⋅):

f̃t(D) =
1

Lt

t

∑
k=t−Lt+1

λt−k ˜̀(D,Pk,Xk,Ok,uk), (6)

that locally approximates ft(⋅). Note that f̃t(D) is not only
first-order surrogate, but also a majorant function of ft(D),
that is, for all t and D, we always have ft(D) ≤ f̃t(D) and the
error function et(D) = f̃t(D)−ft(D) is Lipschitz continuous.
In fact, f̃t(D) and ft(D) converge almost-surely to the same
limit, and the solution Dt, which minimizes f̃t(D), is exactly
that of ft(D) when t → ∞. The results will be later proven
in our convergence analysis.
In what follows, we propose two solvers for minimizing (5)
and (6) efficiently.
Stage 1: Online Outlier Rejection
To estimate Ot and ut, we recast (5) into the following
standard matrix-vector form:

{ot,ut} = argmin
o,u

∥o∥1 +
ρ

2
∥Pt(xt − o −Ht−1u)∥

2

2
, (7)

where ot = vec(Ot), xt = vec(Xt), the observation mask
matrix Pt = diag(vec(Pt)), and Ht−1 is of a Khatri-Rao
structure, i.e., Ht−1 =⊙

N
n=1 U

(n)
t−1.

Since both terms of (7) are convex, it can be efficiently solved
by several methods with convergence guarantees. Here, we
use an ADMM solver to minimize (7) due to its simple
interpretation and moderate convergence rate [50]. At the i-
th iteration, we particularly read

ui = (H⊺
t−1PtHt−1)

#
H⊺
t−1Pt(xt − oi−1

− zi−1
/ρ), (8)

ri = αPt(xt −Ht−1u
i) + (1 − α)oi−1 (9)

oi = S1/ρ(r
i
− zi−1

/ρ), (10)

zi = zi−1
+ ρ(oi − ri), (11)

where S(⋅) is the soft-thresholding operator of the `1-norm
defined as Sε(x) = max(0, x − ε) − max(0,−x − ε) and α ∈

[1.5,1.8] is a relaxation parameter. The procedure is stopped
when residuals are small, i.e., ∥Pt(xt −Ht−1u

i −oi)∥2 ≤ ε
res

and ∥oi − ri∥2 ≤ ε
out where εres, εout > 0 are predefined accu-

racy parameters or when the procedure reaches the maximum
number of iterations.
After the sparse outlier Ot is detected, we reduce the effect of
Ot on the tracking process by the following outlier removal

Pt ⊛ X̂t = Pt ⊛ (Xt −Ot). (12)

In some cases, we can skip the corrupted entries in Xt by
re-updating the observation mask Pt as

pi1i2...iN =

⎧⎪⎪
⎨
⎪⎪⎩

0, if xi1...iN is missing or outlier,
1, otherwise.

(13)

Here, the removal step (12) still holds under the new binary
mask Pt. This approach stems from the following obser-
vations. In the context of subspace tracking (ST), rejecting
outliers can facilitate the tracking ability of ST estimators
since only “clean” measurements involve the process [49].
Our next stage for estimating the tensor basis can indeed
boil down to the ST problem with missing data, so the
outlier rejection mechanism of (13) can improve performance.
Please see Fig. 7 for an illustration that the outlier rejection
mechanism can help improve the convergence rate of RACP
when the fraction of corrupted entries is not too large. We
refer to the mechanism (13) as a heuristic modification of the
standard outlier removal (12) in RACP.
Stage 2: Estimation of factors {U

(n)
t }

N

n=1

The optimization (6) can be effectively solved by using the
block-coordinate descent (BCD) technique. The main idea is
to minimize alternately the surrogate f̃t(⋅) w.r.t. each factor
U
(n)
t while fixing the remaining factors (hereafter denoted as

f̃t(U
(n)
t , .) for short), that is,

U
(n)
t = argmin

U(n)
f̃t(U

(n), .). (15)

Minimization (15) is equivalent to

argmin
U(n)

t

∑
k=t−Lt+1

λt−k ∥P
(n)
k ⊛ (X̂

(n)

k −U(n)(W
(n)
k )

⊺
)∥

2

F
,

(16)

where X̂
(n)

k and P
(n)
k are the mode-n unfoldings of X̂k and

Pk respectively, and W
(n)
k is given by3

W
(n)
k = (

n−1

⊙
i=1

U
(i)
t )⊙ (

N

⊙
i=n+1

U
(i)
t−1)⊙ u⊺k. (17)

The minimization of (16) can be decomposed into sub-
problems for each row u

(n)
m of U(n), m = 1,2, . . . , In, as

argmin
u
(n)
m

t

∑
k=t−Lt+1

λt−k ∥P
(n)
k,m((x̂

(n)
k,m)

⊺
−W

(n)
k (u(n)m )

⊺
)∥

2

F
,

(18)

3In practice, we can use the non-linear Jacobi iteration scheme to up-
date (17) as W

(n)
k

= (⊙Ni=1,i≠nU
(i)
t−1) ⊙ u⊺

k
. This scheme can be useful

for parallel and/or distributed processing.
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Algorithm 1: Robust Adaptive CP Decomposition (RACP)
Input:

- Tensor slices {Pt ⊛Xt}
∞

t=1
, Xt ∈ RI1×I2×⋅⋅⋅×IN ,

- CP rank r, forgetting factor λ ∈ (0,1],
- Predefined parameters: penalty ρ > 0, precision εres, εout > 0,

maximum iteration K, relaxation α ∈ [1.5,1.8], and δ > 0.

Output: Loading factors {U(n)
t }N

n=1
.

Initialization:

- {U(n)
0 }N

n=1
is initialized randomly,

- {S(n)
0 }N

n=1
= δIrCP .

for t = 1,2, . . . do

Stage 1: Online Outlier Rejection
Ht−1 =⊙Nn=1 U

(n)
t−1

o0,z0,u0 ← 0

for i = 1,2, . . . ,K do

ui = (H⊺

t−1PtHt−1)
#
H⊺

t−1Pt(xt − oi−1 − zi−1/ρ)
ri = αPt(xt −Ht−1u

i) + (1 − α)oi−1

oi = S1/ρ(ri − zi−1/ρ)

zi = zi−1 + ρ(oi − ri)
if stopping criteria are met break

end
Outlier Removal (Re-update of Pt in (13) is optional)

Pt ⊛ X̂t = Pt ⊛ (Xt −Ot)

Stage 2: Estimation of {U(n)
t }N

n=1

for n = 1,2, . . . ,N do

W
(n)
t = (

n−1

⊙
i=1

U
(i)
t )⊙ (

N

⊙
i=n+1

U
(i)
t−1)⊙ u⊺k

W̃
(n)
t = [(W(n)

t )⊺ (W(n)
t−Lt

)⊺]
⊺

for m = 1,2 . . . , In do

P̃
(n)

t,m =
⎡⎢⎢⎢⎢⎣

P
(n)
t,m 0

0 −λLtP
(n)
t−Lt,m

⎤⎥⎥⎥⎥⎦
x̃
(n)
t,m = [x̂(n)

t,m x̂
(n)
t−Lt,m

]

S
(n)
t,m = λS(n)

t−1,m + (W̃(n)
t )⊺P̃(n)

t,mW̃
(n)
t

V
(n)
t,m = (S(n)

t,m)−1(W̃(n)
t )⊺

δx̃
(n)
t,m = P̃

(n)

t,m((x̃(n)
t,m)⊺ − W̃

(n)
t (u(n)

t−1,m)⊺)

u
(n)
t,m = u

(n)
t−1,m + (δx̃(n)

t,m)⊺(V(n)
t,m)⊺

end
end

Stage 3: (Optional) Normalization and Re-estimation of ut

Column-wise Normalization:

[U(n)
t ]

∶,r
=

[U(n)
t ]

∶,r

∥[U(n)
t ]

∶,r
∥2
2

.

Re-estimation of ut:

ut = (H⊺

tPtHt)
#
H⊺

tPt(xt − ot)

where Ht =⊙Nn=1 U
(n)
t

end

where x̂
(n)
k,m is the m-th row of X̂

(n)

k , and the row-mask
matrix is given by P

(n)
k,m = diag (P

(n)
k (m, ∶)). Here, we

introduce an efficient recursive least-squares (RLS) solver to
minimize (18) effectively (see Algorithm 1 and the Appendix
for its derivation).

Stage 3 (Optional): Normalization and re-estimation of ut
In order to avoid numerical problems, we can perform the
column-wise normalization on the updated factors {U

(n)
t }Nn=1.

In addition, given the already estimated factors, the weight
vector ut in Step 1 can be re-updated to achieve a better
estimation as follows

ut = (H⊺
tPtHt)

#
H⊺
tPtx̂t, (19)

where Ht =⊙
N
n=1 U

(n)
t . This step is useful for the early stage

of tracking and fast time-varying environments [19], [20].

B. Extensions of the RACP algorithm

In the following, we present two simple modifications of
RACP when smoothness and nonnegativity are imposed on
the loading factors.
1) Smoothness Condition: In many applications, it is a com-
mon assumption that the underlying data or model are smooth
[51]. Here, we incorporate a smoothing regularization matrix
on the loading factors to control the smoothness of the solution
as well as to avoid biases and singular/ill-posed computation.
This regularization adds a small bias against large terms to the
updating rules.
On the arrival of Xt, the outliers Ot and the coefficient vector
ut are derived from the following minimization:

{Ot,ut} = argmin
O,u

∥O∥
1
+
γ

2
∥Bu∥

2

2

s.t. ∥Pt ⊛ (Xt −O −Ht−1 ×N+1 u)∥
2

F
= 0,

(20)

where Ht−1 = I∏Nn=1 ×nU
(n)
t−1 and γ > 0 is a small penalty

parameter and B a chosen banded matrix. More concretely, the
vector ut is obtained by minimizing the following problem:

ut = argmin
u

γ

2
∥Bu∥

2

2
+
ρ

2
∥Pt(xt − o −Ht−1u)∥

2

2
. (21)

Accordingly, we replace the update rule for u in (8) with

ui = (H⊺
t−1PtHt−1 +

γ

ρ
B⊺B)

#

H⊺
t−1Pt(xt − oi), (22)

Instead of (18), the m-th row u
(n)
t,m of U

(n)
t is derived from

argmin
u
(n)
m

t

∑
k=t−Lt+1

λt−k ∥P
(n)
k,m((x̂

(n)
k,m)

⊺
−W

(n)
k (u(n)m )

⊺
)∥

2

2

+
γ

2
∥B(u(n)m )

⊺
∥

2

2
, (23)

In particular, u
(n)
t,m is the solution of the following equation:

t

∑
k=t−Lt+1

λt−k(W
(n)
k )

⊺
P
(n)
k,m(x̂

(n)
k,m)

⊺
(24)

= (
t

∑
k=t−Lt+1

λt−k(W
(n)
k )

⊺
P
(n)
k,mW

(n)
k +

γ

2
B⊺B)(u(n)m )

⊺
.

Therefore, the recursive rule for updating u
(n)
t,m becomes

u
(n)
t,m = u

(n)
t−1,m + (δx̃

(n)
t,m)

⊺
(V̄
(n)
t,m)

⊺
, (25)

where
V̄
(n)
t,m = (S

(n)
t,m +

γ

2
B⊺B)

−1
(W̃

(n)
t )

⊺
.
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2) Nonnegative Constraint: It is known that nonnegative ten-
sor factorization (NTF) offers interesting properties, e.g., the
resulting expression appears to be purely additive and the
loading factors are “sparse” in general [52].
One of the simplest ways is to project the estimates (i.e., ut
and {U

(n)
t }Nn=1) on their nonnegative orthant at the end of

each step of RACP, as introduced by Nguyen et al. in [53].
This approach offers a low complexity and yields a reasonable
performance in some cases. However, it may not be optimal
nor guarantee convergence in general. In this task, we aim to
customize the updates of ut and {U

(n)
t }Nn=1 in order to deal

with nonnegativity at each time t.
In step 1, we replace the exact LS solution (8) with the
minimizer of the following nonnegative least-squares (NNLS)
problem:

ui = argmin
u

∥Pt(xt − oi −Ht−1u)∥
2

2
s.t. [u]j ≥ 0 ∀j. (26)

Here, we can apply any provable NNLS algorithm to solve
(26). The reader is referred to [54], [55] for good surveys
on numerical methods for NNLS. In this work, we adopt the
widely-used algorithm of Lawson and Hanson [55] which is
implemented as the function lsqnonneg in MATLAB.
In step 2, the m-th row of U

(n)
t can be derived by minimizing

the following constrained version of (18):

u
(n)
t,m = argmin

u
(n)
m

t

∑
k=t−Lt+1

λt−k ∥P
(n)
k,m((x̂

(n)
k,m)

⊺
−W

(n)
k (u(n)m )

⊺
)∥

2

2
,

s.t. [u(n)m ]
j
≥ 0 ∀j. (27)

In order to solve (27), we apply the projected gradient method
(i.e. proximal gradient on indicator function [56]). More con-
cretely, the iterative procedure for updating u

(n)
t,m is given by4

ul =

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
Ir −

S
(n)
t,m

∥S
(n)
t,m∥

2

⎞

⎠
ul−1 −

d
(n)
t,m

∥S
(n)
t,m∥

2

⎤
⎥
⎥
⎥
⎥
⎦+

, (28)

where l denotes the iteration index. We refer to this modifica-
tion of RACP as NRACP.

IV. PERFORMANCE ANALYSIS

In this section, we present a theoretical convergence analysis
for the proposed RACP method in Algorithm 1 while assuming
that the underlying tensor dictionary D does not change over
time. Inspired by the recent results of our companion studies
on robust subspace tracking [49] and tensor tracking [27],
we establish a unified theoretical approach to analyse the
convergence of the objective values {ft(Dt)}

∞
t=1 as well as

the solutions {Dt}
∞
t=1 generated by RACP.

4Projected gradient descent has a form of uj = [uj−1 − ηj∇f̃t(uj−1)]
+

,

where ∇f̃t(u(n)
m ) = S

(n)
t,mu

(n)
m − d

(n)
t,m. In practice, we can set the value of

the step-size ηj to 1/L where L is the Lipschitz constant of ∇f̃t(u(n)
m ). In

this work, it is easy to show that L = ∥S(n)
t,m∥

2
.

A. Assumptions

In order to facilitate the convergence analysis, we make the
following assumptions5:
(A1): Low-rank components {Yt}t≥1 of the observed tensor
slices {Xt}t≥1 are assumed to be deterministic and bounded.
Entries of noise tensors {Nt}t≥1 are zero-mean, independently
and identically distributed (i.i.d.) with a small finite covariance,
and bounded. Entries of Xt are Frobenius-norm bounded, i.e.,
∥Xt∥F ≤Mx <∞, for all t.
(A2): The tensor factors {U(n)}Nn=1 remain unchanged over
time, i.e., the tensor dictionary D is fixed. The loading factors
are Frobenius-norm bounded and the tensor rank r is fixed.
(A3): Observation masks {Pt}t≥1 are independent of {Xt}t≥1,
and their entries follow a uniform distribution. The number
of observed entries of Xt should be larger than the lower
bound O(rL log(L)), where L = I1I2 . . . IN . Every row of
the mode-n unfolding X

(n)
t of Xt is observed in at least r

entries, for n = 1,2, . . . ,N . In addition, each observed entry
of Xt is corrupted by outliers independently of others, i.e., the
index of outliers is also uniformly random.
(A4): The surrogate function f̃t(⋅) is m-strongly multi-block
convex, i.e., its second-order derivative w.r.t. each factor is
positive-definite, ∇2

nf̃t(U
(n), .) ⪰mI ≻ 0 with m > 0.

Among these assumptions, (A1) and (A2) are common for
analysing the convergence of online learning algorithms, such
as [24], [46], [49]. Indeed, (A1) holds in many situations,
e.g., real data, such as audio, image and video data, are often
bounded. (A2) is a strong assumption as it requires the tensor
dictionary to be constant with time. Also, the bound in (A2)
prevents arbitrarily large values in U(n) and ill-conditioned
computation. Along with (A1), it is interpreted as the simplest
possible data model in (robust) tensor tracking where tensor
slices are assumed to be generated from a stationary process.
Theoretically, stationary processes are often “easier” to model
and analyse than nonstationary ones as their statistical prop-
erties remain constant over time. Accordingly, stationarity has
become a common assumption underlying many statistical pro-
cedures in general and tracking tools in particular to study their
convergence and asymptotic behavior. In this work, a novel
theoretical approach is established to analyse the convergence
behavior of RACP in stationary environments. We leave the
convergence analysis of RACP under a nonstationary model
where the tensor dictionary is time-varying to a future work.
Assumption (A3) is also common, under which the index of
missing entries is uniformly random. Moreover, with respect
to the imputation of missing values and recovery of low-
rank components, the uniform randomness allows the sequence
of binary masks {Pt}t≥1 to admit stable recovery [57]. The
next two constraints of (A3) are fundamental conditions to
prevent the underdetermined imputation problem [58]–[60].
The last constraint of (A3) plays a similar role as the first one
but accounting for sparse outliers. Assumption (A4) allows
us to derive several nice results in the convergence analysis.
In fact, as the Hessian matrix of f̃t(⋅) w.r.t. each factor is

5The four assumptions (A1)-(A4) are used for the purpose of convergence
analysis only. The proposed RACP algorithm can work well in many other
scenarios (see Section V for an illustration).
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already positive semidefinite, (A4) can be achieved with a good
initialization D0 or by simply adding a convex regularization
term to ˜̀(⋅) or f̃t(⋅).

B. Main Results

Given the assumptions of (A1)-(A4), our main theoretical
result can be stated in the following theorem:

Theorem 1. Given (A1)-(A4), Lt = t and let Dt be the solution
generated by Algorithm 1 at each time t. When t→∞,

● ft(Dt) − f̃t(Dt)
a.s.
→ 0;

● ∇ft(Dt)
a.s.
→ 0.

Accordingly, Dt is almost surely a stationary point of ft(.)
when t tends to infinity.
The proof of this theorem follows intermediately Proposition 1
and Lemmas 1 and 2, to be stated shortly. We detail their proofs
in our Supplementary Material attached to this manuscript.

Proposition 1 (Key Properties). Given (A1)-(A4), Lt = t, and
denote the error function et ∶= f̃t − ft. If {Dt,Ot,ut}

∞
t=1 is a

sequence of variables generated by Algorithm 1, then
(a) Boundedness: {Dt,Ot,ut}

∞
t=1 are uniformly bounded;

(b) Forward Monotonicity: f̃t(Dt−1) ≥ f̃t(Dt);
(c) Backward Monotonicity: f̃t(Dt) ≤ f̃t(Dt+1);
(d) Stability of estimates: ∥Dt −Dt−1∥F = O(1/t);
(e) Stability of errors: ∣et(Dt) − et−1(Dt−1)∣ = O(1/t).

Proof Sketch. Part (a) can be derived from applying the same
arguments of Proposition 1 in our companion work on tensor
tracking [27]. Part (b) and (c) are trivial due to the proposed
iteration scheme. Part (d) can be obtained by exploiting the
Lipschitz continuity and multi-block convexity of the surrogate
function f̃t(.). We indicate Part (e) by using Part (d) and the
Lipschitz continuity of ft(.) and f̃t(.).

Lemma 1 (Almost sure convergence). The sequence of
{f̃t(Dt)}

∞
t=1 converges almost surely as t→∞. The sequence

of objective values {ft(Dt)}
∞
t=1 converges to the same limit

of its surrogate {f̃t(Dt)}
∞
t=1, i.e.,

ft(Dt)→ f̃t(Dt) a.s. (29)

Proof Sketch. We first prove that
∞

∑
t=1

E[δtE[f̃t+1(Dt+1) − f̃t(Dt)∣Ft]] <∞, (30)

where Ft = {Dτ ,Oτ ,uτ}0<τ≤t records all past estimates of
RACP at time t and the indicator function δt is defined as

δt
∆
=

⎧⎪⎪
⎨
⎪⎪⎩

1 if E[f̃t+1(Dt+1) − f̃t(Dt)∣Ft] > 0,

0 otherwise.
(31)

Thanks to the quasi-martingale convergence theorem [61, page
51], (30) implies that {f̃t(Dt)}

∞
t=1 converges almost surely as

t→∞.
We next prove {ft(Dt)}

∞
t=1 and {f̃t(Dt)}

∞
t=1 converge to the

same limit by showing
∞

∑
t=1

f̃t(Dt) − ft(Dt)

t + 1
<∞. (32)

Since ∑∞t=1
1
t+1

=∞ and ∣et(Dt) − et−1(Dt−1)∣ = O(1/t), we
obtain ∑∞t=1 f̃t(Dt) − ft(Dt) <∞, or

f̃t(Dt)→ ft(Dt) a.s., (33)

thanks to [46, Lemma 3].

Lemma 2 (Local convergence). When t → ∞, Dt converges
almost surely to a stationary point of f̃∞(.) = limt→∞ f̃t(.):

∇f̃∞(Dt)→ ∇f∞(Dt)→ 0 a.s. (34)

Proof Sketch. We first indicate that

lim
t→∞

tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)] = 0, (35)

by showing ∑∞t=1 ∣ tr [(Dt −Dt+1)
⊺∇f̃t+1(Dt+1)]∣ <∞.

Next, we prove that the following inequality

tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)] ≤ c1∥Dt+1 −Dt∥

2

F

+ c2 tr [(D −Dt)
⊺
∇f̃t+1(Dt)], (36)

holds for all D ∈ D where c1 and c2 are positive constants.
Then, we use proof by contradiction to indicate that

(∇f̃∞(D∞))
⊺
(D −D∞) ≥ 0, ∀D ∈ D. (37)

Accordingly, D∞ is a stationary point of f̃∞(.).

In order to prove ∇f̃t(Dt)
a.s.
→ ∇ft(Dt) as t → ∞, we first

exploit that ft(D + atV) ≤ f̃t(D + atV) ∀D,V ∈ D and at,
and then take its Taylor expansion at t→∞ to yield

f∞(D∞) + tr [atV
⊺
∇f∞(D∞)] + o(atV)

≤ f̃∞(D∞) + tr [atV
⊺
∇f̃∞(D∞)] + o(atV). (38)

As indicated in Lemma 1, f̃∞(D∞) = f∞(D∞) and thus
tr [atV

⊺∇f∞(D∞)] ≤ tr [atV
⊺∇f̃∞(D∞)]. Since the above

inequality must hold for all V ∈ D and at, we obtain

∇f̃∞(D∞) = ∇f∞(D∞). (39)

Together with (37), we can conclude that D∞ is a stationary
point of the objective function ft(.) as t→∞.

C. Discussion

Our analysis follows the same framework to derive the con-
vergence of adaptive/incremental algorithms for online ma-
trix/tensor factorization problems as in [24], [25], [27], [46],
[48], [49]. Therefore, our main theoretical result is somewhat
similar to their results. However, there are several points that
make our convergence analysis different from theirs.
First, [46] is devoted to the problem of online dictionary learn-
ing and sparse coding. The authors dealt with a LASSO-like
cost function and required a preliminary uniqueness condition
on the sparse coding. The condition is important to ensure that
the solution generated in the sparse coding stage is unique,
and to derive the Lipschitz property of the cost function.
Particularly, they suggested an elastic-net regularized term for
enforcing the condition. Since the problem formulation of
RTT is different, our convergence analysis does not involve
such issues. Moreover, the missing data distinguish our work
from theirs.
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The studies in [48] and [49] consider the problem of robust
online PCA/subspace tracking which can handle data corrup-
tions (i.e., outliers and/or missing entries). These studies are
designed for tracking the time-variant subspace – an object
different from ours – which leads to some differences from our
analysis. In particular, their main goal is to develop provable
algorithms for minimizing the expected cost function in an on-
line manner, and then indicate that their algorithm converges to
a stationary point or global optimum under certain conditions.
Our optimization, however, minimizes an exponential weighted
cost function constructed on the latest data streams (i.e., tensor
slices). Moreover, [48] does not require the solution derived
from the subspace update stage to be necessarily optimal, but
full column rank only at each time t (see [48, Theorem 1]).
However, it is a sufficient condition that is highly leveraged in
our analysis. In addition, our object is a set of multiple loading
factors, instead of a single subspace matrix as in [48], [49].
The studies most related to ours are those in [24], [25], [27],
which also investigate the tensor tracking problem. However,
they consider only outlier-free streaming tensors. By contrast,
we here provide a more unified convergence analysis that is
able to deal with both missing data and outliers. Also, our
results are stronger than those of [24], [25], which are limited
to the case of third-order streaming tensors with λ = 1.

V. EXPERIMENTS

In this section, we provide several experiments on both syn-
thetic and real data to demonstrate the effectiveness of RACP
and its variant. In particular, the performance of our method
is evaluated in comparison with the-state-of-the-art algorithms
with respect to the following aspects: (i) impact of outliers,
(ii) impact of missing data, and (iii) tracking ability in noisy
and time-varying environments.

A. Experiment Setup

At t = 0, we randomly initialize U
(n)
0 ∈ RIn×r whose entries

are i.i.d. from a normal distribution N (0,1), n = 1,2, . . . ,N .
When t ≥ 1, U

(n)
t is varied according to the following model:

U
(n)
t = U

(n)
t−1 + εN

(n)
t , (40)

where N
(n)
t is a Gaussian noise matrix (with zero-mean and

unit-variance), and ε is a positive time-varying factor used to
control the variation of U(n) between t and t − 1.
The t-th slice Xt is then generated under the data model

Xt = Pt ⊛ (I
N

∏
n=1

×nU
(n)
t ×N+1 u⊺t +Ot +Nt), (41)

where Pt is a binary observation mask according to a Bernoulli
distribution with probability of observing data 1 − ωmiss, Nt

is a Gaussian noise tensor with i.i.d. entries N (0, σ2
n), Ot

is a sparse outlier tensor whose entries are drawn uniformly
from the range [0,Aoutlier] and the indices of outliers also
follow a Bernoulli distribution with probability ωoutlier, and
ut ∈ Rr×1 is a standard normal random vector.
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(a) r = 2
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(b) r = 5

Fig. 1: Effect of data corruptions (outliers and missing values)
on performance of RACP. White color denotes perfect estima-
tion (i.e., RE(D̂,D) ≤ 0.01), black color denotes failure (i.e.,
RE(D̂,D) ≥ 0.5), and gray color is in between.

To evaluate the estimation accuracy, we use the metric

e(Zestimate,Ztrue) =
∥Zestimate −Ztrue∥F

∥Ztrue∥F
, (42)

where Zestimate (resp. Ztrue) refers to the estimation (resp.
ground truth). Due to the permutation and scaling indetermi-
nacy of CP decomposition, the estimation Û

(n)
t of U

(n)
t at

each time t will be permuted and scaled such that it matches
U
(n)
t before measuring the error metric (42). In particular, we

derive the ordered and scaled version Û
(n)
re−t of Û

(n)
t from

Û
(n)
re−t = Û

(n)
t (P(n))

⊺
(Q(n))

−1
, n = 1,2, . . . ,N, (43)

where the permutation matrix P(n) ∈ Rr×r and the diagonal
matrix Q(n) ∈ Rr×r are obtained by

{P(n),Q(n)} = argmin
P,Q

∥Û
(n)
t −U

(n)
t PQ∥

2

F
. (44)

The relative errors are then computed as

RE (D̂t,Dt) =
1

N

N

∑
n=1

e(Û
(n)
re−t,U

(n)
t ), (45)

RE (X̂t,Xt) = e(X̂t,Xt), (46)

where X̂t is a reconstructed version of the true slice Xt derived
from the recent updated loading factors.

B. Robustness of RACP

We first investigated the robustness of RACP against gross data
corruptions. Specifically, we changed the density of outliers
and missing data, and then measured the relative error between
the ground truth and RACP’s estimation.
In this task, we used a synthetic 4th-order streaming tensor of
size 20 × 20 × 20 × 1000 and the CP rank was set at r = 2
and r = 5. The noise level σn and the time-varying factor ε
were fixed at 10−3 and 10−2, respectively. We consider the case
where the underlying data were corrupted by strong outliers
with Aoutlier = 10. The fraction of outliers (ωoutlier) and
missing data (ωmiss) were varied in the range [5%,95%].
Throughout our experiments, the forgetting factor λ was fixed
at 0.5 while the window length was Lt = t.
Phase transitions w.r.t. the pair of {ωoutlier, ωmiss} are shown
in Fig. 1. The results indicate that there is a large region
in which our estimation was successful. Particularly, RACP
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(a) 4th-order: 20 × 20 × 20 × 1000
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Fig. 2: Performance of RACP in time-varying environments.
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(a) Aoutlier = 1 (small)
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(b) Aoutlier = 10 (strong)

Fig. 3: Impact of outlier intensity (Aoutlier) on performance
of adaptive CP algorithms; ωmiss = 10%, ωoutlier = 20%,
σ = 10−2, ε = 10−2.

worked well when the number of “clean” data is large enough.
In the presence of huge data corruptions (e.g., ωoutlier ≥ 70%
and/or ωmiss ≥ 70%), the proposed algorithm failed to track
the underlying tensor model.
Next, we evaluated the tracking ability of RACP in time-
varying environments. The two synthetic rank-5 tensors of size
20×20×20×1000 and 20×20×20×20×1000 were used in this
task. The fraction of missing entries and sparse outliers were
both set to 5%. The outlier intensity Aoutlier and the noise
factor σn were fixed at 10 and 10−4, respectively. The value
of the time-varying factor ε was varied from [10−4,10−1].
An abrupt change was created at t = 600 to assess how
fast RACP converges. We can see from Fig. 2 that RACP’s
convergence rate is not much affected by the value of ε but
that its estimation accuracy is.
To demonstrate the effectiveness of the proposed algorithm,
we compared the performance of RACP with the state-of-
the-art adaptive CP decompositions, namely TeCPSGD [24],
OLSTEC [25], and ACP [27]. To have a fair comparison, the
algorithm parameters were set by default as suggested by their
authors. These algorithms are dependent on a forgetting factor;
we set its value at 0.7, 0.001, and 0.5 for OLSTEC, TeCPSGD,
and ACP, respectively. The penalty parameter was set at 10−3

and 10−1 for OLSTEC and TeCPSGD, respectively.
Since OLSTEC and TeCPSGD are only capable of tracking
third-order streaming tensors, we here used a synthetic stream-
ing tensor of size 20 × 20 × 1000 and its rank was fixed at 5.
The noise level and time-varying factor were both kept at 10−2.
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(a) ωoutlier = 10%
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(b) ωoutlier = 50%

Fig. 4: Impact of outlier density (ωoutlier) on performance
of adaptive CP algorithms: ωmiss = 10%, σ = 10−2, ε = 10−2,
Aoutlier = 10.

Performance comparison results are shown in Figs. 3 and 4.
Fig. 3 illustrates the impact of the outlier intensity on the per-
formance of the four adaptive CP algorithms in the presence of
10% missing data and 20% outliers. When the outlier intensity
is small, all algorithms were able to track the underlying tensor
model over time, as shown in Fig. 3(a). TeCPSGD yielded a
worse estimation than the other three adaptive CP algorithms.
In the presence of strong outliers, the state-of-the-art adaptive
CP algorithms failed to update the tensor basis and recover
the corrupted tensor slice. By contrast, our RACP algorithm
still worked well, as shown in Fig. 3(b). Fig. 4 illustrates the
impact of the outlier density on the performance of RACP
against the three adaptive CP algorithms when the missing
density ωmiss = 10% and outlier intensity Aoutlier = 10. We
can see that RACP outperformed OLSTEC, TeCPSGD, and
ACP in all testing cases. Similar to the case study of strong
outliers, the state-of-the-art adaptive algorithms were unable to
track the streaming tensors when the number of outliers was
large.
We next investigated the performance of RACP when loading
factors are not normal in comparison with other adaptive CP
algorithms. In particular, the initial factors {U

(n)
0 }Nn=1 were

sampled from a uniform distribution on the (0,1) interval
instead of a Gaussian one. The time-varying model (40) was
replaced with U

(n)
t = U

(n)
t−1 + εN

(n)
t where N

(n)
t was also

an i.i.d. uniform random matrix from 0 to 1. The parameter
specifications were kept as in the previous experiment. Results
are illustrated in Fig. 5. We can see that the proposed RACP
algorithm still tracks the loading factors successfully over time
while the state-of-the-art CP algorithms failed.
The experimental results in Figs. 3, 4, and 5 suggest that
the outlier rejection step (e.g. Step 1 in RACP) using the
ADMM solver plays an important role in the tracking process
when observations are corrupted by sparse outliers. Therefore,
we next evaluated the effectiveness of the proposed outlier
rejection by applying the ADMM solver to other trackers:
TeCPSGD and OLSTEC. We here reused the experiment setup
above and created an abrupt change at t = 600. We can see
from Fig. 6 that the combination of the ADMM solver and
OLSTEC resulted in the best convergence rate and estimation
accuracy. This is probably due to the effectiveness of the
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Fig. 5: Non-Gaussian loading factors.
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Fig. 6: Outlier rejection with different trackers.
second-order estimator in slowly time-varying environments.
Our RACP provided a reasonable performance compared to
that of OLSTEC, while the TeCPSGD tracker did not work
well. It should be noted that OLSTEC is designed for only 3rd-
order streaming tensors and that its computational complexity
is very high. Our tracker is much faster and capable of
dealing with higher-order streaming tensors. We refer readers
to our companion work in [27] for further comparisons of ACP
against TeSGD and OLSTEC.
Lastly, we conducted a performance comparison between the
original RACP and its variant in which the step of re-updating
Pt defined as in (13) was used. We reused the two rank-5
tensors of size 20×20×20×1000 and 20×20×20×20×1000.
The fraction of missing entries was fixed at 10%. We set the
outlier density and intensity to 10% and 10, respectively. The
noise and time-varying factors were kept at 10−2 and an abrupt
change at t = 600 was also created as in previous experiments.
The results are illustrated in Fig. 7. It can be seen that the
outlier rejection mechanism can help improve the convergence
rate of RACP.

C. Nonnegative RACP

We reused the experiment setup in Section V-A, but the time
variation of U(n) ⪰ 0 was modified as

U
(n)
t = abs (U

(n)
t−1 + εN

(n)
t ), (47)

where abs(⋅) denotes the absolute value, N
(n)
t is a Gaussian

noise matrix with i.i.d. entries, and ε is to control the variation.
We first investigated the performance of NRACP against time-
varying environments. A synthetic rank-5 nonnegative tensor
of size 50× 50× 50× 1000 was used in this task. We consider
the case where 10% of the measurements are corrupted by
outliers with Aoutlier = 10 and the noise level is σn = 10−3.
An abrupt change at t = 600 was created to evaluate how fast
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Fig. 7: Convergence rate of RACP and its modification with the
re-update of Pt as defined in (13): ωmiss = 10%, ωoutlier =
10%, Aoutlier = 10, σ = 10−2, and ε = 10−2.
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Fig. 8: Incomplete observations & time-varying scenarios:
Performance of NRACP on a synthetic rank-5 tensor of size
50×50×50×500; σn = 10−3, Aoutlier = 10, ωoutlier = 10%.

NRACP converges. The results are shown in Fig. 8. We can
see that the relative error between the estimation and ground
truth converged to an error floor. Furthermore, the missing
density ωmiss impacted only the convergence rate of NRACP.
Specifically, the lower the missing density ωmiss was, the faster
NRACP converged.
Next, we studied the robustness of NRACP against the noise
variance in comparison with NSOAP [53] and NsTEF [62].
Since both algorithms are only feasible for third-order tensors
without corruptions (outliers and missing values), we used a
synthetic outlier-free tensor of size 50 × 50 × 1000 and rank 5
for this task. The time-varying factor ε was set at 10−3. Both
NRACP and NsTEF used random initialization while the first
50 temporal slices were used to construct a good initializa-
tion tensor for NSOAP. Performance comparison results are
illustrated in Fig. 9. At a low SNR, NSOAP provided a better
estimation accuracy than NRACP and NsTEF. However, the
proposed NRACP outperformed NSOAP and NsTEF at the
high SNR, see Fig. 9(b). In the presence of abrupt changes,
the convergence rate of NRACP was fast while NSOAP and
NsTEF failed to track the change.

D. Real Datasets

To demonstrate the use of RACP with real-world datasets, we
consider the following tasks: (i) tracking the online low-rank
approximation of real-world data streams, (ii) multichannel
EEG analysis, and (iii) video background modeling and fore-
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Fig. 9: Nonnegative adaptive CP decompositions: Outlier-free,
full observations and an abrupt change at t = 600.

Dataset Data size Tasks

Intel Berkeley Lab 54 × 4 × 1152 Tracking the online
low-rank approximation

& online data completion
Internet Traffic 12 × 12 × 48384

Taxi Trip Record 265 × 265 × 3672

Video

Hall 176 × 144 × 3584
Background modeling

& foreground detection
Lobby 128 × 160 × 1546

Highway 240 × 320 × 1700

EEG
ERPWAVELAB 28 × 64 × 4392 Multichannel EEG analysis

& anomaly EEG detectionEpileptic data 19 × 500 × 6929

TABLE II: Real datasets under the study.
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(b) Performance of adaptive CP algorithms with tensor rank r = 6

Fig. 10: Experimental results on the Intel Berkeley Lab data.

ground detection. See Tab. II for a summary of the real datasets
used in this paper.
Task 1: Tracking the online low-rank approximation and
online data completion
Datasets: In this task, we used three real datasets: Intel Berke-
ley Lab6, Internet Traffic7, and Taxi Trip Record8. The first
dataset is a collection of timestamped topology information
gathered from 54 positions (sensors) in the Intel Berkeley Re-

6Intel Berkeley Lab: http://db.csail.mit.edu/labdata/labdata.html
7Internet Traffic: https://roughan.info/project/traffic matrix/
8Taxi Record: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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(c) Taxi Trip Record: Estimated rank r = 8

Fig. 11: Completion accuracy of adaptive CP algorithms on
real-world data streams.

search Lab. Specifically, these sensors collected: temperature
(in degree Celsius), humidity (ranging from 0% to 100%),
light (in Lux), and voltage (in volt, ranging from 2 to 3).
Accordingly, we represent the sensor data by a three-order
tensor of size 54×4×1152 (i.e., sensor×measurement× time).
The second dataset is the link traffic data which was collected
from the Internet2 backbone network Abilene. The Abilene
backbone is relatively small with 12 routers, 15 links, and
144 flow entries in each traffic matrix of size 12 × 12. We
concatenated all these traffic matrices into a tensor of size
12 × 12 × 48384. The third dataset describes yellow taxi trip
records in the pairs of 265 pick-up and drop-off sites in
New York. Each trip record contains several attributes, such
as pick-up/drop-off times and locations, elapsed trip distance,
rate type, and payment method. In this work, we specifically
constructed a third-order tensor of size 265× 265× 3672 (i.e.,
origin × destination × time).
Experiments & Results: Following the same experiment setup
as in subsection V-A, data corruptions were generated as
follows. The locations of missing entries and sparse outliers
are randomly generated with probabilities ωmiss and ωoutlier,
respectively. Outlier values are drawn uniformly from the
range [0,max(X )] where max(X ) is the largest absolute
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Fig. 12: Epileptic EEG Dataset.

value in the underlying data X . In this experiment, we
chose the value of ωmiss and ωoutlier among the range
{5%,10%,20%,40%}. As the true rank is unknown, we first
varied its value from 2 to 10 and then chose the “best” one
based on the averaged reconstruction error, see Fig. 10(a)
for an example. We compared the performance of RACP
against the two adaptive CP algorithms TeCPSGD [24] and
OLSTEC [25]. Both algorithms are dependent on the forgetting
factor λ, and its value was set at 0.98, 0.001, and 0.7,
respectively. The penalty parameter µ was set at 1 for both
TeCPSGD and OLSTEC. The experimental result in Fig. 11
indicates that RACP outperforms TeCPSGD and OLSTEC.
Task 2: Multichannel EEG Analysis
Datasets: In this task, we used two public electroencephalo-
gram (EEG) datasets: ERPWAVELAB9 and Epileptic EEG
Data10. The former dataset contains wavelet-transformed ver-
sions of EEG signals that were collected from 14 subjects
during the hand stimulation (i.e., proprioceptive pulls of the
left and right hands) for inter-trial phase coherence analysis. In
particular, these EEG signals were recorded using an electrode
system of 64 channels with 28 measurements per subject. The
continuous wavelet transform was then applied to represent
these signals in the time-frequency domain. The latter dataset
includes 20 EEG recordings of 6 patients diagnosed with
epilepsy at the American university of Beirut medical center.
The EEG data were recorded by using a system of 21 channels
with a sampling rate of 500Hz. The dataset includes 3895
normal segments and 3850 abnormal segments in which there
are 3034 partial seizures, 705 electrographic seizures, and
111 video-detected seizures with no visual change over EEG.
Figs. 12(a) and 12(b) illustrate EEG normal waveforms and
complex partial seizures. In what follows, we consider two
common problems in multichannel EEG analysis: (i) incom-
plete multichannel EEG analysis from partial observations and
(ii) anomaly EEG detection.
Incomplete Multichannel EEG Analysis: Here, we used the
ERPWAVELAB dataset and followed the same experimental
setup as in [27], [63], [64] to demonstrate the use of RACP
with real EEG signals. We constructed an EEG tensor of size
28×64×4392 (i.e., measurement×channel×time-frequency). To

9ERPWAVELAB: http://www.erpwavelab.org/
10Epileptic EEG Data: https://data.mendeley.com/datasets/5pc2j46cbc/1

Missing channels NL-PETRELS ACP RACP (Proposed)

1/64 0.051 0.063 0.056

10/64 0.062 0.025 0.023

20/64 0.077 0.011 0.014

30/64 0.121 0.097 0.086

40/64 0.891 0.132 0.119

50/64 1.325 1.137 0.982

TABLE III: Averaged errors of adaptive CP algorithms for
multichannel EEG analysis from incomplete observations.

(a) Ground Truth (b) ACP

(c) NL-PETRELS (d) RACP (Proposed)

Fig. 13: First component of EEG factors when 40/60 EEG
channels are missing.

generate incomplete observations, signals from some channels
at each time were randomly assumed to be missing. As
suggested in [63], [64], we set the tensor rank at r = 3. The
performance of RACP was compared with two adaptive CP
algorithms NL-PETRELS [63] and ACP [27]. We fixed the
forgetting factor λ at 0.999 and 0.5 for NL-PETRELS and
ACP, respectively. As NL-PETRELS requires a warm start,
we ran the batch CP-WOPT algorithm [64] with the first
1500 tensor slices, whereas random initialization was used for
ACP and RACP. In this experiment, we aimed to factorize the
EEG tensor into three basis components w.r.t. spatial domain,
time-frequency domain, and measurement mode. As there is
no real ground truth, we used the results (i.e., CP factors)
derived from applying the batch CP-ALS algorithm to the EEG
tensor with full observations as benchmarks. Experimental
results are shown in Tab. III and Fig. 13. They indicate that
RACP outperforms NL-PETRELS and provides a slightly
better estimation than ACP, especially in the presence of highly
incomplete observations (e.g., ≥ 40 channels are missing).
Anomaly EEG Detection: We demonstrate the use of RACP to
detect abnormal activities in the brain (i.e., epileptic seizures)
with the epileptic EEG dataset. Here, we adopted a simple
but effective way to predict abnormalities in multidimensional
data streams [65], i.e. by modeling the abnormality of a tensor
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Fig. 14: The error et over time with α = 1.5 and Lt = t. Normal
data which are inaccurately labelled as abnormal are referred
to as “false positive”.

(streaming) slice Yt by its recovery error

et = ∥Pt ⊛ (Yt −Yt
N

∏
n=1

×nU
(n)
t U

(n)
t

#
)∥
F
/∥Yt∥

F
, (48)

where {U
(n)
t }Nn=1 is the set of solutions generated by RACP

at time t. It is also worth noting that the error et is relatively
proportional to the norm of the outlier Ot. We label Yt based
on the following rule

et
abnormal
≷

normal
τt = mean ({e}Lt

) + α std ({e}Lt
), (49)

where {e}Lt denotes the set of eτ with t −Lt < τ ≤ t.
We followed the method in our companion work on epileptic
spike detection [66] to obtain the time-frequency representa-
tion of multichannel EEG segments (including normal data
and seizures), and hence the corresponding EEG tensors of
size 19×20×500 (i.e., channel× scale× time).11 The resulting
tensors were then concatenated into a huge tensor of which
the last mode is being streamed. We used the first 100 tensors
of normal data to obtain a warm start and the estimated rank
of 9. Experimental results are shown in Fig. 14 (the error et
over time) and Tab. IV (prediction accuracy versus the value
of α). The results indicate that it is highly potential to detect
anomalies in EEG signals by monitoring the approximation er-
ror. Subsequent investigations (e.g., type of wavelet, dominant
scales, and mother function) are necessary to obtain a better
prediction.
Task 3: Video background modeling & foreground detection
Datasets: Three real video sequences were used in this task,
including Hall, Lobby, and Highway, see Fig. 15 for an
illustration.12 The Hall video is a set of 3584 images taken
in an airport hall, and the image resolution is 176 × 144. This
video shows a busy hall of an airport with many people coming
in and out of the ground. The Lobby video contains 1546
images of 128×160 pixels. This image sequence was captured
in an office lobby where background changes were specifically
caused by switching on/off lights. The Highway video contains

11As indicated in the EEG dataset description report, the data of two
channels Cz and Pz were omitted. Thus, we have 19 EEG channels left and
each channel contains 500 samples. Also, 20 wavelet scales are chosen in the
range [4,8].

12Video Sequences: http://jacarini.dinf.usherbrooke.ca.

Value of α Sensitivity Specificity Accuracy

0.1 42.21% 53.02% 47.57%

0.5 59.74% 66.48% 63.09%

1 72.80% 74.38% 73.59%

1.5 81.58% 85.16% 83.36%

2 50.16% 53.54% 51.83%

TABLE IV: Anomaly EEG detection results. Sensitivity and
specificity measure the percentage of abnormal and normal
data detected correctly, respectively. Accuracy indicates the
overall performance.

Fig. 15: Three video sequences used in this paper.

1700 traffic images and each frame is of 240 × 320 pixels. It
consists of two lanes of vehicles approaching the camera on a
highway. These videos are naturally represented by three-way
tensors of size pixel×pixel× frame. Accordingly, the adaptivity
(streaming) can be done along the last dimension “frame”.
Background Modeling: We first measured the video back-
ground modeling ability of RACP in comparison with a robust
subspace tracking algorithm PETRELS-ADMM [49], and two
adaptive CP algorithms (TeCPSGD [24] and OLSTEC [25]).
These algorithmic parameters were kept as in task 1, except
for the penalty parameter µ which was set at 0.1. The CP rank
and subspace rank were set at 10. We consider the scenario
where 50% of pixels were randomly assumed to be missing.
Experimental results are illustrated in Fig. 16. It can be seen
that the two robust algorithms PETRELS-ADMM and RACP
were able to recover the video background, with the proposed
RACP providing a slightly better estimation than PETRELS-
ADMM. The two adaptive CP algorithms TeCPSGD and
OLSTEC seem to fail when the video frame contains moving
objects, probably because they do not account for sparse
outliers.
Foreground Detection: Next, we investigated the ability of
RACP in video foreground detection. We also compare the
performance of RACP with three notable foreground detection
algorithms, namely GRASTA [67], OSTD [34] and PETRELS-
ADMM [49]. To have a fair comparison, the algorithm pa-
rameters were set by default as suggested by their authors.
The penalty parameter ρ and constant step-size scale C were,
respectively, set at 1.8 and 2 in GRASTA. The forgetting factor
in PETRELS-ADMM is fixed at λ = 0.98, while OSTD is
a parameter-free algorithm. It can be seen from Fig. 17 that
the proposed RACP was capable of detecting moving objects
in video streams and provided a competitive performance as
compared to GRASTA, OSTD, and PETRELS-ADMM.
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Fig. 16: Qualitative illustration of video background modeling results.

Original Frame RACPPETRELS-ADMMGRASTAOSTD

Fig. 17: Qualitative illustration of video foreground detection results.

VI. CONCLUSIONS

In this paper, we have addressed the problem of robust tensor
tracking in the presence of both missing data and outliers.
Under the CP/PARAFAC model, a novel robust adaptive CP
decomposition called RACP has been proposed to track the
low-rank approximation of streaming tensors from uncertain,
noisy, and imperfect measurements. Its convergence analysis
has been established to guarantee that the solution generated
by RACP converges to a stationary point asymptotically. Ex-
perimental results indicate that RACP is capable of estimating
the tensor factors as well as tracking their variations over time
with high accuracy, and that RACP outperformed the state-
of-the-art adaptive CP algorithms in both simulated and real
data tests.

APPENDIX: DERIVATIONS OF TENSOR FACTOR TRACKING

The optimal solution of (18) can be derived by setting its
derivative to zero

t

∑
k=t−Lt+1

λt−k(W
(n)
k )

⊺
P
(n)
k,m(x̂

(n)
k,m)

⊺

=
t

∑
k=t−Lt+1

λt−k(W
(n)
k )

⊺
P
(n)
k,mW

(n)
k (u(n)m )

⊺
.

(50)

Instead of solving (50) directly, we propose a more elegant
recursive way to obtain u

(n)
t,m as follows.

First, let us denote the left hand side of (50) by d
(n)
t,m, and

the expression ∑tk=t−Lt+1 λ
t−k(W

(n)
k )

⊺
P
(n)
k,mW

(n)
k by S

(n)
t,m.
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Accordingly, (50) becomes

S
(n)
t,m(u

(n)
t,m)

⊺
= d

(n)
t,m. (51)

Interestingly, both d
(n)
t,m and S

(n)
t,m can be updated recursively:

d
(n)
t,m = λd

(n)
t−1,m + (W̃

(n)
t )

⊺
P̃
(n)

t,m(x̃
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⊺
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S
(n)
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where
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Therefore, we can rewrite (51) as
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Multiplying both sides by (S
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t,m)

−1
results in
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Collecting all rows u
(n)
t,m together, m = 1,2, . . . , In, a simplified

version of (57) for updating the whole U
(n)
t can be given by13

U
(n)
t = U
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t−1 +∆X̃

(n)
t (V

(n)
t )

⊺
. (59)

Here, the error matrix ∆X̃
(n)
t ∈ RIn×2Jn with Jn =∏i≠n Ii is

defined as
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with X̃
(n)
t = [X̂

(n)
t X̂

(n)
t−Lt,m

] ∈ RIn×2Jn and the coefficient
matrix V

(n)
t ∈ Rr×2Jn is computed as
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where the matrix S
(n)
t ∈ Rr×r is recursively updated as follows
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In this way, we can skip several operations and save a memory
storage of O(∑

N
n=1(In − 1)(Inr + r

2)). Specifically, the cost
of computing (62) is O(r2

∏
N
i=1,i≠n Ii) flops. The computation

of (61) also requires a cost of O(r2
∏
N
i=1,i≠n Ii) flops because

S
(n)
t is of size r×r and its inverse computation is not expensive

and independent of the tensor dimension. The error matrix
∆X̂

(n)
t in (60) can be derived from Step 1 by reshaping the

13To enable the recursive rules of (57) and (59), S(n)
0,m and S

(n)
0 can be

initialized by δIr where δ > 0, for n = 1,2, . . . ,N .

residual vector Pt(xt − ot − Ht−1ut). The most expensive
step is the product ∆X̃

(n)
t (V

(n)
t )

⊺
which costs r∏Ni=1 Ii flops

while the addition operator in (59) requires only rIn flops.
Therefore, the overall cost of updating U

(n)
t in a naive way is

O(r∏
N
i=1 Ii) flops. Note that ∆X̃

(n)
t (V

(n)
t )

⊺
can be divided

into two parts Z
(n)
t = ∆X̃

(n)
t W̃

(n)
t and Z

(n)
t (S

(n)
t )

−⊺
. Here,

∆X̃
(n)
t W̃

(n)
t can be referred to as “matricized tensor times

Khatri-Rao product” (MTTKRP) [68], [69]. Fortunately, Phan
et al. in [69] proposed a clever reorganization of MTTKRP
which can accelerate the computation and reduce the overall
cost of (59) to O(r2

∏
N
i=1,i≠n Ii) flops. We detail the deriva-

tion of the simplified version of (59) in the supplementary
document (Appendix A).
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