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Supplementary Material
Section A: Derivation of Tensor Factor Tracking
Under the assumption that the tensor factors are either static or
slowly varying (i.e. Dt ≈Dt−1) at time t, the corrupted entries of
Xt can be recovered by using the following rule:

[X̂t]i1i2...iN = {
[Ht−1 ×N+1 u

⊺
t ]i1i2...iN

, if [Pt]i1i2...iN = 0
[Xt]i1i2...iN , if [Pt]i1i2...iN = 1.

With a set of full estimated slices {X̂k}
t
k=1, we can consider an

alternative of (15) in the main manuscript as follows:

U
(n)
t = argmin

U(n)
gt(U

(n), .), with (A1)

gt(U
(n), .) =

1

Lt

t
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λt−k
∥X̂
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k −U(n)(W
(n)
k )

⊺
∥
2

F
,

where X̂
(n)

k is the mode-n unfolding matrix of X̂k. The only
difference from (15) is that we remove the binary mask Pk out of
the objective function, and replace it with X̂k.
Accordingly, the minimization (18) can be rewritten as

u
(n)
t,m = argmin

u
(n)
m

gt(u
(n)
m , .),with (A2)

gt(u
(n)
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The recursive rule for updating S
(n)
t,m in (22) becomes

S
(n)
t,m = λS

(n)
t−1,m + (W̃

(n)
t )

⊺
W̃
(n)
t . (A3)

Clearly, (A3) is the same for all m. This leads to a simplified
updating rule for S(n)t,m and V

(n)
t,m as follows

S
(n)
t,m

∆
= S

(n)
t = λS

(n)
t−1 + (W̃

(n)
t )

⊺
W̃
(n)
t , (A4)

V
(n)
t,m

∆
= V

(n)
t = (S

(n)
t )

−1
(W̃

(n)
t )

⊺
. (A5)

As a result, the updating rule of (23) can be modified as

U
(n)
t =U

(n)
t−1 + (

̃̂
X
(n)
t −U

(n)
t−1(W̃

(n)
t )

⊺
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(n)
t )

⊺
. (A6)

where ̃̂X(n)t = [X̂
(n)
t X̂

(n)
t−Lt,m

]. It should be noted that when the
(i, j)-th entry of X(n)t is missing or affected by outliers, [X̂(n)t −

U
(n)
t−1(W

(n)
t )

⊺]i,j = 0. To sum up, the tensor factor U
(n)
t can be

updated via

U
(n)
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(n)
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(n)

t ⊛ (X̃
(n)
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⊺
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We exploit an interesting fact from the alternative (A2) that if
the column x

(n)
t,m is completely corrupted by outliers or missing

data, then u
(n)
t,m = argmin gt(u

(n)
m , .) = u

(n)
t−1,m when we use the

exponential window, i.e. Lt = t. In such a case, the modified tracker
seems to ignore the m-th row of U(n)t which is consistent with the
original update rule (23). In fact, we can rewrite (A2) as follows:

tgt(u
(n)
m , .) = tλgt−1(u

(n)
m , .) + ∥W

(n)
t (u

(n)
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(n)
m )

⊺
∥
2

2
. (A8)

It is known that u(n)t−1,m = argmin gt−1(u
(n)
m , .) and the second term

of (A8) is equal to zero when u
(n)
m = u

(n)
t−1,m. Accordingly, (A8)

is minimized at u(n)t−1,m.

Section B: RACP as Second-Order Stochastic Gra-
dient Descent
Without loss of generality, we can reshape U(n) into a column
vector u(n) = [u(n)1 ,u

(n)
2 , . . . ,u

(n)
In
]
⊺

where u
(n)
m is the m-th row

of U(n). Accordingly, we can rewrite f̃t(U
(n), .) as follows
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where x̂
(n)
k is the vectorized form of X̂

(n)

k arranged by rows and
the mask P

(n)
k = diag (P

(n)
k,1 ,P

(n)
k,2 , . . . ,P

(n)
k,In
). Setting ∂f̃/∂u(n)

to zero yields
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Breaking (B3) into In equations w.r.t each row u
(n)
m results in (19).

It explains why we can decompose the minimization (16) into sub-
problems for each row u

(n)
m of U(n) as presented in Section III.A.

The Hessian matrix of f̃t(u(n), .) is then given by

H(u
(n)
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ρ
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t
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Accordingly, the update rule (23) can be rewritten as

u
(n)
t,m = u

(n)
t−1,m −H(u

(n)
t−1,m)

−1 ∂f̃

∂u
(n)
m

∣
u=ut−1

, (B5)

which is indeed a second-order stochastic gradient descent.

Section C: Proof of Proposition 1

1./ Boundedness: {Dt,Ot,ut}
∞
t=1 are uniformly bounded.

At each time t > 0, the outlier Ot and the coefficient vector ut

are derived from the minimization (7) in the main manuscript.
Accordingly, we always have

ℓ̃(Dt−1,Pt,Xt,Ot,ut) ≤ ℓ̃(Dt−1,Pt,Xt,0,0). (C1)

It is therefore that

∥Ot∥1 +
ρ

2
∥Pt ⊛ (Xt −Ot −Ht−1 ×N+1 ut)∥

2

F
≤
ρ

2
∥Pt ⊛Xt∥

2

F
.

Due to the two facts that ∥M∥F + ∥N∥F ≥ ∥M −N∥F ≥ ∥M∥F −
∥N∥F , and ∥M∥F ≤ ∥M∥1 [1], we then obtain

∥Ot∥F
≤ ∥Ot∥1

≤
ρ

2
∥Pt ⊛Xt∥

2

F
≤
ρ

2
M2

x <∞, (C2)

∥PtHt−1ut∥2
≤ 2∥Pt ⊛Xt∥F

+ ∥Pt ⊛Ot∥F
<∞, (C3)

where Mx is the upper bound of ∥Xt∥F (see Assumption A1).
Thanks to (C2), Ot is uniformly bound.
We indicate the bound of the solution ut and Dt =

[U
(1)
t ,U

(2)
t , . . . ,U

(N)
t ] by using the mathematical induction.

We first recall that the proposed RACP algorithm begins with
N full-rank matrices {U(n)0 }

N

n=1
and a set of matrices S

(n)
0,m =

δnI,m = 1,2, . . . , In.
The base case: At t = 1, the matrix H0 = ⊙

N
n=1U

(n)
0 is then

full rank, i.e., the null space of H0 admits only 0 as a vector.
Accordingly, u1 is bounded, thanks to (C3).
To indicate the bound of U

(n)
1 for n = 1,2, . . . ,N , we show that

each row u
(n)
1,m of U(n)1 is bounded. We first obtain the inequality

∥u
(n)
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≤ ∥P
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.

In fact, three matrices W
(n)
1,m, S(n)1,m and V

(n)
1,m for updating u

(n)
1,m

are bounded due to the bound of {U(n)0 }
N

n=1
. Accordingly, its right
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hand side is finite, thus u
(n)
1,m is bounded for all m. It implies that

U
(n)
1 is bounded.

The induction step: We assume that {U(n)i }
k
i=1 generated by

RACP are bounded at time t = k > 1, we will prove that at t = k+1,
U
(n)
k+1 is also bounded.

Since {U(n)k }
N
n=1 are assumed to be bounded, uk+1 and W

(n)
k+1,m

are then bounded. In parallel, we exploit that S
(n)
k+1,m can be

expressed by S
(n)
k+1,m = λS

(n)
k,m +∑i p

(n)
k+1,m

(i)w⊺i wi, where wi is

the i-th row of W(n)
k+1,m. Thanks to Woodbury matrix identity [2]

and S
(n)
0,m = δI with δ > 0, we obtain S

(n)
k+1,m ≻ 0, i.e., S(n)k+1,m is

nonsingular with the smallest eigenvalue σmin(S
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k+1,m) ≥ δ > 0.

Thus V
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have ∥M∥F ≤
√
r∥M∥2 =

√
rσmax(M), and ∥M−1∥

2
= σ−1min(M)

where σmax(M) and σmin(M) are the largest and smallest eigen-
value of M [1]. Accordingly, we derive ∥V(n)k+1,m∥F ≤

√
r/δ <∞,

i.e., V(n)k+1,m is bounded. As a result, u(n)k+1,m is bounded for all
m = 1,2, . . . , In. Thanks to the mathematical induction, we can
conclude that the solution U

(n)
t generated by RACP is bounded

for t ≥ 1.
2./ Forward Monotonicity: f̃t(Dt−1) ≥ f̃t(Dt).
We have

f̃t(Dt−1) − f̃t(Dt) (C4)

=
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Recall that U
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t is the minimizer of

f̃t(U
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t−1, . . . ,U

(n−1)
t−1 ,U,U

(n+1)
t−1 , . . . ,U

(N)
t−1 ) if using Jacobi

scheme or f̃t(U
(1)
t , . . . ,U

(n−1)
t ,U,U

(n+1)
t−1 , . . . ,U

(N)
t−1 ) if using

Gauss-Seidel scheme. Therefore, we always have
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(1)
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As a result, f̃t(Dt−1) ≥ f̃t(Dt).
3./ Backward Monotonicity: f̃t(Dt) ≤ f̃t(Dt+1).
Applying the similar arguments above, we obtain f̃t(Dt) ≤

f̃t(Dt+1).
4./ Stability of Estimates: ∥Dt −Dt−1∥F = O(1/t).
We first prove that the surrogate f̃t(.) w.r.t. each factor is Lip-
schitz continuous. Since U

(n)
t = argmin f̃t(U

(n), .), we have
f̃t(U

(n)
t , .) ≤ f̃t(U

(n)
t−1, .)∀t and hence
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(n)
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(n)
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(n)
t−1, .) − f̃t(U

(n)
t−1, .)}. (C7)

Let us denote the error function dt(U
(n), .) = f̃t−1(U

(n), .) −
f̃t(U

(n), .). We have

∇dt(U
(n), .) =U(n)(
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t
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−
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t
), (C8)

where At = ∑
t
k=1 λ

t−k(W
(n)
k )

⊺
W
(n)
k , Bt = ∑

t
k=1 λ

t−k(P
(n)
k ⊛

(X
(n)
k − O

(n)
k ))W

(n)
k . Thanks to the two facts that ∥MN∥F ≤

∥M∥F ∥N∥F and ∥M +N∥F ≤ ∥M∥F + ∥N∥F [1], we obtain

∥∇dt(U
(n), .)∥

F
≤ κU∥

At−1

t − 1
−
At

t
∥
F

+ ∥
Bt−1

t − 1
−
Bt

t
∥
F

= cn,

where κU is the upper bound for ∥U(n)∥F . As a result, the error
function dt(U

(n)) is Lipschitz with parameter cn = O(1/t), i.e.,

f̃t−1(U
(n)
t , .) − f̃t−1(U

(n)
t−1, .) ≤ dt(U

(n)
t , .) − dt(U

(n)
t−1, .)

≤ cn∥U
(n)
t −U

(n)
t−1∥F

. (C9)

Moreover, f̃t(U(n), .) is a m-strongly convex function

f̃t−1(U
(n)
t , .) − f̃t−1(U

(n)
t−1, .) ≥m∥U

(n)
t −U

(n)
t−1∥

2

F
. (C10)

From (C9) and (C10), we obtain the asymptotic variation of U(n)

as follows ∥U(n)t − U
(n)
t−1∥F

≤ cn
m
= O(1/t). Therefore, we can

conclude that ∑N
n=1 ∥U

(n)
t −U

(n)
t−1∥

2

F
= ∥Dt −Dt−1∥

2
F = O(1/t

2)

or ∥Dt −Dt−1∥F = O(1/t).
5./ Stability of Errors: ∣et(Dt) − et−1(Dt−1)∣ = O(1/t).

We begin with verifying the differentiable property of the loss
function ℓ(D,Pt,Xt) at each time t.

Proposition 1. Given an observation Pt ⊛Xt and the past esti-
mation of D, let Ot,u

∗
t be the minimizer of ℓ̃(D,Pt,Xt,O,u):

{u∗t ,O∗t } = argmin
u,O

∥O∥1 +
ρ

2
∥Pt ⊛ (Xt −O −H ×N+1 u)∥

2

F
.

where H = I∏N
n=1 ×nU

(n). We obtain that ℓ(D,Pt,Xt) =

minu,O ℓ̃(D,Pt,Xt,O,u) is a continuously differentiable func-
tion and its partial derivative w.r.t. U(n) is given by
∂ℓ(D,Pt,Xt)

∂U(n)
= 2P

(n)
t ⊛ (X

(n)
t −O

(n)
t −U(n)(W̄

(n)
t )

⊺
)W̄

(n)
t ,

where W̄
(n)
t = (

N

⊙
i=1,i≠n

U
(i)
t−1)⊙ (u

∗
t )
⊺.

Proof. The result follows intermediately Theorem 4.1 in [3].

Accordingly, ft(D) = L−1t ∑
t
k=t−Lt+1 λ

t−kℓ(D,Pk,Xk) is con-
tinuously differentiable. Now, let us denote f̄t(U

(n), .) =

ft−1(U
(n), .) − ft(U

(n), .). Applying the same arguments in Sec.
C.4, we also obtain

∥∇f̄t(U
(n), .)∥

F
≤ κU∥

Ā
(n)
t−1

t − 1
−
Ā
(n)
t

t
∥
F

+ ∥
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(n)
t−1

t − 1
−
B̄
(n)
t

t
∥
F

= dn,

where Ā
(n)
t = ∑

t
k=1 λ

t−k(W̄
(n)
k )

⊺
W̄
(n)
k , and B̄

(n)
t = ∑

t
k=1 λ

t−k

(P
(n)
k ⊛ (X

(n)
k − O

(n)
k ))W̄

(n)
k . Accordingly, ∇f̄t(U(n), .) is

bounded and hence ft(U
(n)
t−1, .)−ft(U

(n)
t , .) ≤ dn∥U

(n)
t−1−U

(n)
t ∥F

.

It implies that ft(.) is Lipschitz continuous. Since f̃t(D) and
ft(D) are both Lipschitz continuous functions, we then have

∣et(Dt) − et−1(Dt−1)∣

= ∣(f̃t(Dt) − ft(Dt)) − (f̃t−1(Dt−1) − ft−1(Dt−1))∣

≤ ∣f̃t(Dt) − f̃t(Dt−1)∣ + ∣ft(Dt) − ft(Dt−1)∣

≤
N

∑
n=1

(cn + dn)∥U
(n)
t−1 −U

(n)
t ∥F

= O(1/t). (C11)

It ends the proof.

Section D: Proof of Lemma 1
We apply the similar arguments of Proposition 7 in our companion
work [4] to prove Lemma 1.
1./ Almost sure convergence of {f̃t(Dt)}

∞
t=1.

Main approach: We prove the convergence of the sequence
f̃t(Dt) by showing that the stochastic positive process ut ∶=
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f̃t(Dt) is a quasi-martingale. In particular, if the sum of the
positive difference of ut is bounded, ut is a quasi-martingale, and
the sum converges almost surely, thanks to the following quasi-
martingale theorem:

Proposition 2 (Quasi-martingale Theorem [5, Theorem 9.4 &
Proposition 9.5]). Let (Ω,F ,P) be a probability space, {ut}t>0
be a stochastic process on the probability space and {Ft}t>0 be
a filtration by the past information at time instant t. Let us define
the indicator function δt as follows

δt
∆
=

⎧⎪⎪
⎨
⎪⎪⎩

1 if E[ut+1 − ut∣Ft] > 0,

0 otherwise.

For all t, if ut ≥ 0 and ∑∞i=1E[δi(ui+1 −ui)∣Fi] <∞, then ut is a
quasi-martingale and converges almost surely, i.e.,

∞

∑
t=1

E[ut+1 − ut∣Ft] <∞.

Now, we begin with the following relation when Lt = t

f̃t+1(Dt) =
1

t + 1

t+1

∑
k=1

λt+1−k ℓ̃(Dt,Pk,Xk,Ok,uk) (D1)

=
ℓ̃(Dt,Pt+1,Xt+1,Ot+1,ut+1)

t + 1
+
t(λ − 1)

t + 1
f̃t(Dt) +

t

t + 1
f̃t(Dt).

Thanks to Proposition 1 and λ ≤ 1, we obtain f̃t+1(Dt+1) ≤

f̃t+1(Dt) and

f̃t(Dt) − ft(Dt)

t + 1
≤ f̃t(Dt) − f̃t+1(Dt+1)

+
ℓ̃(Dt,Pt+1,Xt+1,Ot+1,ut+1) − ft(Dt)

t + 1
.

(D2)

Since ft(Dt) ≤ f̃t(Dt) ∀t, we then have

f̃t+1(Dt+1) − f̃t(Dt) ≤
ℓ̃(Dt,Pt+1,Xt+1,Ot+1,ut+1) − ft(Dt)

t + 1
,

Define by {Ft}t>0 a filtration associated to {ut}t>0 where Ft =

{Dk,Ok,uk}1≤k≤t records all past estimates of RACP at time t.
By definition, for every i ≤ t, Fi ⊆ Ft, and thus, the filtration is
interpreted as streams of all historical but not future information
generated by RACP. Now, taking the expectation of the inequality
above conditioned on Ft results in

E[f̃t+1(Dt+1) − f̃t(Dt)∣Ft] ≤
f(Dt) − ft(Dt)

t + 1
, (D3)

because the expected cost function f(.) is given by f(D) =
lim
k→∞

fk(D), E[ℓ(Dt,Pk+1Xk+1)] = f(Dt),∀Dt and ∀t;

and ℓ(Dt,Pt+1,Xt+1) = ℓ̃(Dt,Pt+1,Xt+1,Ot+1,ut+1) due to
{Ot+1,ut+1} = argminO,u ℓ̃(D,Pt+1,Xt+1,O,u) at time t.
Next, let us denote the following indicator function

δt
∆
=

⎧⎪⎪
⎨
⎪⎪⎩

1 if E[f̃t+1(Dt+1) − f̃t(Dt)∣Ft] > 0,

0 otherwise.
(D4)

Here, the process {δt}t>0 is adapted to the filtration {Ft}t>0 as δt
is measurable w.r.t. Ft for every t. From (D3), we obtain

E[δtE[f̃t+1(Dt+1) − f̃t(Dt)∣Ft]] (D5)

≤ E[
f(Dt) − ft(Dt)

(t + 1)
] = E[

√
t(f(Dt) − ft(Dt))]

1
√
t(t + 1)

.

As the solutions {Dt,Ot,ut}t>0 are bounded thanks to Propo-
sition 1, we exploit that the set of measurable functions
{ℓ(Dt,P ,X )}t>0, which is composed of a quadratic norm term
and ℓ1-norm term, is P-Donsker. It is therefore that the centered

and scaled version of ft(Dt) satisfies E[
√
t(f(Dt) − ft(Dt))] =

O(1), thanks to the Donsker theorem [6, Section 19.2]. In addition,
we have ∫

+∞

t=1
1

√
t(t+1)

dt = π
4
. Hence, ∑+∞t=1 1/

√
t(t + 1) < ∞ too.

Accordingly, we obtain
∞

∑
t=1

E[δtE[f̃t+1(Dt+1) − f̃t(Dt)∣Ft]] <∞. (D6)

Thanks to Proposition 2, {f̃t(Dt)}
∞
t=1 converges almost surely

∞

∑
t=1

E[f̃t+1(Dt+1) − f̃t(Dt)∣Ft] <∞. (D7)

2./ As t→∞, f̃t(Dt)→ ft(Dt) almost surely.
We prove {ft(Dt)}

∞
t=1 and {f̃t(Dt)}

∞
t=1 converge to the same limit

by showing ∑∞t=1
f̃t(Dt)−ft(Dt)

t+1
<∞.

According to (D2), we know that et(Dt)

t+1
is bounded by

f̃t(Dt) − f̃t+1(Dt+1) and ℓ(Dt,Pt+1,Xt+1)−ft(Dt)

(t+1)
. Moreover,

we have ∑∞t=1 f̃t(Dt) − f̃t+1(Dt+1) < ∞, and the sum of
ℓ(Dt,Pt+1,Xt+1)−ft(Dt)

t+1
also converges due to the convergence

of E[f(Dt)−ft(Dt)]

t+1
and E[ℓ(Dt,P ,X )] = f(Dt)∀t. Since

∑
∞
t=1

1
t+1
= ∞ and ∣et(Dt) − et−1(Dt−1)∣ = O(1/t), we obtain

∑
∞
t=1 f̃t(Dt) − ft(Dt) <∞, or

f̃t(Dt)→ ft(Dt) a.s., (D8)

thanks to [7, Lemma 3].

Section E: Proof of Lemma 2
In what follows, we prove that when t→∞, ∇f̃t(Dt)→ ∇ft(Dt)

and ∇f̃t(Dt)→ 0 almost surely.
1./ As t→∞, ∇f̃t(Dt)→ ∇ft(Dt) almost surely.
Let us denote by D∞ the dictionary Dt at t →∞. We know that
f̃t(D) is a majorant function of ft(D), i.e.,

f̃t(D + atV) ≥ ft(D + atV) ∀D,V ∈ D, at. (E1)

Taking the Taylor expansion of (E1) at t→∞ results in

f∞(D∞) + tr [atV
⊺
∇f∞(D∞)] + o(atV)

≤ f̃∞(D∞) + tr [atV
⊺
∇f∞(D∞)] + o(atV), (E2)

where f̃∞ = limt→∞ f̃t(.). As indicated in Lemma 1, f̃∞(D∞) =
f∞(D∞) and hence tr [atV

⊺∇f∞(D∞)] ≤ tr [atV
⊺∇f̃∞(D∞)].

Since the above inequality must hold for all V and at, we
obtain tr [∇f̃∞(D∞) − ∇f∞(D∞)] → 0 or ∇f̃∞(D∞) =
∇f∞(D∞) a.s.
2./ As t→∞, ∇f̃∞(D∞) = 0.
This property is proved by applying immediately the following
stages:

1) Stage 1: lim
t→∞

tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)] = 0;

2) Stage 2: tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)] ≤

c1 tr [(D −Dt)
⊺
∇f̃t+1(Dt)] + c2∥Dt+1 −Dt∥

2

F
∀t,D ∈ D;

3) Stage 3: (∇f̃∞(D∞))
⊺
(D −D∞) ⪰ 0 ∀D.

Stage 1: When Lt = t, we can recast the surrogate function f̃t(.)
into the following form

f̃t(D) =
ρ

t
tr [At([(U

(N)
)
⊺U(N)]⊛ ⋅ ⋅ ⋅ ⊛ [(U(1))⊺U(1)])]

−
2ρ

t
tr [Bt(U

(N)
⊙U(N−1) ⊙ ⋅ ⋅ ⋅ ⊙U(1))

⊺
] +RX ,O, (E3)

where At = λAt−1+utu
⊺
t , and Bt is the (N +1)-unfolding matrix

of the tensor Bt = λBt−1 +Pt ⊛ (Xt −Ot)×N+1 u
⊺
t , and RX ,O =



4

ρ
t ∑

t
k=1 ∥Pt ⊛Xt∥

2
F +

1
t ∑

t
k=1 λ

t−k∥Ok∥1 independent of D. With
respect to each U(n), we can further express f̃t(D) as

f̃t(D) =
ρ

t
tr [(U(n))

⊺
U(n)At,n] −

2ρ

t
tr [(U(n))

⊺
Bt,n] +RX ,O.

Here, the two matrices At,n and Bt,n are given by

At,n =At ⊛ [(U
(1)
)
⊺U(1)]⊛ ⋅ ⋅ ⋅ ⊛ [(U(n−1))⊺U(n−1)]⊛

⊛ [(U(n+1))⊺U(n+1)]⊛ ⋅ ⋅ ⋅ ⊛ [(U(1))⊺U(1)],

Bt,n =
r

∑
j=1

B
(j)
t ×1 U

(1)
(∶, j) ×2 ⋅ ⋅ ⋅ ×n−1 U

(n−1)
(∶, j)×n+1

×n+1 U
(n+1)

(∶, j) ⋅ ⋅ ⋅ ×N U(N)(∶, j),

where B
(j)
t ∈ RI1×I2⋅⋅⋅×IN denote the j-th mode-(N + 1) slices

of Bt. It is easy to see that f̃t(D) is a multi-block convex and
differentiable function and its partial derivative w.r.t. each block is
Lipschitz continuous with constant L̃t,n = ∥At,n∥F . Accordingly,
we have

∣f̃t+1(Dt) − f̃t+1(Dt+1) − tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)]∣

≤ L̃∥Dt −Dt+1∥
2

F
, (E4)

with L̃ =maxn(L̃t,n/2). Thanks to the triangle inequality, we then
obtain

∣ tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)]∣

≤ L̃∥Dt −Dt+1∥
2

F
+ f̃t+1(Dt) − f̃t+1(Dt+1). (E5)

Accordingly, we have
∞

∑
t=1

∣E[ tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)]∣Ft]∣ (E6)

≤ L̃
∞

∑
t=1

E[∥Dt −Dt+1∥
2

F
] +

∞

∑
t=1

∣E[f̃t+1(Dt+1) − f̃t+1(Dt)∣Ft]∣.

Recall that ∥Dt −Dt+1∥F = O(1/t) as indicated in Proposition 1,
hence ∑∞t=1 ∥Dt−Dt+1∥

2
F ≤ d∑

∞
t=1

1
t2
= dπ

6
<∞ for some constant

d > 0. Accordingly, we obtain that RHS of (E6) is finite.
Also, it is well-known that E[∣x∣] < ∞ implies ∣x∣ < ∞ almost
surely for any random variable x, thus we obtain

∞

∑
t=1

∣ tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)]∣ <∞. (E7)

Moreover, we always have
∞

∑
t=1

tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)]

<
∞

∑
t=1

∣ tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)]∣ <∞. (E8)

Therefore the series { tr[(Dt − Dt+1)
⊺∇f̃t+1(Dt+1)]}t≥1

con-
verges and we suppose it converges to C <∞. Then, we have

lim
t→∞

t

∑
k=1

tr [(Dk −Dk+1)
⊺
∇f̃k+1(Dk+1)]

= lim
t→∞

tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)]

+ lim
t→∞

t−1

∑
k=1

tr [(Dk −Dk+1)
⊺
∇f̃k+1(Dk+1)] = C <∞. (E9)

When t→∞, the following partial sum also converges to C, i.e.,

lim
t→∞

t−1

∑
k=1

tr [(Dk −Dk+1)
⊺
∇f̃k+1(Dk+1)] = C. (E10)

It implies that

lim
t→∞

tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)] = 0. (E11)

Step 2: Because U
(n)
t+1 = argminU(n) f̃t+1(U

(n), .), we have

f̃t+1(U
(n)
t+1, .) ≤ f̃t+1(U

(n)
t +

d1
tN
(U(n) −U

(n)
t ), .) ∀D ∈ D. (E12)

Without loss of generality, we suppose that D is arbitrarily chosen
in D such that ∥D −Dt∥F = d1/tN for some positive constant
d1 > 0, hence ∥U(n) −U(n)t ∥F ≤ d1/Nt ∀n.
As mentioned in Stage 1, ∇f̃ = [∇1f̃ ,∇2f̃ , . . . ,∇N f̃ ] is Lipschitz
where ∇nf̃ denote the partial derivative of f̃ w.r.t. the n-th factor
U(n). Thanks to [8, Lemma 1.2.3], there always exists a constant
d2 > 0 such that

tr [(U
(n)
t −U

(n)
t+1)

⊺
∇nf̃t+1(U

(n)
t+1, .)] (E13)

≤
d1
tN

tr [(U(n) −U
(n)
t )

⊺
∇nf̃t+1(U

(n)
t , .)] +

L̃d2
t2N2

.

Collecting these inequalities with n = 1,2, . . . ,N together, we
derive

tr [(Dt −Dt+1)
⊺[∇1f̃t+1(U

(1)
t+1, .), . . . ,∇N f̃t+1(U

(N)
t+1 , .)]] (E14)

≤
d1
tN

tr [(D −Dt)
⊺
[∇1f̃t+1(U

(n)
t , .), . . . ,∇N f̃t+1(U

(n)
t , .)]] +

L̃d2
t2N2

.

It then follows that

tr [(Dt −Dt+1)
⊺
∇f̃t+1(Dt+1)] ≤

d1
tN

tr [(D −Dt)
⊺
∇f̃t+1(Dt)]

+ L̃d2∥Dt −Dt+1∥
2

F
, (E15)

because of ∥Dt − Dt+1∥F = O(1/t). The inequality (E15) still
holds for all D ∈ D such that ∥D −Dt∥F > d1/tN .
Step 3: We use the proof by contradiction to indicate that D∞ is
a stationary point of f̃∞(.) over D.
Assume that D∞ is not a stationary point of f̃t over D when
t→∞. Then there exists D′ ∈ D and ϵ1 > 0 such that

tr [(D′ −D∞)
⊺
∇f̃∞(D∞)] ≤ −ϵ1 < 0. (E16)

Thanks to the triangle inequality, we have

∥(D′ −Dk)
⊺
∇f̃k+1(Dk) − (D

′
−D∞)

⊺
∇f̃∞(D∞)∥F ≤

∥∇f̃k+1(Dk) −∇f̃∞(D∞)∥F ∥D
′
−Dk∥F

+ ∥f̃∞(D∞)∥F ∥D∞ −Dk∥F . (E17)

It is easy to see that the RHS of (E17) approaches to zero as
k → ∞ because of Dk → D∞ and ∇f̃k+1(Dk) → ∇f̃∞(D∞). In
parallel, we know that tr[A]− tr[B] = tr[A−B] ≤

√
n∥A−B∥F

and hence

tr [(D′ −Dk)
⊺
∇f̃k+1(Dk)] ≤ −ϵ1 < 0. (E19)

According to (E15), we obtain

lim
k→∞

tr [(Dk −Dk+1)
⊺
∇f̃k+1(Dk+1)] ≤

−d1ϵ

tN∥D′ −Dk∥F
< 0,

which is a contradiction in (E11) in Step 1. Therefore, D∞ is a
stationary point of f̃∞.
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