Supplementary Material

Section A: Derivation of Tensor Factor Tracking

Under the assumption that the tensor factors are either static or slowly varying (i.e. $\mathbf{D}_{t} \approx \mathbf{D}_{t-1}$) at time t, the corrupted entries of \mathcal{X}_{t} can be recovered by using the following rule:

$$
\left[\hat{\boldsymbol{\mathcal { X }}}_{t}\right]_{i_{1} i_{2} \ldots i_{N}}= \begin{cases}{\left[\mathcal{H}_{t-1} \times_{N+1} \mathbf{u}_{t}^{\top}\right]_{i_{1} i_{2} \ldots i_{N}},} & \text { if }\left[\mathcal{P}_{t}\right]_{i_{1} i_{2} \ldots i_{N}}=0 \\ \left.\boldsymbol{\mathcal { X }}_{t}\right]_{i_{1} i_{2} \ldots i_{N}}, & \text { if }\left[\mathcal{P}_{t}\right]_{i_{1} i_{2} \ldots i_{N}}=1\end{cases}
$$

With a set of full estimated slices $\left\{\hat{\boldsymbol{\mathcal { X }}}_{k}\right\}_{k=1}^{t}$, we can consider an alternative of (15) in the main manuscript as follows:

$$
\begin{align*}
& \mathbf{U}_{t}^{(n)}=\underset{\mathbf{U}(n)}{\operatorname{argmin}} g_{t}\left(\mathbf{U}^{(n)}, .\right), \text { with } \tag{A1}\\
& g_{t}\left(\mathbf{U}^{(n)}, .\right)=\frac{1}{L_{t}} \sum_{k=t-L_{t}+1}^{t} \lambda^{t-k}\left\|\underline{\hat{\mathbf{X}}}_{k}^{(n)}-\mathbf{U}^{(n)}\left(\mathbf{W}_{k}^{(n)}\right)^{\top}\right\|_{F}^{2}
\end{align*}
$$

where $\underline{\hat{\mathbf{X}}}_{k}^{(n)}$ is the mode-n unfolding matrix of $\hat{\boldsymbol{\mathcal { X }}}_{k}$. The only difference from (15) is that we remove the binary mask \mathcal{P}_{k} out of the objective function, and replace it with $\hat{\mathcal{X}}_{k}$.
Accordingly, the minimization (18) can be rewritten as

$$
\begin{align*}
& \mathbf{u}_{t, m}^{(n)}=\underset{\mathbf{u}_{m}^{(n)}}{\operatorname{argmin}} g_{t}\left(\mathbf{u}_{m}^{(n)}, .\right) \text {, with } \tag{A2}\\
& g_{t}\left(\mathbf{u}_{m}^{(n)}, .\right)=\frac{1}{L_{t}} \sum_{k=t-L_{t}+1}^{t} \lambda^{t-k}\left\|\left(\underline{\hat{\mathbf{x}}}_{k, m}^{(n)}\right)^{\top}-\mathbf{W}_{k}^{(n)}\left(\mathbf{u}_{m}^{(n)}\right)^{\top}\right\|_{2}^{2}
\end{align*}
$$

The recursive rule for updating $\mathbf{S}_{t, m}^{(n)}$ in (22) becomes

$$
\begin{equation*}
\mathbf{S}_{t, m}^{(n)}=\lambda \mathbf{S}_{t-1, m}^{(n)}+\left(\widetilde{\mathbf{W}}_{t}^{(n)}\right)^{\top} \widetilde{\mathbf{W}}_{t}^{(n)} \tag{A3}
\end{equation*}
$$

Clearly, (A3) is the same for all m. This leads to a simplified updating rule for $\mathbf{S}_{t, m}^{(n)}$ and $\mathbf{V}_{t, m}^{(n)}$ as follows

$$
\begin{align*}
\mathbf{S}_{t, m}^{(n)} \triangleq \mathbf{S}_{t}^{(n)} & =\lambda \mathbf{S}_{t-1}^{(n)}+\left(\widetilde{\mathbf{W}}_{t}^{(n)}\right)^{\top} \widetilde{\mathbf{W}}_{t}^{(n)} \tag{A4}\\
\mathbf{V}_{t, m}^{(n)} \triangleq \mathbf{V}_{t}^{(n)} & =\left(\mathbf{S}_{t}^{(n)}\right)^{-1}\left(\widetilde{\mathbf{W}}_{t}^{(n)}\right)^{\top} . \tag{A5}
\end{align*}
$$

As a result, the updating rule of (23) can be modified as

$$
\begin{equation*}
\mathbf{U}_{t}^{(n)}=\mathbf{U}_{t-1}^{(n)}+\left(\widetilde{\hat{\mathbf{X}}}_{t}^{(n)}-\mathbf{U}_{t-1}^{(n)}\left(\widetilde{\mathbf{W}}_{t}^{(n)}\right)^{\top}\right)\left(\mathbf{V}_{t}^{(n)}\right)^{\top} \tag{A6}
\end{equation*}
$$

where $\widetilde{\hat{\mathbf{X}}}_{t}^{(n)}=\left[\begin{array}{ll}\hat{\mathbf{X}}_{t}^{(n)} & \hat{\mathbf{X}}_{t-L_{t}, m}^{(n)}\end{array}\right]$. It should be noted that when the (i, j)-th entry of $\mathbf{X}_{t}^{(n)}$ is missing or affected by outliers, $\left[\hat{\mathbf{X}}_{t}^{(n)}\right.$ -$\left.\mathbf{U}_{t-1}^{(n)}\left(\mathbf{W}_{t}^{(n)}\right)^{\top}\right]_{i, j}=0$. To sum up, the tensor factor $\mathbf{U}_{t}^{(n)}$ can be updated via

$$
\begin{equation*}
\mathbf{U}_{t}^{(n)}=\mathbf{U}_{t-1}^{(n)}+\widetilde{\mathbf{P}}_{t}^{(n)} \otimes\left(\widetilde{\mathbf{X}}_{t}^{(n)}-\mathbf{U}_{t-1}^{(n)}\left(\widetilde{\mathbf{W}}_{t}^{(n)}\right)^{\top}\right)\left(\mathbf{V}_{t}^{(n)}\right)^{\top} \tag{A7}
\end{equation*}
$$

We exploit an interesting fact from the alternative (A2) that if the column $\underline{\mathbf{x}}_{t, m}^{(n)}$ is completely corrupted by outliers or missing data, then $\mathbf{u}_{t, m}^{(n)}=\operatorname{argmin} g_{t}\left(\mathbf{u}_{m}^{(n)},.\right)=\mathbf{u}_{t-1, m}^{(n)}$ when we use the exponential window, i.e. $L_{t}=t$. In such a case, the modified tracker seems to ignore the m-th row of $\mathbf{U}_{t}^{(n)}$ which is consistent with the original update rule (23). In fact, we can rewrite (A2) as follows:

$$
\begin{equation*}
t g_{t}\left(\mathbf{u}_{m}^{(n)}, .\right)=t \lambda g_{t-1}\left(\mathbf{u}_{m}^{(n)}, .\right)+\left\|\mathbf{W}_{t}^{(n)}\left(\mathbf{u}_{t-1, m}^{(n)}-\mathbf{u}_{m}^{(n)}\right)^{\top}\right\|_{2}^{2} \tag{A8}
\end{equation*}
$$

It is known that $\mathbf{u}_{t-1, m}^{(n)}=\operatorname{argmin} g_{t-1}\left(\mathbf{u}_{m}^{(n)},.\right)$ and the second term of (A8) is equal to zero when $\mathbf{u}_{m}^{(n)}=\mathbf{u}_{t-1, m}^{(n)}$. Accordingly, (A8) is minimized at $\mathbf{u}_{t-1, m}^{(n)}$.

Section B: RACP as Second-Order Stochastic Gradient Descent

Without loss of generality, we can reshape $\mathbf{U}^{(n)}$ into a column vector $\mathbf{u}^{(n)}=\left[\mathbf{u}_{1}^{(n)}, \mathbf{u}_{2}^{(n)}, \ldots, \mathbf{u}_{I_{n}}^{(n)}\right]^{\top}$ where $\mathbf{u}_{m}^{(n)}$ is the m-th row of $\mathbf{U}^{(n)}$. Accordingly, we can rewrite $\tilde{f}_{t}\left(\mathbf{U}^{(n)},.\right)$ as follows

$$
\begin{align*}
& \tilde{f}_{t}\left(\mathbf{u}^{(n)}, .\right)=\frac{1}{L_{t}} \sum_{k=t-L_{t}+1}^{t} \lambda^{t-k} \tilde{\ell}_{k}\left(\mathbf{u}^{(n)}, .\right), \text { where } \tag{B1}\\
& \tilde{\ell}_{k}\left(\mathbf{u}^{(n)}, .\right)=\left\|\underline{\mathbf{O}}_{k}^{(n)}\right\|_{1}+\frac{\rho}{2}\left\|\mathbf{P}_{k}^{(n)}\left(\hat{\mathbf{x}}_{k}^{(n)}-\mathbf{W}_{k}^{(n)} \mathbf{u}^{(n)}\right)\right\|_{2}^{2} \tag{B2}
\end{align*}
$$

where $\hat{\mathbf{x}}_{k}^{(n)}$ is the vectorized form of $\widehat{\mathbf{X}}_{k}^{(n)}$ arranged by rows and the mask $\mathbf{P}_{k}^{(n)}=\operatorname{diag}\left(\underline{\mathbf{P}}_{k, 1}^{(n)}, \underline{\mathbf{P}}_{k, 2}^{(n)}, \ldots, \underline{\mathbf{P}}_{k, I_{n}}^{(n)}\right)$. Setting $\partial \tilde{f} / \partial \mathbf{u}^{(n)}$ to zero yields

$$
\begin{align*}
& \sum_{k=t-L_{t}+1}^{t} \lambda^{t-k}\left(\mathbf{W}_{k}^{(n)}\right)^{\top} \mathbf{P}_{k}^{(n)}\left[\hat{\mathbf{x}}_{k, 1}^{(n)}, \hat{\mathbf{x}}_{k, 2}^{(n)}, \ldots, \hat{\mathbf{x}}_{k, I_{n}}^{(n)}\right]^{\top} \tag{B3}\\
& =\sum_{k=t-L_{t}+1}^{t} \lambda^{t-k}\left(\mathbf{W}_{k}^{(n)}\right)^{\top} \mathbf{P}_{k}^{(n)} \mathbf{W}_{k}^{(n)}\left[\mathbf{u}_{1}^{(n)}, \mathbf{u}_{2}^{(n)}, \ldots, \mathbf{u}_{I_{n}}^{(n)}\right]^{\top}
\end{align*}
$$

Breaking (B3) into I_{n} equations w.r.t each row $\mathbf{u}_{m}^{(n)}$ results in (19). It explains why we can decompose the minimization (16) into subproblems for each row $\mathbf{u}_{m}^{(n)}$ of $\mathbf{U}^{(n)}$ as presented in Section III.A. The Hessian matrix of $\tilde{f}_{t}\left(\mathbf{u}^{(n)},.\right)$ is then given by

$$
\begin{equation*}
\mathbf{H}\left(\mathbf{u}_{t-1}^{(n)}\right)=\frac{\rho}{L_{t}} \sum_{k=t-L_{t}+1}^{t} \lambda^{t-k}\left(\mathbf{W}_{k}^{(n)}\right)^{\top} \mathbf{P}_{k}^{(n)} \mathbf{W}_{k}^{(n)} \tag{B4}
\end{equation*}
$$

Accordingly, the update rule (23) can be rewritten as

$$
\begin{equation*}
\mathbf{u}_{t, m}^{(n)}=\mathbf{u}_{t-1, m}^{(n)}-\left.\mathbf{H}\left(\mathbf{u}_{t-1, m}^{(n)}\right)^{-1} \frac{\partial \tilde{f}}{\partial \mathbf{u}_{m}^{(n)}}\right|_{\mathbf{u}=\mathbf{u}_{t-1}} \tag{B5}
\end{equation*}
$$

which is indeed a second-order stochastic gradient descent.

Section C: Proof of Proposition 1

1./ Boundedness: $\left\{\mathbf{D}_{t}, \mathcal{O}_{t}, \mathbf{u}_{t}\right\}_{t=1}^{\infty}$ are uniformly bounded.

At each time $t>0$, the outlier \mathcal{O}_{t} and the coefficient vector \mathbf{u}_{t} are derived from the minimization (7) in the main manuscript. Accordingly, we always have

$$
\begin{equation*}
\tilde{\ell}\left(\mathbf{D}_{t-1}, \mathcal{P}_{t}, \mathcal{X}_{t}, \mathcal{O}_{t}, \mathbf{u}_{t}\right) \leq \tilde{\ell}\left(\mathbf{D}_{t-1}, \mathcal{P}_{t}, \mathcal{X}_{t}, \mathbf{0}, \mathbf{0}\right) \tag{C1}
\end{equation*}
$$

It is therefore that

$$
\left\|\boldsymbol{\mathcal { O }}_{t}\right\|_{1}+\frac{\rho}{2}\left\|\boldsymbol{\mathcal { P }}_{t} \otimes\left(\boldsymbol{\mathcal { X }}_{t}-\boldsymbol{\mathcal { O }}_{t}-\boldsymbol{\mathcal { H }}_{t-1} \times_{N+1} \mathbf{u}_{t}\right)\right\|_{F}^{2} \leq \frac{\rho}{2}\left\|\boldsymbol{\mathcal { P }}_{t} \otimes \boldsymbol{\mathcal { X }}_{t}\right\|_{F}^{2}
$$

Due to the two facts that $\|\mathbf{M}\|_{F}+\|\mathbf{N}\|_{F} \geq\|\mathbf{M}-\mathbf{N}\|_{F} \geq\|\mathbf{M}\|_{F}-$ $\|\mathbf{N}\|_{F}$, and $\|\mathbf{M}\|_{F} \leq\|\mathbf{M}\|_{1}$ [1], we then obtain

$$
\begin{align*}
\left\|\mathcal{O}_{t}\right\|_{F} \leq\left\|\boldsymbol{\mathcal { O }}_{t}\right\|_{1} & \leq \frac{\rho}{2}\left\|\boldsymbol{\mathcal { P }}_{t} \otimes \boldsymbol{\mathcal { X }}_{t}\right\|_{F}^{2} \leq \frac{\rho}{2} M_{x}^{2}<\infty \tag{C2}\\
\left\|\mathbf{P}_{t} \mathbf{H}_{t-1} \mathbf{u}_{t}\right\|_{2} & \leq 2\left\|\boldsymbol{\mathcal { P }}_{t} \otimes \boldsymbol{\mathcal { X }}_{t}\right\|_{F}+\left\|\mathcal{P}_{t} \otimes \boldsymbol{\mathcal { O }}_{t}\right\|_{F}<\infty \tag{C3}
\end{align*}
$$

where M_{x} is the upper bound of $\left\|\mathcal{X}_{t}\right\|_{F}$ (see Assumption A1). Thanks to (C2), \mathcal{O}_{t} is uniformly bound.
We indicate the bound of the solution \mathbf{u}_{t} and $\mathbf{D}_{t}=$ $\left[\mathbf{U}_{t}^{(1)}, \mathbf{U}_{t}^{(2)}, \ldots, \mathbf{U}_{t}^{(N)}\right]$ by using the mathematical induction.
We first recall that the proposed RACP algorithm begins with N full-rank matrices $\left\{\mathbf{U}_{0}^{(n)}\right\}_{n=1}^{N}$ and a set of matrices $\mathbf{S}_{0, m}^{(n)}=$ $\delta_{n} \mathbf{I}, m=1,2, \ldots, I_{n}$.
The base case: At $t=1$, the matrix $\mathbf{H}_{0}=\bigodot_{n=1}^{N} \mathbf{U}_{0}^{(n)}$ is then full rank, i.e., the null space of \mathbf{H}_{0} admits only $\mathbf{0}$ as a vector. Accordingly, \mathbf{u}_{1} is bounded, thanks to (C3).
To indicate the bound of $\mathbf{U}_{1}^{(n)}$ for $n=1,2, \ldots, N$, we show that each row $\mathbf{u}_{1, m}^{(n)}$ of $\mathbf{U}_{1}^{(n)}$ is bounded. We first obtain the inequality $\left\|\mathbf{u}_{1, m}^{(n)}\right\|_{2} \leq\left\|\underline{\mathbf{P}}_{1, m}^{(n)}\left(\left(\underline{\mathbf{x}}_{1, m}^{(n)}\right)^{\top}-\mathbf{W}_{1}^{(n)}\left(\mathbf{u}_{0, m}^{(n)}\right)^{\top}\right)\right\|_{2}\left\|\mathbf{V}_{1, m}^{(n)}\right\|_{2}+\left\|\mathbf{u}_{0, m}^{(n)}\right\|_{2}$. In fact, three matrices $\mathbf{W}_{1, m}^{(n)}, \mathbf{S}_{1, m}^{(n)}$ and $\mathbf{V}_{1, m}^{(n)}$ for updating $\mathbf{u}_{1, m}^{(n)}$ are bounded due to the bound of $\left\{\mathbf{U}_{0}^{(n)}\right\}_{n=1}^{N}$. Accordingly, its right
hand side is finite, thus $\mathbf{u}_{1, m}^{(n)}$ is bounded for all m. It implies that $\mathbf{U}_{1}^{(n)}$ is bounded.
The induction step: We assume that $\left\{\mathbf{U}_{i}^{(n)}\right\}_{i=1}^{k}$ generated by $\overline{\mathrm{RACP}}$ are bounded at time $t=k>1$, we will prove that at $t=k+1$, $\mathbf{U}_{k+1}^{(n)}$ is also bounded.
Since $\left\{\mathbf{U}_{k}^{(n)}\right\}_{n=1}^{N}$ are assumed to be bounded, \mathbf{u}_{k+1} and $\mathbf{W}_{k+1, m}^{(n)}$ are then bounded. In parallel, we exploit that $\mathbf{S}_{k+1, m}^{(n)}$ can be expressed by $\mathbf{S}_{k+1, m}^{(n)}=\lambda \mathbf{S}_{k, m}^{(n)}+\sum_{i} \underline{p}_{k+1, m}^{(n)}(i) \mathbf{w}_{i}^{\top} \mathbf{w}_{i}$, where \mathbf{w}_{i} is the i-th row of $\mathbf{W}_{k+1, m}^{(n)}$. Thanks to Woodbury matrix identity [2] and $\mathbf{S}_{0, m}^{(n)}=\delta \mathbf{I}$ with $\delta>0$, we obtain $\mathbf{S}_{k+1, m}^{(n)}>\mathbf{0}$, i.e., $\mathbf{S}_{k+1, m}^{(n)}$ is nonsingular with the smallest eigenvalue $\sigma_{\min }\left(\mathbf{S}_{k+1, m}^{(n)}\right) \geq \delta>0$. Thus $\mathbf{V}_{k+1, m}^{(n)}$ is always existent. For given $\mathbf{M}>\mathbf{0}$, we always have $\|\mathbf{M}\|_{F} \leq \sqrt{r}\|\mathbf{M}\|_{2}=\sqrt{r} \sigma_{\max }(\mathbf{M})$, and $\left\|\mathbf{M}^{-1}\right\|_{2}=\sigma_{\min }^{-1}(\mathbf{M})$ where $\sigma_{\max }(\mathbf{M})$ and $\sigma_{\min }(\mathbf{M})$ are the largest and smallest eigenvalue of \mathbf{M} [1]. Accordingly, we derive $\left\|\mathbf{V}_{k+1, m}^{(n)}\right\|_{F} \leq \sqrt{r} / \delta<\infty$, i.e., $\mathbf{V}_{k+1, m}^{(n)}$ is bounded. As a result, $\mathbf{u}_{k+1, m}^{(n)}$ is bounded for all $m=1,2, \ldots, I_{n}$. Thanks to the mathematical induction, we can conclude that the solution $\mathbf{U}_{t}^{(n)}$ generated by RACP is bounded for $t \geq 1$.
2./ Forward Monotonicity: $\tilde{f}_{t}\left(\mathbf{D}_{t-1}\right) \geq \tilde{f}_{t}\left(\mathbf{D}_{t}\right)$.

We have

$$
\begin{align*}
& \tilde{f}_{t}\left(\mathbf{D}_{t-1}\right)-\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \tag{C4}\\
& =\left\{\begin{array}{l}
\sum_{n=1}^{N} \tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(1)}, \ldots, \mathbf{U}_{t-1}^{(n-1)}, \mathbf{U}_{t-1}^{(n)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right) \\
-\tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(1)}, \ldots, \mathbf{U}_{t-1}^{(n-1)}, \mathbf{U}_{t}^{(i)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right) \\
\sum_{n=1}^{N} \tilde{f}_{t}\left(\mathbf{U}_{t}^{(1)}, \ldots, \mathbf{U}_{t}^{(n-1)}, \mathbf{U}_{t-1}^{(n)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right) \\
-\tilde{f}_{t}\left(\mathbf{U}_{t}^{(1)}, \ldots, \mathbf{U}_{t}^{(n-1)}, \mathbf{U}_{t}^{(n)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right)
\end{array}\right. \text { [Gauss-S }
\end{align*}
$$

Recall that $\mathbf{U}_{t}^{(n)}$ is the minimizer of $\tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(1)}, \ldots, \mathbf{U}_{t-1}^{(n-1)}, \mathbf{U}, \mathbf{U}_{t-1}^{(n+1)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right) \quad$ if using Jacobi scheme or $\tilde{f}_{t}\left(\mathbf{U}_{t}^{(1)}, \ldots, \mathbf{U}_{t}^{(n-1)}, \mathbf{U}, \mathbf{U}_{t-1}^{(n+1)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right)$ if using Gauss-Seidel scheme. Therefore, we always have

$$
\begin{align*}
& \tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(1)}, \ldots, \mathbf{U}_{t-1}^{(n-1)}, \mathbf{U}_{t-1}^{(n)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right) \tag{C5}\\
& \quad \geq \tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(1)}, \ldots, \mathbf{U}_{t-1}^{(n-1)}, \mathbf{U}_{t}^{(i)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right) \\
& \quad[\text { Jacobi }] \tag{C6}\\
& \tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(1)}, \ldots, \mathbf{U}_{t-1}^{(n-1)}, \mathbf{U}_{t-1}^{(n)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right) \\
& \quad \geq \tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(1)}, \ldots, \mathbf{U}_{t-1}^{(n-1)}, \mathbf{U}_{t}^{(i)}, \ldots, \mathbf{U}_{t-1}^{(N)}\right)
\end{align*} \quad[\text { Gauss-S }
$$

As a result, $\tilde{f}_{t}\left(\mathbf{D}_{t-1}\right) \geq \tilde{f}_{t}\left(\mathbf{D}_{t}\right)$.
3./ Backward Monotonicity: $\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \leq \tilde{f}_{t}\left(\mathbf{D}_{t+1}\right)$.

Applying the similar arguments above, we obtain $\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \leq$ $\tilde{f}_{t}\left(\mathbf{D}_{t+1}\right)$.
4./ Stability of Estimates: $\left\|\mathbf{D}_{t}-\mathbf{D}_{t-1}\right\|_{F}=\mathcal{O}(1 / t)$.

We first prove that the surrogate $\tilde{f}_{t}($.$) w.r.t. each factor is Lip-$ schitz continuous. Since $\mathbf{U}_{t}^{(n)}=\operatorname{argmin} \tilde{f}_{t}\left(\mathbf{U}^{(n)},.\right)$, we have $\tilde{f}_{t}\left(\mathbf{U}_{t}^{(n)},.\right) \leq \tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(n)},.\right) \forall t$ and hence

$$
\begin{align*}
& \tilde{f}_{t-1}\left(\mathbf{U}_{t}^{(n)}, .\right)-\tilde{f}_{t-1}\left(\mathbf{U}_{t-1}^{(n)}, .\right) \leq\left\{\tilde{f}_{t-1}\left(\mathbf{U}_{t}^{(n)}, .\right)-\tilde{f}_{t}\left(\mathbf{U}_{t}^{(n)}, .\right)\right\} \\
&-\left\{\tilde{f}_{t-1}\left(\mathbf{U}_{t-1}^{(n)}, .\right)-\tilde{f}_{t}\left(\mathbf{U}_{t-1}^{(n)}, .\right)\right\} . \tag{C7}
\end{align*}
$$

Let us denote the error function $d_{t}\left(\mathbf{U}^{(n)},.\right)=\tilde{f}_{t-1}\left(\mathbf{U}^{(n)},.\right)-$ $\tilde{f}_{t}\left(\mathbf{U}^{(n)},.\right)$. We have

$$
\begin{equation*}
\nabla d_{t}\left(\mathbf{U}^{(n)}, .\right)=\mathbf{U}^{(n)}\left(\frac{\mathbf{A}_{t-1}}{t-1}-\frac{\mathbf{A}_{t}}{t}\right)+\left(\frac{\mathbf{B}_{t-1}}{t-1}-\frac{\mathbf{B}_{t}}{t}\right) \tag{C8}
\end{equation*}
$$

where $\mathbf{A}_{t}=\sum_{k=1}^{t} \lambda^{t-k}\left(\mathbf{W}_{k}^{(n)}\right)^{\top} \mathbf{W}_{k}^{(n)}, \mathbf{B}_{t}=\sum_{k=1}^{t} \lambda^{t-k}\left(\underline{\mathbf{P}}_{k}^{(n)} \otimes\right.$
$\left.\left(\underline{\mathbf{X}}_{k}^{(n)}-\mathbf{O}_{k}^{(n)}\right)\right) \mathbf{W}_{k}^{(n)}$. Thanks to the two facts that $\|\mathbf{M N}\|_{F} \leq$ $\|\mathbf{M}\|_{F}\|\mathbf{N}\|_{F}$ and $\|\mathbf{M}+\mathbf{N}\|_{F} \leq\|\mathbf{M}\|_{F}+\|\mathbf{N}\|_{F}$ [1], we obtain

$$
\left\|\nabla d_{t}\left(\mathbf{U}^{(n)}, .\right)\right\|_{F} \leq \kappa_{U}\left\|\frac{\mathbf{A}_{t-1}}{t-1}-\frac{\mathbf{A}_{t}}{t}\right\|_{F}+\left\|\frac{\mathbf{B}_{t-1}}{t-1}-\frac{\mathbf{B}_{t}}{t}\right\|_{F}=c_{n}
$$

where κ_{U} is the upper bound for $\left\|\mathbf{U}^{(n)}\right\|_{F}$. As a result, the error function $d_{t}\left(\mathbf{U}^{(n)}\right)$ is Lipschitz with parameter $c_{n}=\mathcal{O}(1 / t)$, i.e.,

$$
\begin{align*}
\tilde{f}_{t-1}\left(\mathbf{U}_{t}^{(n)}, .\right)-\tilde{f}_{t-1}\left(\mathbf{U}_{t-1}^{(n)}, .\right) & \leq d_{t}\left(\mathbf{U}_{t}^{(n)}, .\right)-d_{t}\left(\mathbf{U}_{t-1}^{(n)}, .\right) \\
& \leq c_{n}\left\|\mathbf{U}_{t}^{(n)}-\mathbf{U}_{t-1}^{(n)}\right\|_{F} . \tag{C9}
\end{align*}
$$

Moreover, $\tilde{f}_{t}\left(\mathbf{U}^{(n)},.\right)$ is a m-strongly convex function

$$
\begin{equation*}
\tilde{f}_{t-1}\left(\mathbf{U}_{t}^{(n)}, .\right)-\tilde{f}_{t-1}\left(\mathbf{U}_{t-1}^{(n)}, .\right) \geq m\left\|\mathbf{U}_{t}^{(n)}-\mathbf{U}_{t-1}^{(n)}\right\|_{F}^{2} \tag{C10}
\end{equation*}
$$

From (C9) and (C10), we obtain the asymptotic variation of $\mathbf{U}^{(n)}$ as follows $\left\|\mathbf{U}_{t}^{(n)}-\mathbf{U}_{t-1}^{(n)}\right\|_{F} \leq \frac{c_{n}}{m}=\mathcal{O}(1 / t)$. Therefore, we can conclude that $\sum_{n=1}^{N}\left\|\mathbf{U}_{t}^{(n)}-\mathbf{U}_{t-1}^{(n)}\right\|_{F}^{2}=\left\|\mathbf{D}_{t}-\mathbf{D}_{t-1}\right\|_{F}^{2}=\mathcal{O}\left(1 / t^{2}\right)$ or $\left\|\mathbf{D}_{t}-\mathbf{D}_{t-1}\right\|_{F}=\mathcal{O}(1 / t)$.
5./ Stability of Errors: $\left|e_{t}\left(\mathbf{D}_{t}\right)-e_{t-1}\left(\mathbf{D}_{t-1}\right)\right|=\mathcal{O}(1 / t)$.

We begin with verifying the differentiable property of the loss function $\ell\left(\mathbf{D}, \mathcal{P}_{t}, \mathcal{X}_{t}\right)$ at each time t.
Proposition 1. Given an observation $\mathcal{P}_{t} \otimes \mathcal{X}_{t}$ and the past estimation of \mathbf{D}, let $\mathcal{O}_{t}, \mathbf{u}_{t}^{*}$ be the minimizer of $\tilde{\ell}\left(\mathbf{D}, \mathcal{P}_{t}, \mathcal{X}_{t}, \mathcal{O}, \mathbf{u}\right)$:

$$
\left\{\mathbf{u}_{t}^{*}, \boldsymbol{\mathcal { O }}_{t}^{*}\right\}=\underset{\mathbf{u}, \mathcal{O}}{\operatorname{argmin}}\|\boldsymbol{\mathcal { O }}\|_{1}+\frac{\rho}{2}\left\|\boldsymbol{\mathcal { P }}_{t} \otimes\left(\boldsymbol{\mathcal { X }}_{t}-\mathcal{O}-\boldsymbol{\mathcal { H }} \times_{N+1} \mathbf{u}\right)\right\|_{F}^{2}
$$

where $\underset{\mathcal{H}}{\mathcal{H}}=\mathcal{I} \prod_{n=1}^{N} \times_{n} \mathbf{U}^{(n)}$. We obtain that $\ell\left(\mathbf{D}, \mathcal{P}_{t}, \mathcal{X}_{t}\right)=$ $\min _{\mathbf{u}, \mathcal{O}} \tilde{\ell}\left(\mathbf{D}, \mathcal{P}_{t}, \mathcal{X}_{t}, \mathcal{O}, \mathbf{u}\right)$ is a continuously differentiable function and its partial derivative w.r.t. $\mathbf{U}^{(n)}$ is given by
$\frac{\partial \ell\left(\mathbf{D}, \mathcal{P}_{t}, \boldsymbol{\mathcal { X }}_{t}\right)}{\partial \mathbf{U}^{(n)}}=2{\underset{\mathbf{P}}{t}}_{t}^{(n)} \otimes\left(\underline{\mathbf{X}}_{t}^{(n)}-\mathbf{O}_{t}^{(n)}-\mathbf{U}^{(n)}\left(\overline{\mathbf{W}}_{t}^{(n)}\right)^{\top}\right) \overline{\mathbf{W}}_{t}^{(n)}$, where $\overline{\mathbf{W}}_{t}^{(n)}=\left(\bigodot_{i=1, i \neq n}^{N} \mathbf{U}_{t-1}^{(i)}\right) \odot\left(\mathbf{u}_{t}^{*}\right)^{\top}$.
Proof. The result follows intermediately Theorem 4.1 in [3].
Accordingly, $f_{t}(\mathbf{D})=L_{t}^{-1} \sum_{k=t-L_{t}+1}^{t} \lambda^{t-k} \ell\left(\mathbf{D}, \mathcal{P}_{k}, \mathcal{X}_{k}\right)$ is continuously differentiable. Now, let us denote $\bar{f}_{t}\left(\mathbf{U}^{(n)},.\right)=$ $f_{t-1}\left(\mathbf{U}^{(n)},.\right)-f_{t}\left(\mathbf{U}^{(n)},.\right)$. Applying the same arguments in Sec. C.4, we also obtain

$$
\left\|\nabla \bar{f}_{t}\left(\mathbf{U}^{(n)}, .\right)\right\|_{F} \leq \kappa_{U}\left\|\frac{\overline{\mathbf{A}}_{t-1}^{(n)}}{t-1}-\frac{\overline{\mathbf{A}}_{t}^{(n)}}{t}\right\|_{F}+\left\|\frac{\overline{\mathbf{B}}_{t-1}^{(n)}}{t-1}-\frac{\overline{\mathbf{B}}_{t}^{(n)}}{t}\right\|_{F}=d_{n}
$$

where $\overline{\mathbf{A}}_{t}^{(n)}=\sum_{k=1}^{t} \lambda^{t-k}\left(\overline{\mathbf{W}}_{k}^{(n)}\right)^{\top} \overline{\mathbf{W}}_{k}^{(n)}$, and $\overline{\mathbf{B}}_{t}^{(n)}=\sum_{k=1}^{t} \lambda^{t-k}$ $\left(\underline{\mathbf{P}}_{k}^{(n)} \otimes\left(\underline{\mathbf{X}}_{k}^{(n)}-\mathbf{O}_{k}^{(n)}\right)\right) \overline{\mathbf{W}}_{k}^{(n)}$. Accordingly, $\nabla \bar{f}_{t}\left(\mathbf{U}^{(n)},.\right)$ is bounded and hence $f_{t}\left(\mathbf{U}_{t-1}^{(n)},.\right)-f_{t}\left(\mathbf{U}_{t}^{(n)},.\right) \leq d_{n}\left\|\mathbf{U}_{t-1}^{(n)}-\mathbf{U}_{t}^{(n)}\right\|_{F}$. It implies that $f_{t}($.$) is Lipschitz continuous. Since \tilde{f}_{t}(\mathbf{D})$ and $f_{t}(\mathbf{D})$ are both Lipschitz continuous functions, we then have

$$
\begin{align*}
\mid e_{t}\left(\mathbf{D}_{t}\right) & -e_{t-1}\left(\mathbf{D}_{t-1}\right) \mid \\
& =\left|\left(\tilde{f}_{t}\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t}\right)\right)-\left(\tilde{f}_{t-1}\left(\mathbf{D}_{t-1}\right)-f_{t-1}\left(\mathbf{D}_{t-1}\right)\right)\right| \\
& \leq\left|\tilde{f}_{t}\left(\mathbf{D}_{t}\right)-\tilde{f}_{t}\left(\mathbf{D}_{t-1}\right)\right|+\left|f_{t}\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t-1}\right)\right| \\
& \leq \sum_{n=1}^{N}\left(c_{n}+d_{n}\right)\left\|\mathbf{U}_{t-1}^{(n)}-\mathbf{U}_{t}^{(n)}\right\|_{F}=\mathcal{O}(1 / t) . \quad(\mathrm{C} 1 \tag{C11}
\end{align*}
$$

It ends the proof.

Section D: Proof of Lemma 1

We apply the similar arguments of Proposition 7 in our companion work [4] to prove Lemma 1.
1./ Almost sure convergence of $\left\{\tilde{f}_{t}\left(\mathbf{D}_{t}\right)\right\}_{t=1}^{\infty}$.

Main approach: We prove the convergence of the sequence $\tilde{f}_{t}\left(\mathbf{D}_{t}\right)$ by showing that the stochastic positive process $u_{t}:=$
$\tilde{f}_{t}\left(\mathbf{D}_{t}\right)$ is a quasi-martingale. In particular, if the sum of the positive difference of u_{t} is bounded, u_{t} is a quasi-martingale, and the sum converges almost surely, thanks to the following quasimartingale theorem:

Proposition 2 (Quasi-martingale Theorem [5, Theorem 9.4 \& Proposition 9.5]). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $\left\{u_{t}\right\}_{t>0}$ be a stochastic process on the probability space and $\left\{\mathcal{F}_{t}\right\}_{t>0}$ be a filtration by the past information at time instant t. Let us define the indicator function δ_{t} as follows

$$
\delta_{t} \triangleq \begin{cases}1 & \text { if } \mathbb{E}\left[u_{t+1}-u_{t} \mid \mathcal{F}_{t}\right]>0 \\ 0 & \text { otherwise }\end{cases}
$$

For all t, if $u_{t} \geq 0$ and $\sum_{i=1}^{\infty} \mathbb{E}\left[\delta_{i}\left(u_{i+1}-u_{i}\right) \mid \mathcal{F}_{i}\right]<\infty$, then u_{t} is a quasi-martingale and converges almost surely, i.e.,

$$
\sum_{t=1}^{\infty} \mathbb{E}\left[u_{t+1}-u_{t} \mid \mathcal{F}_{t}\right]<\infty
$$

Now, we begin with the following relation when $L_{t}=t$

$$
\begin{align*}
& \tilde{f}_{t+1}\left(\mathbf{D}_{t}\right)=\frac{1}{t+1} \sum_{k=1}^{t+1} \lambda^{t+1-k} \tilde{\ell}\left(\mathbf{D}_{t}, \boldsymbol{\mathcal { P }}_{k}, \boldsymbol{\mathcal { X }}_{k}, \boldsymbol{\mathcal { O }}_{k}, \mathbf{u}_{k}\right) \tag{D1}\\
& =\frac{\tilde{\ell}\left(\mathbf{D}_{t}, \boldsymbol{\mathcal { P }}_{t+1}, \boldsymbol{\mathcal { X }}_{t+1}, \boldsymbol{\mathcal { O }}_{t+1}, \mathbf{u}_{t+1}\right)}{t+1}+\frac{t(\lambda-1)}{t+1} \tilde{f}_{t}\left(\mathbf{D}_{t}\right)+\frac{t}{t+1} \tilde{f}_{t}\left(\mathbf{D}_{t}\right)
\end{align*}
$$

Thanks to Proposition 1 and $\lambda \leq 1$, we obtain $\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right) \leq$ $\tilde{f}_{t+1}\left(\mathbf{D}_{t}\right)$ and

$$
\begin{align*}
& \frac{\tilde{f}_{t}\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t}\right)}{t+1} \leq \tilde{f}_{t}\left(\mathbf{D}_{t}\right)-\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right) \tag{D2}\\
& \quad+\frac{\tilde{\ell}\left(\mathbf{D}_{t}, \boldsymbol{P}_{t+1}, \boldsymbol{\mathcal { X }}_{t+1}, \boldsymbol{\mathcal { O }}_{t+1}, \mathbf{u}_{t+1}\right)-f_{t}\left(\mathbf{D}_{t}\right)}{t+1}
\end{align*}
$$

Since $f_{t}\left(\mathbf{D}_{t}\right) \leq \tilde{f}_{t}\left(\mathbf{D}_{t}\right) \forall t$, we then have
$\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)-\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \leq \frac{\tilde{\ell}\left(\mathbf{D}_{t}, \boldsymbol{P}_{t+1}, \boldsymbol{\mathcal { X }}_{t+1}, \boldsymbol{\mathcal { O }}_{t+1}, \mathbf{u}_{t+1}\right)-f_{t}\left(\mathbf{D}_{t}\right)}{t+1}$,
Define by $\left\{\mathcal{F}_{t}\right\}_{t>0}$ a filtration associated to $\left\{u_{t}\right\}_{t>0}$ where $\mathcal{F}_{t}=$ $\left\{\mathbf{D}_{k}, \mathcal{O}_{k}, \mathbf{u}_{k}\right\}_{1 \leq k \leq t}$ records all past estimates of RACP at time t. By definition, for every $i \leq t, \mathcal{F}_{i} \subseteq \mathcal{F}_{t}$, and thus, the filtration is interpreted as streams of all historical but not future information generated by RACP. Now, taking the expectation of the inequality above conditioned on \mathcal{F}_{t} results in

$$
\begin{equation*}
\mathbb{E}\left[\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)-\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \mid \mathcal{F}_{t}\right] \leq \frac{f\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t}\right)}{t+1} \tag{D3}
\end{equation*}
$$

because the expected cost function $f($.$) is given by f(\mathbf{D})=$ $\lim _{k \rightarrow \infty} f_{k}(\mathbf{D}), \mathbb{E}\left[\ell\left(\mathbf{D}_{t}, \boldsymbol{\mathcal { P }}_{k+1} \mathcal{X}_{k+1}\right)\right]=f\left(\mathbf{D}_{t}\right), \forall \mathbf{D}_{t}$ and $\forall t ;$ and $\ell\left(\mathbf{D}_{t}, \mathcal{P}_{t+1}, \boldsymbol{\mathcal { X }}_{t+1}\right)=\tilde{\ell}\left(\mathbf{D}_{t}, \boldsymbol{\mathcal { P }}_{t+1}, \boldsymbol{\mathcal { X }}_{t+1}, \boldsymbol{\mathcal { O }}_{t+1}, \mathbf{u}_{t+1}\right)$ due to $\left\{\boldsymbol{\mathcal { O }}_{t+1}, \mathbf{u}_{t+1}\right\}=\arg \min _{\mathcal{O}, \mathbf{u}} \tilde{\ell}\left(\mathbf{D}, \boldsymbol{\mathcal { P }}_{t+1}, \boldsymbol{\mathcal { X }}_{t+1}, \mathcal{O}, \mathbf{u}\right)$ at time t.
Next, let us denote the following indicator function

$$
\delta_{t} \triangleq \begin{cases}1 & \text { if } \quad \mathbb{E}\left[\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)-\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \mid \mathcal{F}_{t}\right]>0 \tag{D4}\\ 0 & \text { otherwise }\end{cases}
$$

Here, the process $\left\{\delta_{t}\right\}_{t>0}$ is adapted to the filtration $\left\{\mathcal{F}_{t}\right\}_{t>0}$ as δ_{t} is measurable w.r.t. \mathcal{F}_{t} for every t. From (D3), we obtain

$$
\begin{align*}
& \mathbb{E}\left[\delta_{t} \mathbb{E}\left[\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)-\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \mid \mathcal{F}_{t}\right]\right] \tag{D5}\\
& \quad \leq \mathbb{E}\left[\frac{f\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t}\right)}{(t+1)}\right]=\mathbb{E}\left[\sqrt{t}\left(f\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t}\right)\right)\right] \frac{1}{\sqrt{t}(t+1)}
\end{align*}
$$

As the solutions $\left\{\mathbf{D}_{t}, \mathcal{O}_{t}, \mathbf{u}_{t}\right\}_{t>0}$ are bounded thanks to Proposition 1, we exploit that the set of measurable functions $\left\{\ell\left(\mathbf{D}_{t}, \mathcal{P}, \mathcal{X}\right)\right\}_{t>0}$, which is composed of a quadratic norm term and ℓ_{1}-norm term, is \mathbb{P}-Donsker. It is therefore that the centered
and scaled version of $f_{t}\left(\mathbf{D}_{t}\right)$ satisfies $\mathbb{E}\left[\sqrt{t}\left(f\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t}\right)\right)\right]=$ $\mathcal{O}(1)$, thanks to the Donsker theorem [6, Section 19.2]. In addition, we have $\int_{t=1}^{+\infty} \frac{1}{\sqrt{t}(t+1)} d t=\frac{\pi}{4}$. Hence, $\sum_{t=1}^{+\infty} 1 / \sqrt{t}(t+1)<\infty$ too. Accordingly, we obtain

$$
\begin{equation*}
\sum_{t=1}^{\infty} \mathbb{E}\left[\delta_{t} \mathbb{E}\left[\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)-\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \mid \mathcal{F}_{t}\right]\right]<\infty \tag{D6}
\end{equation*}
$$

Thanks to Proposition 2, $\left\{\tilde{f}_{t}\left(\mathbf{D}_{t}\right)\right\}_{t=1}^{\infty}$ converges almost surely

$$
\begin{equation*}
\sum_{t=1}^{\infty} \mathbb{E}\left[\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)-\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \mid \mathcal{F}_{t}\right]<\infty \tag{D7}
\end{equation*}
$$

2./ As $t \rightarrow \infty, \tilde{f}_{t}\left(\mathbf{D}_{t}\right) \rightarrow f_{t}\left({\underset{\sim}{D}}_{t}\right)$ almost surely.

We prove $\left\{f_{t}\left(\mathbf{D}_{t}\right)\right\}_{t=1}^{\infty}$ and $\left\{\tilde{f}_{t}\left(\mathbf{D}_{t}\right)\right\}_{t=1}^{\infty}$ converge to the same limit by showing $\sum_{t=1}^{\infty} \frac{f_{t}\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t}\right)}{t+1}<\infty$.
According to (D2), we know that $\frac{e_{t}\left(\mathbf{D}_{t}\right)}{\boldsymbol{x}^{t+1}}$ is bounded by $\tilde{f}_{t}\left(\mathbf{D}_{t}\right)-\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)$ and $\frac{\ell\left(\mathbf{D}_{t}, \boldsymbol{P}_{t+1}, \boldsymbol{x}_{t+1}^{t+1}-f_{t}\left(\mathbf{D}_{t}\right)\right.}{(t+1)}$. Moreover, we have $\sum_{t=1}^{\infty} \tilde{f}_{t}\left(\mathbf{D}_{t}\right)-\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)<\infty$, and the sum of $\frac{\ell\left(\mathbf{D}_{t}, \boldsymbol{\mathcal { P }}_{t+1}, \boldsymbol{\mathcal { X }}_{t+1}\right)-f_{t}\left(\mathbf{D}_{t}\right)}{t+1}$ also converges due to the convergence of $\frac{\mathbb{E}\left[f\left(\mathbf{D}_{t}^{t+1}-f_{t}\left(\mathbf{D}_{t}\right)\right]\right.}{t+1}$ and $\mathbb{E}\left[\ell\left(\mathbf{D}_{t}, \mathcal{P}, \mathcal{X}\right)\right]=f\left(\mathbf{D}_{t}\right) \forall t$. Since $\sum_{t=1}^{\infty} \frac{1}{t+1}=\infty$ and $\left|e_{t}\left(\mathbf{D}_{t}\right)-e_{t-1}\left(\mathbf{D}_{t-1}\right)\right|=\mathcal{O}(1 / t)$, we obtain $\sum_{t=1}^{\infty} \tilde{f}_{t}\left(\mathbf{D}_{t}\right)-f_{t}\left(\mathbf{D}_{t}\right)<\infty$, or

$$
\begin{equation*}
\tilde{f}_{t}\left(\mathbf{D}_{t}\right) \rightarrow f_{t}\left(\mathbf{D}_{t}\right) \text { a.s. } \tag{D8}
\end{equation*}
$$

thanks to [7, Lemma 3].

Section E: Proof of Lemma 2

In what follows, we prove that when $t \rightarrow \infty, \nabla \tilde{f}_{t}\left(\mathbf{D}_{t}\right) \rightarrow \nabla f_{t}\left(\mathbf{D}_{t}\right)$ and $\nabla \tilde{f}_{t}\left(\mathbf{D}_{t}\right) \rightarrow 0$ almost surely.
1./ As $t \rightarrow \infty, \nabla \tilde{f}_{t}\left(\mathbf{D}_{t}\right) \rightarrow \nabla f_{t}\left(\mathbf{D}_{t}\right)$ almost surely.

Let us denote by \mathbf{D}_{∞} the dictionary \mathbf{D}_{t} at $t \rightarrow \infty$. We know that $\tilde{f}_{t}(\mathbf{D})$ is a majorant function of $f_{t}(\mathbf{D})$, i.e.,

$$
\begin{equation*}
\tilde{f}_{t}\left(\mathbf{D}+a_{t} \mathbf{V}\right) \geq f_{t}\left(\mathbf{D}+a_{t} \mathbf{V}\right) \forall \mathbf{D}, \mathbf{V} \in \mathcal{D}, a_{t} \tag{E1}
\end{equation*}
$$

Taking the Taylor expansion of (E1) at $t \rightarrow \infty$ results in

$$
\begin{align*}
& f_{\infty}\left(\mathbf{D}_{\infty}\right)+\operatorname{tr}\left[a_{t} \mathbf{V}^{\top} \nabla f_{\infty}\left(\mathbf{D}_{\infty}\right)\right]+\boldsymbol{o}\left(a_{t} \mathbf{V}\right) \\
& \quad \leq \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)+\operatorname{tr}\left[a_{t} \mathbf{V}^{\top} \nabla f_{\infty}\left(\mathbf{D}_{\infty}\right)\right]+\boldsymbol{o}\left(a_{t} \mathbf{V}\right) \tag{E2}
\end{align*}
$$

where $\tilde{f}_{\infty}=\lim _{t \rightarrow \infty} \tilde{f}_{t}($.$) . As indicated in Lemma 1, \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)=$ $f_{\infty}\left(\mathbf{D}_{\infty}\right)$ and hence $\operatorname{tr}\left[a_{t} \mathbf{V}^{\top} \nabla f_{\infty}\left(\mathbf{D}_{\infty}\right)\right] \leq \operatorname{tr}\left[a_{t} \mathbf{V}^{\top} \nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)\right]$. Since the above inequality must hold for all \mathbf{V} and a_{t}, we obtain $\operatorname{tr}\left[\nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)-\nabla f_{\infty}\left(\mathbf{D}_{\infty}\right)\right] \rightarrow 0$ or $\nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)=$ $\nabla f_{\infty}\left(\mathbf{D}_{\infty}\right)$ a.s.
2./ As $t \rightarrow \infty, \nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)=\mathbf{0}$.

This property is proved by applying immediately the following stages:

1) Stage 1: $\lim _{t \rightarrow \infty} \operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right]=0$;
2) Stage 2: $\quad \operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right]$ \leq

$$
c_{1} \operatorname{tr}\left[\left(\mathbf{D}-\mathbf{D}_{t}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t}\right)\right]+c_{2}\left\|\mathbf{D}_{t+1}-\mathbf{D}_{t}\right\|_{F}^{2} \forall t, \mathbf{D} \in \mathcal{D}
$$

3) Stage 3: $\left(\nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)\right)^{\top}\left(\mathbf{D}-\mathbf{D}_{\infty}\right) \geq \mathbf{0} \forall \mathbf{D}$.

Stage 1: When $L_{t}=t$, we can recast the surrogate function $\tilde{f}_{t}($. into the following form

$$
\begin{align*}
& \tilde{f}_{t}(\mathbf{D})=\frac{\rho}{t} \operatorname{tr}\left[\mathbf{A}_{t}\left(\left[\left(\mathbf{U}^{(N)}\right)^{\top} \mathbf{U}^{(N)}\right] \otimes \cdots \otimes\left[\left(\mathbf{U}^{(1)}\right)^{\top} \mathbf{U}^{(1)}\right]\right)\right] \\
& -\frac{2 \rho}{t} \operatorname{tr}\left[\mathbf{B}_{t}\left(\mathbf{U}^{(N)} \odot \mathbf{U}^{(N-1)} \odot \cdots \odot \mathbf{U}^{(1)}\right)^{\top}\right]+\mathbf{R}_{\mathcal{X}, \mathcal{O}}, \tag{E3}
\end{align*}
$$

where $\mathbf{A}_{t}=\lambda \mathbf{A}_{t-1}+\mathbf{u}_{t} \mathbf{u}_{t}^{\top}$, and \mathbf{B}_{t} is the $(N+1)$-unfolding matrix of the tensor $\boldsymbol{\mathcal { B }}_{t}=\lambda \boldsymbol{\mathcal { B }}_{t-1}+\mathcal{P}_{t} \otimes\left(\boldsymbol{\mathcal { X }}_{t}-\mathcal{O}_{t}\right) \times_{N+1} \mathbf{u}_{t}^{\top}$, and $\mathbf{R}_{\mathcal{X}, \mathcal{O}}=$
$\frac{\rho}{t} \sum_{k=1}^{t}\left\|\mathcal{P}_{t} \otimes \mathcal{X}_{t}\right\|_{F}^{2}+\frac{1}{t} \sum_{k=1}^{t} \lambda^{t-k}\left\|\mathcal{O}_{k}\right\|_{1}$ independent of \mathbf{D}. With respect to each $\mathbf{U}^{(n)}$, we can further express $\tilde{f}_{t}(\mathbf{D})$ as
$\tilde{f}_{t}(\mathbf{D})=\frac{\rho}{t} \operatorname{tr}\left[\left(\mathbf{U}^{(n)}\right)^{\top} \mathbf{U}^{(n)} \mathbf{A}_{t, n}\right]-\frac{2 \rho}{t} \operatorname{tr}\left[\left(\mathbf{U}^{(n)}\right)^{\top} \mathbf{B}_{t, n}\right]+\mathbf{R}_{\mathcal{X}, \mathcal{O}}$ Here, the two matrices $\mathbf{A}_{t, n}$ and $\mathbf{B}_{t, n}$ are given by

$$
\begin{array}{r}
\mathbf{A}_{t, n}=\mathbf{A}_{t} \otimes\left[\left(\mathbf{U}^{(1)}\right)^{\top} \mathbf{U}^{(1)}\right] \otimes \cdots \otimes\left[\left(\mathbf{U}^{(n-1)}\right)^{\top} \mathbf{U}^{(n-1)}\right] \otimes \\
\otimes\left[\left(\mathbf{U}^{(n+1)}\right)^{\top} \mathbf{U}^{(n+1)}\right] \otimes \cdots \otimes\left[\left(\mathbf{U}^{(1)}\right)^{\top} \mathbf{U}^{(1)}\right], \\
\mathbf{B}_{t, n}=\sum_{j=1}^{r} \mathbf{B}_{t}^{(j)} \times_{1} \mathbf{U}^{(1)}(:, j) \times_{2} \cdots \times_{n-1} \mathbf{U}^{(n-1)}(:, j) \times_{n+1} \\
\times_{n+1} \mathbf{U}^{(n+1)}(:, j) \cdots \times_{N} \mathbf{U}^{(N)}(:, j),
\end{array}
$$

where $\mathbf{B}_{t}^{(j)} \in \mathbb{R}^{I_{1} \times I_{2} \cdots \times I_{N}}$ denote the j-th mode- $(N+1)$ slices of \mathbf{B}_{t}. It is easy to see that $\tilde{f}_{t}(\mathbf{D})$ is a multi-block convex and differentiable function and its partial derivative w.r.t. each block is Lipschitz continuous with constant $\tilde{L}_{t, n}=\left\|\mathbf{A}_{t, n}\right\|_{F}$. Accordingly, we have

$$
\begin{align*}
\mid \tilde{f}_{t+1}\left(\mathbf{D}_{t}\right)-\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)- & \operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right] \mid \\
& \leq \tilde{L}\left\|\mathbf{D}_{t}-\mathbf{D}_{t+1}\right\|_{F}^{2} \tag{E4}
\end{align*}
$$

with $\tilde{L}=\max _{n}\left(\tilde{L}_{t, n} / 2\right)$. Thanks to the triangle inequality, we then obtain

$$
\begin{align*}
\mid \operatorname{tr}\left[\left(\mathbf{D}_{t}\right.\right. & \left.\left.-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right] \mid \\
& \leq \tilde{L}\left\|\mathbf{D}_{t}-\mathbf{D}_{t+1}\right\|_{F}^{2}+\tilde{f}_{t+1}\left(\mathbf{D}_{t}\right)-\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right) . \tag{E5}
\end{align*}
$$

Accordingly, we have

$$
\begin{align*}
& \sum_{t=1}^{\infty}\left|\mathbb{E}\left[\operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right] \mid \mathcal{F}_{t}\right]\right| \tag{E6}\\
& \leq \tilde{L} \sum_{t=1}^{\infty} \mathbb{E}\left[\left\|\mathbf{D}_{t}-\mathbf{D}_{t+1}\right\|_{F}^{2}\right]+\sum_{t=1}^{\infty}\left|\mathbb{E}\left[\tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)-\tilde{f}_{t+1}\left(\mathbf{D}_{t}\right) \mid \mathcal{F}_{t}\right]\right|
\end{align*}
$$

Recall that $\left\|\mathbf{D}_{t}-\mathbf{D}_{t+1}\right\|_{F}=\mathcal{O}(1 / t)$ as indicated in Proposition 1, hence $\sum_{t=1}^{\infty}\left\|\mathbf{D}_{t}-\mathbf{D}_{t+1}\right\|_{F}^{2} \leq d \sum_{t=1}^{\infty} \frac{1}{t^{2}}=d \frac{\pi}{6}<\infty$ for some constant $d>0$. Accordingly, we obtain that RHS of (E6) is finite.
Also, it is well-known that $\mathbb{E}[|x|]<\infty$ implies $|x|<\infty$ almost surely for any random variable x, thus we obtain

$$
\begin{equation*}
\sum_{t=1}^{\infty}\left|\operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right]\right|<\infty \tag{E7}
\end{equation*}
$$

Moreover, we always have

$$
\begin{align*}
& \sum_{t=1}^{\infty} \operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right] \\
& \quad<\sum_{t=1}^{\infty}\left|\operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right]\right|<\infty \tag{E8}
\end{align*}
$$

Therefore the series $\left\{\operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right]\right\}_{t \geq 1}$ converges and we suppose it converges to $C<\infty$. Then, we have

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \sum_{k=1}^{t} \operatorname{tr}\left[\left(\mathbf{D}_{k}-\mathbf{D}_{k+1}\right)^{\top} \nabla \tilde{f}_{k+1}\left(\mathbf{D}_{k+1}\right)\right] \\
& =\lim _{t \rightarrow \infty} \operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right] \\
& +\lim _{t \rightarrow \infty} \sum_{k=1}^{t-1} \operatorname{tr}\left[\left(\mathbf{D}_{k}-\mathbf{D}_{k+1}\right)^{\top} \nabla \tilde{f}_{k+1}\left(\mathbf{D}_{k+1}\right)\right]=C<\infty . \tag{E9}
\end{align*}
$$

When $t \rightarrow \infty$, the following partial sum also converges to C, i.e.,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sum_{k=1}^{t-1} \operatorname{tr}\left[\left(\mathbf{D}_{k}-\mathbf{D}_{k+1}\right)^{\top} \nabla \tilde{f}_{k+1}\left(\mathbf{D}_{k+1}\right)\right]=C \tag{E10}
\end{equation*}
$$

It implies that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right]=0 \tag{E11}
\end{equation*}
$$

Step 2: Because $\mathbf{U}_{t+1}^{(n)}=\operatorname{argmin}_{\mathbf{U}^{(n)}} \tilde{f}_{t+1}\left(\mathbf{U}^{(n)},.\right)$, we have

$$
\begin{equation*}
\tilde{f}_{t+1}\left(\mathbf{U}_{t+1}^{(n)}, .\right) \leq \tilde{f}_{t+1}\left(\mathbf{U}_{t}^{(n)}+\frac{d_{1}}{t N}\left(\mathbf{U}^{(n)}-\mathbf{U}_{t}^{(n)}\right), .\right) \quad \forall \mathbf{D} \in \mathcal{D} \tag{E12}
\end{equation*}
$$

Without loss of generality, we suppose that \mathbf{D} is arbitrarily chosen in \mathcal{D} such that $\left\|\mathbf{D}-\mathbf{D}_{t}\right\|_{F}=d_{1} / t N$ for some positive constant $d_{1}>0$, hence $\left\|\mathbf{U}^{(n)}-\mathbf{U}_{t}^{(n)}\right\|_{F} \leq d_{1} / N t \forall n$.
As mentioned in Stage $1, \nabla \tilde{f}=\left[\nabla_{1} \tilde{f}, \nabla_{2} \tilde{f}, \ldots, \nabla_{N} \tilde{f}\right]$ is Lipschitz where $\nabla_{n} \tilde{f}$ denote the partial derivative of \tilde{f} w.r.t. the n-th factor $\mathbf{U}^{(n)}$. Thanks to [8, Lemma 1.2.3], there always exists a constant $d_{2}>0$ such that

$$
\begin{align*}
\operatorname{tr} & {\left[\left(\mathbf{U}_{t}^{(n)}-\mathbf{U}_{t+1}^{(n)}\right)^{\top} \nabla_{n} \tilde{f}_{t+1}\left(\mathbf{U}_{t+1}^{(n)}, .\right)\right] } \tag{E13}\\
& \leq \frac{d_{1}}{t N} \operatorname{tr}\left[\left(\mathbf{U}^{(n)}-\mathbf{U}_{t}^{(n)}\right)^{\top} \nabla_{n} \tilde{f}_{t+1}\left(\mathbf{U}_{t}^{(n)}, .\right)\right]+\frac{\tilde{L} d_{2}}{t^{2} N^{2}}
\end{align*}
$$

Collecting these inequalities with $n=1,2, \ldots, N$ together, we derive

$$
\begin{align*}
& \operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top}\left[\nabla_{1} \tilde{f}_{t+1}\left(\mathbf{U}_{t+1}^{(1)}, .\right), \ldots, \nabla_{N} \tilde{f}_{t+1}\left(\mathbf{U}_{t+1}^{(N)}, .\right)\right]\right] \tag{E14}\\
& \leq \frac{d_{1}}{t N} \operatorname{tr}\left[\left(\mathbf{D}-\mathbf{D}_{t}\right)^{\top}\left[\nabla_{1} \tilde{f}_{t+1}\left(\mathbf{U}_{t}^{(n)}, .\right), \ldots, \nabla_{N} \tilde{f}_{t+1}\left(\mathbf{U}_{t}^{(n)}, .\right)\right]\right]+\frac{\tilde{L} d_{2}}{t^{2} N^{2}}
\end{align*}
$$

It then follows that

$$
\begin{align*}
\operatorname{tr}\left[\left(\mathbf{D}_{t}-\mathbf{D}_{t+1}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t+1}\right)\right] & \leq \frac{d_{1}}{t N} \operatorname{tr}\left[\left(\mathbf{D}-\mathbf{D}_{t}\right)^{\top} \nabla \tilde{f}_{t+1}\left(\mathbf{D}_{t}\right)\right] \\
& +\tilde{L} d_{2}\left\|\mathbf{D}_{t}-\mathbf{D}_{t+1}\right\|_{F}^{2}, \tag{E15}
\end{align*}
$$

because of $\left\|\mathbf{D}_{t}-\mathbf{D}_{t+1}\right\|_{F}=\mathcal{O}(1 / t)$. The inequality (E15) still holds for all $\mathbf{D} \in \mathcal{D}$ such that $\left\|\mathbf{D}-\mathbf{D}_{t}\right\|_{F}>d_{1} / t N$.
Step 3: We use the proof by contradiction to indicate that \mathbf{D}_{∞} is a stationary point of $\tilde{f}_{\infty}($.$) over \mathcal{D}$.
Assume that \mathbf{D}_{∞} is not a stationary point of \tilde{f}_{t} over \mathcal{D} when $t \rightarrow \infty$. Then there exists $\mathbf{D}^{\prime} \in \mathcal{D}$ and $\epsilon_{1}>0$ such that

$$
\begin{equation*}
\operatorname{tr}\left[\left(\mathbf{D}^{\prime}-\mathbf{D}_{\infty}\right)^{\top} \nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)\right] \leq-\epsilon_{1}<0 \tag{E16}
\end{equation*}
$$

Thanks to the triangle inequality, we have

$$
\begin{align*}
& \left\|\left(\mathbf{D}^{\prime}-\mathbf{D}_{k}\right)^{\top} \nabla \tilde{f}_{k+1}\left(\mathbf{D}_{k}\right)-\left(\mathbf{D}^{\prime}-\mathbf{D}_{\infty}\right)^{\top} \nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)\right\|_{F} \leq \\
& \left\|\nabla \tilde{f}_{k+1}\left(\mathbf{D}_{k}\right)-\nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)\right\|_{F}\left\|\mathbf{D}^{\prime}-\mathbf{D}_{k}\right\|_{F} \\
& +\left\|\tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)\right\|_{F}\left\|\mathbf{D}_{\infty}-\mathbf{D}_{k}\right\|_{F} . \tag{E17}
\end{align*}
$$

It is easy to see that the RHS of (E17) approaches to zero as $k \rightarrow \infty$ because of $\mathbf{D}_{k} \rightarrow \mathbf{D}_{\infty}$ and $\nabla \tilde{f}_{k+1}\left(\mathbf{D}_{k}\right) \rightarrow \nabla \tilde{f}_{\infty}\left(\mathbf{D}_{\infty}\right)$. In parallel, we know that $\operatorname{tr}[\mathbf{A}]-\operatorname{tr}[\mathbf{B}]=\operatorname{tr}[\mathbf{A}-\mathbf{B}] \leq \sqrt{n}\|\mathbf{A}-\mathbf{B}\|_{F}$ and hence

$$
\begin{equation*}
\operatorname{tr}\left[\left(\mathbf{D}^{\prime}-\mathbf{D}_{k}\right)^{\top} \nabla \tilde{f}_{k+1}\left(\mathbf{D}_{k}\right)\right] \leq-\epsilon_{1}<0 \tag{E19}
\end{equation*}
$$

According to (E15), we obtain

$$
\lim _{k \rightarrow \infty} \operatorname{tr}\left[\left(\mathbf{D}_{k}-\mathbf{D}_{k+1}\right)^{\top} \nabla \tilde{f}_{k+1}\left(\mathbf{D}_{k+1}\right)\right] \leq \frac{-d_{1} \epsilon}{t N\left\|\mathbf{D}^{\prime}-\mathbf{D}_{k}\right\|_{F}}<0
$$

which is a contradiction in (E11) in Step 1. Therefore, \mathbf{D}_{∞} is a stationary point of \tilde{f}_{∞}.

References

[1] G. H. Golub and C. F. Van Loan, Matrix Computations. JHU press, 2012.
[2] N. J. Higham, Accuracy and stability of numerical algorithms. SIAM, 2002.
[3] J. F. Bonnans and A. Shapiro, "Optimization problems with perturbations: A guided tour," SIAM Rev., vol. 40, no. 2, pp. 228-264, 1998.
[4] L. T. Thanh, K. Abed-Meraim et al., "Tracking online low-rank approximations of incomplete high-order streaming tensors," TechRxiv, 2022.
[5] M. Métivier, Semimartingales: A course on stochastic processes. Walter de Gruyter, 1984.
[6] A. W. Van der Vaart, Asymptotic Statistics. Cambridge University Press, 2000.
[7] J. Mairal, F. Bach et al., "Online learning for matrix factorization and sparse coding," J. Mach. Learn.Res., vol. 11, pp. 19-60, 2010.
[8] Y. Nesterov, "Introductory lectures on convex programming volume I: Basic course," Lecture Notes, vol. 3, no. 4, 1998.

