
A Novel Recursive Least-Squares Adaptive Method For

Streaming Tensor-Train Decomposition With Incomplete

Observations

Thanh Trung Lea,b, Karim Abed-Meraima,c, Nguyen Linh Trungb,∗, Adel Hafianea

aUniversity of Orleans, INSA-CVL, PRISME, France
bVietnam National University, Hanoi, VNU-UET, Vietnam

cAcademic Institute of France, France

Abstract

Tensor tracking which is referred to as online (adaptive) decomposition of streaming tensors

has recently gained much attention in the signal processing community due to the fact

that many modern applications generate a huge number of multidimensional data streams

over time. In this paper, we propose an effective tensor tracking method via the tensor-train

format for decomposing high-order incomplete streaming tensors. On the arrival of new data,

the proposed algorithm minimizes a weighted least-squares objective function accounting

for both missing values and time-variation constraints on the underlying tensor-train cores,

thanks to the recursive least-squares filtering technique and the block coordinate descent

framework. Our algorithm is fully capable of tensor tracking from noisy, incomplete, and

high-dimensional observations in both static and time-varying environments. Its tracking

ability is validated with several experiments on both synthetic and real data.

Keywords: Tensor-train, tensor decomposition, adaptive algorithms, online algorithms,

streaming data, missing data

1. Introduction

Tensor-train (TT) decomposition, which is one form of tensor decomposition, has become

a powerful processing tool for multi-dimensional and large-scale data analysis [1]. Under the

TT format, we can factorize a high-order tensor into a sequence of 3rd-order tensors. TT

∗Corresponding author
Email address: linhtrung@vnu.edu.vn (Nguyen Linh Trung)

Preprint submitted to Signal Processing October 12, 2023

decomposition offers several advantages compared to the two standard CP/PARAFAC de-5

composition, Tucker decomposition, and their combination called block-term decomposition

(BTD). For example, we can represent any high-order tensor under TT decomposition. It

is due to the fact that the existence of the best low-rank tensor approximation with fixed

rank parameter is always guaranteed [2, 3]. It is also indicated in [4] that the TT-rank

coincides with the separation rank of the underlying tensor.1 In other words, the TT-rank is10

a uniquely defined quantity and it can be effectively determined in a stable way. Moreover,

TT decomposition provides a memory-saving representation for high-order tensors and can

break the curse of dimensionality which limits the order of the tensors to be analysed [2, 5].

Accordingly, TT decomposition is expected to be capable of handling big tensors efficiently

and effectively. We refer the readers to [1] for a comprehensive survey on basic properties,15

algorithms, and applications of the TT decomposition.

In recent years, the demand for big data stream analysis has been increasing rapidly [6].

In most modern online applications, data acquisition is a time-varying process where data are

sequentially acquired at a large scale with many attributes over time. This leads to several

issues for tensor decomposition in general and TT decomposition in particular: (i) size of the20

tensor is growing linearly with time, (ii) time variation in nonstationary environments where

the underlying process generating the tensor can change over time, and (iii) uncertainties

(e.g., imprecise, noisy, and misleading entries) emanate during data collection, to name a few.

In parallel, missing data are ubiquitous in multi-dimensional and large-scale data analysis

where collecting all data attributes at a time is either too expensive or even impossible due25

to corruption [7]. Accordingly, it is of great interest to develop adaptive/online/streaming

tensor decomposition or tensor tracking algorithms which are capable of handling these

issues. In spite of several successes in batch settings, TT decomposition has not gained

the same popularity in online settings as CP and Tucker decompositions, see [8] for a good

review on tensor tracking algorithms. Particularly, most of the existing TT methods are30

operating in batch-mode and become inefficient for streaming applications.

Related Works: There exist few TT methods related to adaptive tensor decompo-

sition in the literature. In [9, 10, 11], Lubich et al. introduced some dynamical tensor

approximation methods under TT format for factorizing time-varying tensors, thanks to

the Dirac–Frenkel-McLachlan variational principle. However, the dynamical tensors of in-35

1Denote by si the rank of the n-th unfolding matrix of X of order N . The vector s = [s1, s2, . . . , sN] is

called the separation rank of X .

2

terest are of fixed size, and hence, their methods indeed belong to the class of batch TT

algorithms. In [12], Liu et al. proposed an incremental TT method called iTTD for de-

composing high-order tensors of which one dimension grows with time. iTTD factorizes

new streams as individual tensors into TT-cores and then appends the estimated cores to

old estimates from past observations. In [13], Wang et al. also developed an incremen-40

tal TT method for factorizing tensors derived from industrial IoT data streams, namely

AITT. By exploiting a relationship between the directly reshaped matrix and integration of

unfolding matrices, AITT can estimate effectively the underlying TT-cores with low cost.

Nevertheless, it is worth noting that the framework of both iTTD and AITT is not really

online streaming learning, but incremental batch learning. Recently, we have introduced45

an adaptive TT method called TT-FOA capable of tracking the low-rank components of

high-order tensors in online settings [14]. Its design is useful for scenarios where a single

data sample is acquired at a time. Despite advantages in some respects, all the existing

dynamical/incremental/adaptive TT methods above are not suitable for handling stream-

ing tensors with missing values. In parallel, many tensor completion algorithms have been50

proposed in the literature [15]. They are, however, either batch tensor methods and not

useful for stream processing or deployed under other tensor formats (e.g., CP, Tucker, BTD,

and t-SVD).

Apart from the mentioned favorable characteristics such as rank determination, stable

computation, and memory-saving representation, TT and its variants (e.g., block TT [16],55

cyclic TT or tensor chain/ring [17], fully-connected tensor network [18], and tensor wheel [19])

offer more flexible low-rank representations for streaming tensors compared to classical ten-

sor formats. TT can be easily transformed into CP, Tucker, and BTD formats [1, Sec. 4.3].

For instance, TT simplifies to CP when the 3rd-order TT-cores have diagonal lateral slices.

By applying appropriate regularization and constraints on core tensors, adaptive TT meth-60

ods can efficiently factorize streaming tensors, benefiting from the advantageous properties

of CP, Tucker, and BTD. Another appealing feature of the streaming TT model is that

it admits several mathematical and graphical representations that can be interchanged for

different applications. Through tensor network transformations like contractions, reshaping,

and decompositions of core tensors, TT can be converted into a tensor ring and vice versa [1,65

Sec. 2.2]. In the tensor ring representation, core tensors are interconnected circularly and

treated equivalently [17]. Consequently, adaptive TT methods can effectively handle stream-

ing tensors with any time-varying mode or dimension, unlike classical adaptive tensor de-

3

compositions designed for a specific streaming mode. Additionally, TT exhibits adaptability

to diverse signal processing models, such as multidimensional harmonic retrieval, canonical70

correlation analysis and tracking extreme singular values/vectors in SVD [20]. This flexi-

bility of TT in modeling high-dimensional data is therefore noteworthy. Furthermore, TT

and its adaptive variant provide natural sparse and distributed representations for large ten-

sors, effectively addressing both established and emerging methodologies for tensor-based

representations and optimization [1, 21]. With the increasing need to handle large-scale and75

high-speed streaming data, including tensors, this feature becomes highly beneficial [8].

Main Contribution: In this paper, we propose a novel adaptive algorithm called ATT

(which stands for Adaptive Tensor-Train) for decomposing high-order incomplete stream-

ing tensors with time under the tensor-train format. By utilizing the recursive least-squares

method in adaptive filtering, ATT minimizes effectively a weighted least-squares objective80

function accounting for both missing values and time-variation constraints on the underly-

ing tensor-train cores. The proposed ATT algorithm is scalable, effective, and capable of

estimating low-rank components of streaming tensors from noisy and incomplete observa-

tions as well as tracking their time variation in nonstationary environments. To the best of

our knowledge, ATT is the first of its kind which is capable of dealing with time-dependent85

streaming tensors with missing values.

Compared to the state-of-the-art TT methods, ATT presents a novel optimization ap-

proach with several appealing features. Unlike classical batch TT decomposition methods

(e.g., TT-SVD [2] and TT-HSVD [22]), which rely on computationally expensive SVD de-

compositions of unfolding matrices, ATT takes a different route. Specifically, ATT employs90

a recursive least-squares filtering technique that involves performing only simple matrix-

vector multiplications and inverse operations on small-sized matrices (their size is equal to

the TT rank), thereby resulting in significantly reduced computational complexity. One key

advantage of ATT is its ability to update each TT-core independently, without interfering

with the others. This characteristic facilitates parallel and distributed computing, making95

it highly advantageous for dealing with large-scale and higher-order tensors. In comparison

to existing adaptive tensor decomposition methods, ATT leverages second-order estimation

instead of the commonly adopted first-order estimation in several online tensor decomposi-

tion methods such as TT-FOA [14], TeCPSGD [23], and OLCP [24]. Thanks to its efficient

recursive procedure, which eliminates the need for inverting the main Hessian matrix, ATT100

achieves a computational complexity similar to that of first-order estimation methods. This

4

approach, coupled with a novel regularization term on TT-cores, enables ATT to effectively

and efficiently handle missing observations and time-varying data in online settings. More-

over, ATT’s update rule can be designed to operate at the row-wise level, offering extensive

support for parallel and distributed processing. This design choice leads to accelerated105

tracking, particularly in cases of significant data corruption. For instance, ATT allows for

skipping the update of specific rows in the TT-core during updates, without affecting others.

This not only enhances computational efficiency but also contributes to ATT’s remarkable

effectiveness in handling missing data.

Notations: Lowercase, boldface lowercase, boldface capital, and bold calligraphic letters110

are used to denote scalars (e.g., a), vectors (e.g., a), matrices (e.g., A), and tensors (e.g., A),

respectively. We use A−1, A⊺, and A−⊺ to represent the inverse of A, the transpose of A and

of A−1, respectively. In addition, A(n) denotes the mode-n unfolding matrix of A. Symbols

“⊛ ” and ⊗ are used to denote the Hadamard and Kronecker product. We denote by “×1n ”
and “ ⊞n ” the tensor-train contraction and tensor concatenation along the n-th dimension115

respectively, and by reshape(.) the tensor reshaping operator. Also, ∥.∥F and ∥.∥2 denote

the Frobenius and the ℓ2 norms.

2. Problem Statement

In this work, we consider the streaming tensor-train decomposition of an N -th or-

der incomplete streaming tensor Xt ∈ RI1×I2×⋅⋅⋅×IN−1×I
t
N fixing all but the last time (tem-

poral) dimension I tN . Particularly, Xt is derived from appending the incoming stream

Yt ∈ RI1×I2×⋅⋅⋅×IN−1×W (with W ≥ 1) to the last observation Xt−1 along the time dimension, i.e.,

Xt = Xt−1 ⊞N Yt with I tN = I t−1N +W. We suppose that Yt is generated under the following

model:

Yt =Pt ⊛ (Lt +Nt). (1)

Here, the binary mask Pt indicates whether the (i1, i2, . . . , iN)-th entry of Yt is missing or

observed (i.e., pi1i2...iN = 0 if yi1i2...iN is missing and pi1i2...iN = 1 otherwise), Nt is a Gaussian

noise tensor, and both tensors are of the same size with Yt. The low-rank component Lt

has the form

Lt = G(1)t ×12 G
(2)
t ×13 ⋅ ⋅ ⋅ ×1N G

(N)
t , (2)

5

][11 rI

1
1

1
2

1
1N

1
N

Figure 1: Streaming tensor-train decomposition of the streaming tensor Xt ∈ RI1×⋅⋅⋅×IN−1×It
N .

where G(n)t ∈ Rrn−1×In×rn for n = 1,2, . . . ,N with r0 = rN = 1 is the n-th TT-core (the first and

last TT-cores are indeed matrices); [r1, r2, . . . , rN−1] is the TT-rank; and G
(N)
t ∈ RrN−1×W120

contains the last W columns of the temporal TT-core G(N)t , i.e., G(N)t = [G(N)t−1 G
(N)
t], please

see Fig. 1 for an illustration.

In online setting, retaking the batch TT methods to factorize the underlying tensor Xt

becomes inefficient due to inherent time-variation and non-stationarity of data streams as

well as their high complexity in both computation and storage cost. Therefore, we aim to

develop a low cost and effective tracker to estimate the TT-cores of Xt in time. Specifically,

we propose to minimize the following exponentially weighted least-squares objective function:

{G(n)t }
N

n=1
= argmin
{G(n)}Nn=1

[
t

∑
τ=1

βt−τ∥Pτ ⊛ (Yτ −G(1) ×12 ⋅ ⋅ ⋅ ×1N−1 G(N−1) ×1N G
(N)
τ)∥

2

F

+ ρ
N−1

∑
n=1

∥G(n) −G(n)t−1∥
2

F
], (3)

where β ∈ (0,1] is a forgetting factor aimed at reducing the effect of distant observations as

well as facilitating the tracking process in dynamic environments; and ρ is a regularization

parameter for controlling the time variation of TT-cores between two consecutive instances.125

{G(n)t−1}N−1n=1 represent previous estimates of {G(n)t }N−1n=1 and they serve as prior information for

the optimization problem (3). To support our deployment in Section 3, we make two mild

assumptions on the data model: TT-cores {G(n)t }N−1n=1 may either be static or vary slowly

with time, i.e., G(n)t ≃ G(n)t−1 ; and TT-rank is supposed to be known.

6

3. Proposed Method130

In this section, we propose an adaptive method called ATT for adaptive tensor-train

decomposition with missing data. Thanks to the block-coordinate descent (BCD) frame-

work, we particularly decompose (3) into two main stages: first, update the temporal G(N)t

given old estimations {G(n)t−1}
N−1

n=1
; and second, estimate the non-temporal G(n)t given G(N)t

and remaining TT-cores, for n = 1,2, . . . ,N − 1. In stage 1, we apply the well-known regu-135

larized least-squares method for estimating G(N)t . An elegant recursive least-squares (RLS)

adaptive filter is specifically developed to update the non-temporal TT-cores {G(n)t }N−1n=1 in

an effective way. Main steps of the proposed ATT method are summarized in Algorithm 1.

3.1. Estimation of the temporal TT-core G(N)t

On the arrival of Yt, we obtain G
(N)
t from

G
(N)
t = argmin

G(N)
∥Pt ⊛ (Yt −Ht−1 ×1N G(N))∥

2

F
+ λ∥G(N)∥

2

F
, (4)

where Ht−1 = G(1)t−1 ×12 G
(2)
t−1 ×13 ⋅ ⋅ ⋅ ×1N−1 G

(N−1)
t−1 and λ > 0 is a small regularized parameter.

Here, the first term of (4) is aimed at minimizing the residual error between observation

and estimation for t-th temporal slice, while the introduction of λ∥G(N)∥2F is for avoiding

the ill-posed computation in practice. Particularly, we can rewrite (4) as follows

G
(N)
t = argmin

G(N)
∥Pt ⊛ (Yt −Ht−1G

(N))∥
2

2
+ λ∥G(N)∥

2

F
, (5)

where Yt,Pt ∈ RI1...IN−1×W , and Ht−1 ∈ RI1...IN−1×rN−1 are the unfolding matrices of Yt, Pt

and Ht−1, respectively. Furthermore, (5) can be decomposed into W subproblems w.r.t. W

columns of G(N):

G
(N)
t (∶, i) = argmin

gi

∥Pt,i(yt,i −Ht−1gi)∥
2

2
+ λ∥gi∥

2

2
. (6)

where yt,i = Yt(∶, i) and Pt,i = diag{Pt(∶, i)}. The closed-form solution of the regularized

least-squares (6) can be given by

G
(N)
t (∶, i) = (H⊺t−1Pt,iHt−1 + λIrN−1)

−1

H⊺t−1Pt,iyt,i. (7)

Then, the temporal TT-core G(N)t is simply updated as G(N)t = [G(N)t−1 G
(N)
t]. Note that, we140

can re-update G(N)t in the same way above when other TT-cores {G(n)t }N−1n=1 are updated.

7

Algorithm 1: ATT - Adaptive Tensor-Train Decomposition
Input:

+ Streams {Pt ⊛Yt}
∞
t=1, Pt,Yt ∈ RI1×I2×⋅⋅⋅×IN−1×W , TT-rank rTT = [r1, r2, . . . , rN−1],

+ Forgetting factor 0 < β ≤ 1, regularized parameters ρ, λ > 0.

Output: TT-cores {G(n)t }
N

n=1.

Initialization:

+ {G(n)0 }
N−1
n=1 are initialized at random,

+ {S
(n)
0 }

N−1
n=1 = 0 and {∆G(n)0 }

N−1
n=1 = 0.

for t = 1,2, . . . do

Stage 1: Estimate the temporal TT-core G(N)t

Ht−1 = G(1)t−1 ×
1
2 ⋅ ⋅ ⋅ ×

1
N−1 G

(N−1)
t−1

Ht−1 = reshape{Ht−1, [I1I2 . . . IN−1, rN−1]}

for i = 1,2, . . . ,W do

yt,i = vec{Yt(∶, . . . , ∶, i)}

Pt,i = diag{Pt(∶, . . . , ∶, i)}

G
(N)
t (∶, i) = (H⊺t−1Pt,iHt−1 + λIrN−1)

−1
H⊺t−1Pt,iyt,i

δyt,i = Pt,i(yt,i −Ht−1G
(N)
t (∶, i))

∆Yt,i = reshape{δyt,i, [I1, I2, . . . , IN−1,1]}

end

G(N)t = [G(N)t−1 G
(N)
t]

∆Yt =∆Yt,1 ⊞N ∆Yt,2 ⊞N ⋅ ⋅ ⋅ ⊞N ∆Yt,W

Stage 2: Estimate the non-temporal TT-cores {G(n)t }
N−1
n=1

for n = 1,2, . . . ,N − 1 do

A(n)t−1 = G
(1)
t−1 ×

1
2 ⋅ ⋅ ⋅ ×

1
n−1 G

(n−1)
t−1

A
(n)
t−1 = reshape{A

(n)
t−1, [rn−1, I1I2 . . . In−1]}

B(n)t = G(n+1)t−1 ×
1
n+2 . . .G

(N−1)
t−1 ×

1
N G

(N)
t

B
(n)
t = reshape{B(n)t , [rn, In+1 . . . IN−1]}

W
(n)
t = B

(n)
t ⊗A

(n)
t−1

S
(n)
t = βS

(n)
t−1 +W

(n)
t (W

(n)
t)

⊺

∆G
(n)
t = ((P

(n)
t ⊛∆Y

(n)
t)(W

(n)
t)

⊺
+ βρ∆G

(n)
t−1) (S

(n)
t + ρIrn−1rn)

−⊺

G
(n)
t =G

(n)
t−1 +∆G

(n)
t

G(n)t = reshape{G
(n)
t , [rn−1, In, rn]}

end

Stage 3 (Optional): Re-estimate G(N)t with updated {G(n)t }
N−1
n=1 as in Stage 1.

end

8

3.2. Estimation of the non-temporal TT-cores {G(n)t }
N−1

n=1

We update each G(n)t by minimizing

G(n)t = argmin
G(n)

[
t

∑
τ=1

βt−τ∥Pτ ⊛ (Yτ −A(n)t−1 ×1n G(n) ×1n+1 B
(n)
τ)∥

2

F
+ ρ∥G(n) −G(n)t−1∥

2

F
], (8)

where A(n)t−1 = G
(1)
t−1 ×12 G

(2)
t−1 ×13 ⋅ ⋅ ⋅ ×1n−1 G

(n−1)
t−1 and B(n)τ = G(n+1)t−1 ×1n+2 ⋅ ⋅ ⋅ ×1N−1 G

(N−1)
t−1 ×1N G

(N)
τ .

We further recast (8) as

G
(n)
t = argmin

G(n)
[

t

∑
τ=1

βt−τ∥P(n)τ ⊛ (Y
(n)
τ −G(n)W

(n)
τ)∥

2

F
+ ρ∥G(n) −G(n)t−1∥

2

F
], (9)

where G
(n)
t = reshape{G(n)t , [In, rn−1rn]}; P(n)τ and Y(n)τ are the mode-n unfolding matrices

ofPτ andYτ , respectively; W
(n)
τ = B(n)τ ⊗A(n)t−1 whereA

(n)
t−1 = reshape{A

(n)
t−1, [rn−1, I1 . . . In−1]}

and B
(n)
τ = reshape{B(n)t , [rn, In+1 . . . IN−1]}.145

Similar to the update of G
(N)
t in the first stage, we can update independently each row

g
(n)
t,m of G

(n)
t (with m = 1,2, . . . , In) as follows:

g
(n)
t,m = argmin

g
(n)
m

[
t

∑
τ=1

βt−τ∥P(n)τ,m(y(n)τ,m − g(n)m W
(n)
τ)

⊺

∥
2

2
+ ρ ∥g(n)m − g(n)t−1,m∥

2

2
], (10)

where y
(n)
τ,m =Y(n)τ (m, ∶) and P

(n)
τ,m = diag{P(n)τ (m, ∶)}. Specifically, g(n)t,m can be derived from

setting the gradient of the function in (10) to zero:

(ρIrn−1rn +
t

∑
τ=1

βt−τW
(n)
τ P

(n)
τ,m(W(n)

τ)
⊺)(g(n)m)

⊺ = ρ(g(n)t−1,m)
⊺+

t

∑
τ=1

βt−τW
(n)
τ P

(n)
τ,m(y(n)τ,m)

⊺

. (11)

The closed-form solution of (11) is then given by

g
(n)
t,m = [(S

(n)
t,m + ρIrn−1rn)

−1(d(n)t,m + ρ(g
(n)
t−1,m)

⊺)]
⊺

, (12)

where S
(n)
t,m and d

(n)
t,m can be recursively updated as S

(n)
t,m = βS

(n)
t−1,m +W

(n)
t P

(n)
t,m(W

(n)
t)

⊺

and

d
(n)
t,m = βd

(n)
t−1,m+W

(n)
t P

(n)
t,m(y

(n)
t,m)

⊺

. Here, the two auxiliary variables, S
(n)
t,m and d

(n)
t,m, represent

two weighted summations of products {W(n)
τ P

(n)
τ,m(W(n)

τ)
⊺}t

τ=1
and {W(n)

τ P
(n)
τ,m(y(n)τ,m)

⊺}t
τ=1

,

respectively. At time t, each matrix W
(n)
τ is constructed using the most recent estimates

of TT-cores {G(n)t−1}N−1n=1 instead of {G(n)τ }N−1n=1 as in the classical recursive least-squares (RLS)

method. This serves as an approximation intended to save computations by avoiding the

retrieval of old information of TT-cores at distant lags. Moreover, this approach enables an

9

elegant transformation of the closed-form solution (12) into a recursive one. To be specific,

we can represent (12) as follows

(g(n)t,m)
⊺ = (S(n)t,m + ρIrn−1rn)

−1

(βd(n)t−1,m +W
(n)
t P

(n)
t,m(x

(n)
t,m)

⊺ + ρ(g(n)t−1,m)
⊺)

= (S(n)t,m + ρIrn−1rn)
−1

[β((S(n)t−1,m + ρIrn−1rn)(g
(n)
t−1,m)

⊺ − ρ(g(n)t−2,m)
⊺) +W(n)

t P
(n)
t,m(x

(n)
t,m)

⊺ + ρ(g(n)t−1,m)
⊺]

= (S(n)t,m + ρIrn−1rn)
−1

[(βS(n)t−1,m +W
(n)
t P

(n)
t,m(W

(n)
t)

⊺ + ρIrn−1rn
´¹¹¹¸¹¹¹¶

= S
(n)
t,m+ρIrn−1rn

)(g(n)t−1,m)
⊺ + βρ(g(n)t−1,m − g

(n)
t−2,m)

⊺

+W(n)
t P

(n)
t,m(x

(n)
t,m − g

(n)
t−1,mW

(n)
t)

⊺

]

= (g(n)t−1,m)
⊺ + (S(n)t,m + ρIrn−1rn)

−1

[βρ(g(n)t−1,m − g
(n)
t−2,m)

⊺

+W(n)
t P

(n)
t,m(x

(n)
t,m − g

(n)
t−1,mW

(n)
t)

⊺

].

(13)

As a result, we derive the following recursive update

g
(n)
t,m = g

(n)
t−1,m + (δy

(n)
t,mP

(n)
t,m(W

(n)
t)

⊺ + βρδg(n)t−1,m)(S
(n)
t,m + ρIrn−1rn)

−⊺

, (14)

where δy
(n)
t,m = P

(n)
t,m(y

(n)
t,m − g

(n)
t−1,mW

(n)
t)

⊺

and δg
(n)
t−1,m = g

(n)
t−1,m − g

(n)
t−2,m.

To enhance the computational efficiency, we can further simplify S
(n)
t,m in (14) by excluding

the diagonal matrix P
(n)
t,m as follows

S
(n)
t,m ≈ βS

(n)
t,m +W

(n)
t (W

(n)
t)

⊺

. (15)

Accordingly, we can set a shared auxiliary matrix S
(n)
t for every row {g(n)t,m}Inm=1 of G

(n)
t as

S
(n)
t = βS(n)t +W

(n)
t (W

(n)
t)

⊺

. (16)

Then, a recursive rule with a lower space complexity for updating the whole matrix G
(n)
t at

the same time is given by

G
(n)
t =G(n)t−1 + ((P

(n)
t ⊛∆Y

(n)
t)(W

(n)
t)

⊺ + βρ∆G
(n)
t−1)(S

(n)
t + ρIrn−1rn)

−⊺

, (17)

where∆Y
(n)
t,m =Y

(n)
t −G

(n)
t−1W

(n)
t and∆G

(n)
t−1 =G

(n)
t−1−G

(n)
t−2.We then set G(n)t = reshape{G(n)t ,

[rn−1, In, rn]}.
By following the aforementioned framework, the proposed ATT tracker can be considered

as an “indirect” recursive least-squares (RLS) algorithm. Instead of directly applying the150

classical RLS method to minimize the primary optimization (9), we leverage the insight that

10

solving the main objective function, which is represented by the exponentially weighted least-

squares function in (9), can be simplified to minimizing sub-problems for each row of the TT

core. These sub-problems involve the use of recursive procedures and the implementation

of approximations, resulting in a reduction in both computational complexity and memory155

storage. The RLS solution of (9) is subsequently obtained by consolidating the recursive

solutions acquired from these sub-problems. The update rule (17) also reveals that ATT can

support parallel and distributed computing. It stems from the fact that all auxiliary matrices

∆Yt, W
(n)
t , ∆G

(n)
t−1, and S

(n)
t for updating G(n)t are independent of {G(m)t }N−1m≠n. Therefore,

we can assign N −1 individual computers to update {G(n)t }N−1n=1 in parallel without disrupting160

the remaining TT-cores. In other words, TT-cores can be updated simultaneously on the

arrival of new data at each time t.

3.3. Performance Analysis

For brevity, we assume that In = I and rn = r for all n = 1,2, . . . ,N − 1. At time t, ATT

requires a cost of O(W ∣Ωt∣r2) flops for updating G
(N)
t where ∣Ωt∣ denotes the number of165

observed data. Most of operations for updating G(n)t are matrix-matrix products except an

inverse operation of a r2×r2 matrix. Thus, ATT requires an extra cost of O((N −1)IN−1r4)
flops. The overall complexity of ATT is O(r2max{(N −1)IN−1r2,W ∣Ωt∣}) flops. In term of

memory storage, ATT needs O((N −1)(2Ir2 + r4)) words of memory for storing {G(n)t }
N−1

n=1
,

{∆G(n)t }
N−1

n=1
, and {S(n)t }

N−1

n=1
.170

Compared to batch TT methods (e.g., TT-SVD [2] and TT-HSVD [22]), the cost of

ATT is much cheaper as it is independent of the temporal dimension. Besides, its compu-

tation involves only cheap matrix-matrix products and inverse operations of small matrices,

and hence, it avoids the expensive computation of SVD on the tensor’s unfolding matri-

ces. Compared to TT-FOA that is the first and only adaptive algorithm for streaming TT175

decomposition in the literature, ATT shares the same computational and space complexity.

4. Experiments

In this section, we investigate the tracking ability of ATT with respect to the follow-

ing aspects: additive noise effect, and its performance in nonstationary environments. Its

effectiveness for real data is demonstrated with the problem of online video completion in180

comparison with the state-of-the-art tensor tracking algorithms.2

2Our MATLAB codes are available online at: https://github.com/thanhtbt/ATT-miss/.

11

Experiment Setup: At time t, the t-th incomplete slice Yt is generated at random

under the following model:

Yt =Pt ⊛ (G(1)t ×12 G
(2)
t ×13 G

(3)
t ×14 g

(4)
t +Nt). (18)

Here, Pt ∈ RI1×I2×I3×1 is a binary tensor whose entries are i.i.d. Bernoulli random variables

with probability 1 − ωmiss, i.e., ωmiss represents the missing density of Yt. Entries of the

noise tensor Nt are i.i.d. from N (0, σ2
n). g

(4)
t ∈ Rr3×1 is a Gaussian vector of zero-mean and

unit-variance. TT-cores G(1)t ,G(2)t , and G(3)t are of size I1 × r1, r1 × I2 × r2, and r2 × I3 × r3,
respectively. Their time variation is modelled as follows G(n)t = G(n)t−1 + εV

(n)
t , for n = 1,2,3,

where ε plays a role as the time-varying factor, V(n)t is of the same size as G(n)t and its entries

are also i.i.d from N (0,1). We use the following relative error (RE) metric to evaluate the

estimation accuracy:

RE (Ytr,Yes) = ∥Ytr −Yes∥F/∥Ytr∥F , (19)

where Ytr (resp. Yes) refers to the true tensor (resp. reconstructed tensor). In all exper-

iments, we use ATT with only two key stages I and II. Indeed, the two versions of ATT

(with and without stage III) exhibit the same estimation accuracy when the number of ob-

servations is large, as illustrated in Fig. 2. In a time-varying environment, the inclusion of185

stage III can improve the performance of ATT in terms of both both estimation accuracy

and convergence rate at the early stage of tracking process, as shown in Fig. 2(b).

Effect of the noise level σn: We vary the value of σn and evaluate the performance

of ATT. Here, we used a static tensor (i.e., ε = 0) of size 20 × 20 × 20 × 1000 and rank

rTT = [5,5,5]. The missing density ωmiss was set to 10%. We fixed the forgetting factor β190

and the two regularized parameters ρ, λ, at 0.5, 1, and 1, respectively. A significant change

was also created at t = 600 (i.e., we set ε = 1 when t = 600 and ε = 0 otherwise) to investigate

how fast ATT could converge. The result is illustrated in Fig. 3. We can see that the noise

level σn does not affect the convergence rate of ATT but only its estimation error.

Effect of the time-varying factor ε: We next investigate the tracking ability of ATT195

in nonstationary environments. Similar to the previous experiment, we also vary the value

of ε and then evaluate its estimation accuracy. Most of experimental parameters were kept

as above, except the noise level σn which was set to 10−3. Fig. 4 illustrates the performance

of ATT versus the value of ε. We can see that the estimation accuracy of ATT goes down

when ε increases, but converges towards a steady-state error in the similar manner as in200

12

0 50 100 150
10

-4

10
-2

10
0

(a) Stationary environment with the time-varying

factor ε = 0 and 10% missing data.

0 50 100 150
10

-3

10
-2

10
-1

(b) Nonstationary environment with the time-varying

factor ε = 10−2 and 90% missing data.

Figure 2: Performance comparison between two versions of ATT on an incomplete streaming tensor of size

10 × 15 × 20 × 150 and rank r1 = r2 = r3 = 5 with the noise level σn = 10
−3.

the previous case. Intuitively, the time-varying factor has an influence on the tracking

performance of recursive least-squares (RLS) methods.3 However, as shown in Fig. 4, the

value of ε does not affect ATT’s convergence rate. This “phenomenon” thus deserves further

investigations.

Effect of the missing density ωmiss: Here, we measure the performance of ATT in205

the presence of different missing densities. Particularly, the value of ωmiss was chosen among

{20%,40%,80%}. We reused the same 4-order streaming tensor above with σn = ε = 10−3.
Fig. 5 shows that the number of missing entries inXt has an impact on both convergence rate

and estimation accuracy of ATT, i.e., the lower the value of ωmiss is, the better performance

ATT achieves. However, even with 80% missing data, ATT is still able to achieve relatively210

good performance.

ATT vs the state-of-the-art algorithms: In this task, we compare ATT with TT-

FOA and its stochastic variant TT-FOA-S [14]. We fixed the forgetting factor λ of TT-FOA

at 0.5. As the conventional TT-FOA and TT-FOA-S are not designed for missing data,

3It is very well known that one of main sources of the tracking error is due to the time-varying signals [25].

Particularly, this error called “lag-error” is caused by the attempt of adaptive RLS methods to track the

variation of data over time. Here, the time-varying factor is used to model/generate such nonstationary

signals, and hence, it is expected to have an impact on the convergence behavior of ATT.

13

0 250 500 750 1000

10
-6

10
-4

10
-2

10
0

Figure 3: Effect of the noise level σn on the tracking ability of ATT.

0 250 500 750 1000
10

-5

10
-3

10
-1

10
1

Figure 4: Effect of the time-varying factor ε on the tracking ability of ATT.

we reformulated their update rule by simply putting an observation mask on the data. We215

reused the same experiment setup as in the previous tasks. Performance comparison results

are illustrated in Fig. 6 and Fig. 7. We can see that in the presence of full observations,

three algorithms provide the similar estimation accuracy. However, the convergence rate of

TT-FOA-S is slower than that of ATT and TT-FOA. In the presence of missing data, ATT

14

0 250 500 750 1000

10
-4

10
-3

10
-2

10
-1

Figure 5: Effect of the missing density ωmiss on the tracking ability of ATT.

outperforms others. The use of a binary observation mask inadvertently introduces “noise”220

into the data, as the zero entries do not accurately represent the true values of the missing

entries. Consequently, both TT-FOA and TT-FOA-S are subjected to additional additive

noise, alongside the standard Gaussian noise. It explains why TT-FOA and TT-FOA-S fail

to track the underlying tensor in the presence of missing data. In terms of run time, ATT

demonstrates comparable performance to state-of-the-art adaptive TT methods.225

Online video completion: Three real video sequences are used in this task, including

“Lobby”, “Highway”, and “Hall”.4 Their sizes are summarized in Table 1. We compare

ATT with other online tensor completion algorithms: TT-FOA [14], TeCPSGD [23], ACP

[26], and ATD [26]. TeCPSGD is dependent only on a regularization parameter µ which is

set at 0.1. We set the forgetting factor λ at 0.7, 0.7, and 0.5, for ACP, ATD, and TT-FOA,230

respectively. To have a fair comparison, colour video frames were converted into grayscale

ones. The CP-rank, Tucker-rank, and TT-rank were set to 16, [12,12,12], and [6,6], respec-
tively. These tensor rank values were deliberately chosen to ensure that the corresponding

TT, CP and Tucker models share the same space (memory) complexity. The experimental

results in Tab. 1 and Fig. 8 indicate that the proposed ATT method provided a competitive235

video completion performance as compared to others. In particular, ATT produced higher

4Video sequences: http://jacarini.dinf.usherbrooke.ca/

15

0
200

400
600

800
1000

10
-4

10
-3

10
-2

10
-1

10
0

(a) Full observations

0
200

400
600

800
1000

10
-4

10
-3

10
-2

10
-1

10
0

(b) 80% observations

Figure 6: Performance comparison between adaptive tensor-train algorithms: Estimation accuracy.

relative errors (RE) than TeCPSGD and ATD, but demonstrated faster runtimes than both

methods in most cases. ACP is the fastest adaptive tensor-based method for this appli-

cation, but its estimation accuracy for cases of highly incomplete observations was lower

that of the proposed ATT method, particularly when dealing with Hall and Lobby datasets.240

TT-FOA was unable to perform online video completion effectively. Notably, with the same

space (memory) complexity, the ATT method provides a lower-rank representation for video

sequences than the CP and Tucker-based methods. In particular, ATT demonstrated supe-

rior efficiency in processing high-dimensional video sequences (e.g., Highway dataset) while

offering reasonable estimation accuracy.245

5. Conclusions

In this study, we have considered the problem of tensor tracking with missing data

under tensor-train format. An effective adaptive tensor-train method called ATT has been

proposed. This algorithm is capable of tracking successfully the underlying tensor-train

representation of highly incomplete streaming tensors in dynamic environments, even when250

abrupt changes happen. Its effectiveness for real data has been demonstrated with the online

video completion problem. Future works will extend ATT to deal with outliers, impulsive

and colored noises.

16

[3,3,3] [5,5,5] [3,3,3] [10,10,10]
10

0

10
1

10
2

10
3

R
u
n
 t

im
e
 (

s)
ATT

TT-FOA

TT-FOA-S

Tensor size and rank

(a) Full observations

[3,3,3] [5,5,5] [3,3,3] [10,10,10]
10

0

10
1

10
2

10
3

R
u
n
 t

im
e
 (

s)

ATT

TT-FOA

TT-FOA-S

Tensor size and rank

(b) 80% observations

Figure 7: Performance comparison between adaptive tensor-train algorithms: Run time.

Acknowledgments. This work was supported by the National Foundation for Science

and Technology Development (NAFOSTED) of Vietnam under Grant 102.04-2021.55.255

References

[1] A. Cichocki, N. Lee, I. V. Oseledets, et al., Tensor networks for dimensionality reduction and large-
scale optimization: Part 1 low-rank tensor decompositions, Found. Trends Mach. Learn. 9 (4-5) (2016)
249–429.

[2] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33 (5) (2011) 2295–2317.260

[3] S. Holtz, T. Rohwedder, R. Schneider, The alternating linear scheme for tensor optimization in the
tensor train format, SIAM J. Sci. Comput. 34 (2) (2012) 683–713.

[4] S. Holtz, T. Rohwedder, R. Schneider, On manifolds of tensors of fixed TT-rank, Numer. Math. 120 (4)
(2012) 701–731.

17

Figure 8: The 500-th video frame of “Hall” data: 80% pixels are missing.

Table 1: Performance of adaptive tensor decompositions on incomplete video sequences.

D
at
as
et

S
iz
e

M
is
si
n
g

Online Tensor Completion Methods

TT-FOA TeCPSGD ACP ATD ATT

RE runtime RE runtime RE runtime RE runtime RE runtime

H
al
l

17
4
×
14
4×

×3
58
4

20% 0.2089 38.98(s) 0.1102 40.26(s) 0.1156 10.29(s) 0.1321 53.26(s) 0.1304 39.36(s)

40% 0.2704 31.58(s) 0.1238 32.64(s) 0.1269 9.89(s) 0.1353 44.25(s) 0.1335 31.12(s)

80% 0.3159 30.51(s) 0.1362 29.97(s) 0.1494 9.67(s) 0.1404 35.40(s) 0.1417 29.63(s)

Lo
bb

y

12
8
×
16
0×

×1
54
6

20% 0.1863 11.02(s) 0.1172 13.75(s) 0.1195 4.09(s) 0.1209 15.40(s) 0.1253 11.42(s)

40% 0.2174 9.86(s) 0.1288 10.91(s) 0.1363 3.41(s) 0.1228 14.23(s) 0.1312 9.63(s)

80% 0.2406 8.86(s) 0.1326 9.92(s) 0.1735 2.52(s) 0.1344 11.82(s) 0.1328 8.67(s)

H
ig
hw

ay

32
0
×
24
0×

×1
70
0

20% 0.3365 37.39(s) 0.1652 52.43(s) 0.1724 10.40(s) 0.1873 48.20(s) 0.1919 37.63(s)

40% 0.3913 36.73(s) 0.1851 43.11(s) 0.1902 10.02(s) 0.1986 40.33(s) 0.1975 35.87(s)

80% 0.4264 28.90(s) 0.1898 34.37(s) 0.1912 9.80(s) 0.1992 32.99(s) 0.2126 26.37(s)

[5] N. Vervliet, O. Debals, L. Sorber, et al., Breaking the Curse of Dimensionality Using Decompositions265

of Incomplete Tensors: Tensor-based scientific computing in big data analysis, IEEE Signal Process.
Mag. 31 (5) (2014) 71–79.

18

[6] T. Kolajo, O. Daramola, A. Adebiyi, Big data stream analysis: A systematic literature review, J. Big
Data 6 (1) (2019) 1–30.

[7] R. J. Little, D. B. Rubin, Statistical Analysis with Missing Data, 2019.270

[8] L. T. Thanh, K. Abed-Meraim, N. Linh Trung, A. Hafiane, A contemporary and comprehensive survey
on streaming tensor decomposition, IEEE Trans. Knowl. Data Eng. (2022).

[9] C. Lubich, T. Rohwedder, R. Schneider, B. Vandereycken, Dynamical approximation by hierarchical
Tucker and tensor-train tensors, SIAM J. Matrix Anal. Appl. 34 (2) (2013) 470–494.

[10] C. Lubich, I. V. Oseledets, B. Vandereycken, Time integration of tensor trains, SIAM J. Numer. Anal.275

53 (2) (2015) 917–941.
[11] C. Lubich, B. Vandereycken, H. Walach, Time integration of rank-constrained Tucker tensors, SIAM

J. Numer. Anal. 56 (3) (2018) 1273–1290.
[12] H. Liu, L. T. Yang, Y. Guo, X. Xie, J. Ma, An incremental tensor-train decomposition for cyber-

physical-social big data, IEEE Trans. Big Data 7 (2) (2021) 341–354.280

[13] X. Wang, L. T. Yang, Y. Wang, L. Ren, M. J. Deen, ADTT: A highly efficient distributed tensor-train
decomposition method for IIoT big data, IEEE Trans Ind. Inf. 17 (3) (2021) 1573–1582.

[14] L. T. Thanh, K. Abed-Meraim, N. Linh-Trung, R. Boyer, Adaptive algorithms for tracking tensor-train
decomposition of streaming tensors, in: Eur. Signal Process. Conf., 2020, pp. 995–999.

[15] Q. Song, H. Ge, J. Caverlee, X. Hu, Tensor completion algorithms in big data analytics, ACM Trans.285

Knowl. Discov. Data 13 (1) (2019) 1–48.
[16] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, D. V. Savostyanov, Computation of extreme eigenvalues

in higher dimensions using block tensor train format, Comput. Physics Commun. 185 (4) (2014) 1207–
1216.

[17] Q. Zhao, G. Zhou, S. Xie, L. Zhang, A. Cichocki, Tensor ring decomposition, arXiv preprint290

arXiv:1606.05535 (2016).
[18] Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Q. Zhao, T.-X. Jiang, Fully-connected tensor network decom-

position and its application to higher-order tensor completion, 2021, pp. 11071–11078.
[19] Z.-C. Wu, T.-Z. Huang, L.-J. Deng, H.-X. Dou, D. Meng, Tensor wheel decomposition and its tensor

completion application, in: Adv. Neural Inf. Process. Syst., 2022, pp. 27008–27020.295

[20] A. Cichocki, A.-H. Phan, Q. Zhao, et al., Tensor networks for dimensionality reduction and large-scale
optimization: Part 2 applications and future perspectives, Found. Trends Mach. Learn. 9 (6) (2017)
431–673.

[21] T. Shi, M. Ruth, A. Townsend, Parallel algorithms for computing the tensor-train decomposition, SIAM
J. Sci. Comput. 45 (3) (2023) C101–C130.300

[22] Y. Zniyed, R. Boyer, A. de Almeida, G. Favier, A TT-Based hierarchical framework for decomposing
high-order tensors, SIAM J. Sci. Comput. 42 (2) (2020) 822–848.

[23] M. Mardani, G. Mateos, G. B. Giannakis, Subspace learning and imputation for streaming big data
matrices and tensors, IEEE Trans. Signal Process. 63 (10) (2015) 2663–2677.

[24] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, I. Davidson, Accelerating online CP decompositions for higher305

order tensors, in: Proc. ACM Int. Conf. Knowl. Discover. Data Min., 2016, pp. 1375–1384.
[25] P. S. Diniz, Adaptive filtering, Springer, 1997.
[26] L. T. Thanh, K. Abed-Meraim, N. L. Trung, A. Hafiane, Tracking online low-rank approximations of

higher-order incomplete streaming tensors, Patterns 4 (6) (2023) 100759.

19

	Introduction
	Problem Statement
	Proposed Method
	Estimation of the temporal TT-core G(N)t
	Estimation of the non-temporal TT-cores {to. G(n)t }to.n=1N-1
	Performance Analysis

	Experiments
	Conclusions

