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ABSTRACT
Block-term decomposition (BTD), which factorizes a tensor
(aka a multiway array) into block components of low rank,
has been a powerful processing tool for multivariate and high-
dimensional data analysis. In this paper, we propose a novel
tensor tracking method called SBTD for factorizing tensors
derived from multidimensional data streams under the BTD
format. Thanks to the alternating optimization framework,
SBTD first applies a regularized least-squares solver to es-
timate the temporal factor of the underlying streaming ten-
sor. Then, SBTD adopts an adaptive filter to track the non-
temporal tensor factors over time by minimizing a weighted
least-squares cost function. Numerical experiments indicate
that SBTD is capable of tensor tracking with competitive per-
formance compared to the state-of-the-art BTD algorithms.

Index Terms— Tensor tracking, block-term decomposi-
tion, adaptive algorithms, data streams.

1. INTRODUCTION

Tensor tracking or streaming tensor decomposition has gradu-
ally gained popularity as many modern applications generate
a huge number of data streams over the years [1]. Factor-
izing streaming tensors is however nontrivial and it is much
different from batch tensor decomposition due to several in-
herent computational issues of stream processing [2]. For
example, modern streaming datasets are often associated
with high velocity and low veracity. High velocity requires
(near) real-time processing, while low veracity demands ro-
bust algorithms to better deal with noisy and inconsistent
data. Moreover, data acquisition is often a time-varying pro-
cess where properties of data can change with time. These
characteristics hinder the use of conventional tensor decom-
position methods to streaming tensors as well as results in
distinguishing requirements for tensor trackers, such as low
latency, high scalability and adaptability, to name a few [1].

Block-term decomposition (BTD), which unifies the most
two well-known and widely-used tensor decompositions (i.e.,
canonical polyadic and Tucker), has recently attracted much
attention in the signal processing community [3, 4]. Particu-
larly under the BTD format, a tensor (aka a multiway array)
is factorized into several low-rank block terms/components.
In this paper, we focus on investigating how to factorize a
streaming tensor under a special form of BTD that expresses
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Fig. 1: Streaming rank-(Lr, Lr,1) BTD.

the underlying tensor as a sum of R rank-(Lr, Lr,1) block
terms, see Fig. 1 for an illustration. This decomposition offers
several appealing properties, such as uniqueness, stability,
and interpretability [3, 5]. Accordingly, it has already found
in many applications, such as blind source separation/system
identification [6,7], biomedical engineering [8,9], and remote
sensing [10, 11].

In the tensor literature, many online/adaptive/streaming
algorithms have been developed for tensor tracking (see [1]
for a comprehensive survey). Among them, O-BTD-RLS [12]
and OnlineBTD [13] are capable of streaming BTD. Partic-
ularly, O-BTD-RLS adopts an iterative reweighted least-
squares solver to track the underlying rank-(Lr, Lr,1) block
terms of streaming tensors. The tracker promotes sparsity of
tensor factors by using a sum of their ℓ1,2-norm as a regu-
larization. O-BTD-RLS also has the potential to reveal the
number of block terms and their rank with time. However,
its design is specifically optimized for tracking tensors of
which the last mode increases in size over time that limits
its applications in practice.1 OnlineBTD, on the other hand,
uses the stochastic gradient descent (SGD) method to in-
crementally estimate the low rank-(N,M,P ) block terms.
To accelerate the online processing, it adopts (i) a fast ma-
tricized tensor times Kronecker product, (ii) an efficient
pseudo-inverse operator based on LU factorization, and (iii) a
dynamic programming strategy to avoid the duplicated Kro-
necker products. Similar to O-BTD-RLS, OnlineBTD works
under the assumption that the last tensor factor evolves over
time. However, its performance (i.e., estimation accuracy
and convergence behavior) is not always good especially in
noisy and nonstationary environments, see Fig. 4 for an ex-

1In applications of tensor-based blind source separation or system identi-
fication for example, the mixing matrix of a fixed size is often recast into the
last tensor factor of the corresponding rank-(Lr, Lr,1) BTD, see [6, 7, 14].



ample. In parallel, there also exist several other methods
for factorizing tensors under the BTD format, such as BTD-
ALS [5], BTD-AGL [9], BTD-HIRLS [4], BBTD [15], and
NBTD-HIRLS [16]. However, all of the latter methods work
in batch mode which means they operate and process over
all or most of the stored data at once. Accordingly, they may
not be suitable for streaming situations where data streams
are continuously generated and collected over time. To over-
come these drawbacks above, we propose in this study a
new efficient and effective adaptive BTD method which ex-
hibits competitive tracking performance even in noisy and
time-varying environments.

Notations: Lowercase, boldface lowercase, boldface cap-
ital, and bold calligraphic letters denote scalars (e.g., x), vec-
tors (e.g., x), matrices (e.g., X), and tensors (e.g., X ), re-
spectively. Symbols ○, ⊗, ⊙, ⊞ denote the outer product,
Hadamard product, Khatri-Rao product, and tensor concate-
nation, respectively. Rank-(Lr, Lr,1) BTD decomposition is
denoted by [[.]]. We denote by ∥.∥F the Frobenius norm.

2. PROBLEM FORMULATION

2.1. Rank-(Lr, Lr,1) BTD

Consider a 3rd-order tensor X ∈ RI×J×K in batch setting. Its
rank-(Lr, Lr,1) BTD factorization is expressed by [3]

X =
R

∑
r=1

Hr ○ cr =
R

∑
r=1
(ArB

⊺
r) ○ cr, (1)

where R is the number of block terms, Hr =ArB
⊺
r ∈ RI×J is

a low-rank matrix with 2 factors Ar ∈ RI×Lr and Br ∈ RJ×Lr ,
and cr ∈ RK×1 is a non-zero vector. Let A = [A1, . . . ,AR],
B = [B1, . . . ,BR], and C = [c1, . . . ,cR]. For short, we
denote by X = [[A,B,C]] the BTD model (1).

As the model (1) is trilinear with respect to A, B, and C,
the “workhorse” approach for computing BTD is the alter-
nating least-squares (ALS) method [5]. Like CP/PARAFAC,
the BTD in (1) is essentially unique under mild conditions [3]
which is a useful property for several applications, such as
blind source separation [14].

Lemma 1 (Theorem 4.1 in [3]). When A and B are full col-
umn rank, and C does not have proportional columns, (1) is
essentially unique in the sense that there are only two indeter-
minacies of [[A,B,C]], including the order of R blocks and
the scale of Hr and cr.

The full column rank condition in Lemma 1 implies that
min(I, J) ≥ ∑R

r=1Lr which is easy to verify and achievable
in practice when Lr and R are relatively small.

2.2. Streaming Rank-(Lr, Lr,1) BTD

In this work, we consider a streaming tensorX (t) ∈ RI×J(t)×K

of which the mode 2 evolves with time (i.e., I and K are fixed
while J(t) is increasing over time). Suppose that at time t,

we collect a block of data Y(t) ∈ RI×W (t)×K with W (t) ≥ 1.
Hereby, the underlying tensorX (t) is obtained by appending
Y(t) to old dataX (t − 1), i.e.,X (t) = X (t − 1) ⊞Y(t) and
J(t) = J(t − 1) +W (t), see Fig. 1 for an illustration.

Thanks to (1), we can express X (t) and its block Y(t)
under the rank-(Lr, Lr,1) BTD format as

X (t) = [[A(t),B(t),C(t)]], (2)
Y(t) = [[A(t),B(t),C(t)]], (3)

where B(t) = [B1(t),B2(t), . . . ,BR(t)] is the t-th block of
rows of B(t) ∈ RJ(t)×∑R

r=1 Lr . The problem of tensor tracking
under the rank-(Lr, Lr,1) BTD format is stated as follows.

Problem: At time t, given a block of new dataY(t) and
old estimate of X (t − 1) = [[A(t − 1),B(t − 1),C(t −
1)]], we want to incrementally estimate A(t), B(t), and
C(t) of X (t) = X (t − 1) ⊞Y(t) in time.

Our main goal is to develop an efficient adaptive algo-
rithm for tracking A(t), B(t) and C(t) effectively. To sup-
port our development in Section III, we suppose that the BTD
model (2) is either fixed or changing slowly over time, and the
number of blocks R and their rank-(Lr, Lr,1) are available.

3. PROPOSED METHOD

In this section, we introduce a novel tensor tracking algo-
rithm for tracking the underlying low rank-(Lr, Lr,1) BTD
of streaming tensors, called streaming BTD (SBTD). Thanks
to the alternating optimization framework, we first update
B(t), given old estimations of A(t − 1) and C(t − 1), then
estimate A(t) and C(t) given A(t−1),C(t−1) and B(t). In
what follows, we describe the way how to track these factors
over time. Complexity analysis of SBTD is then provided.

3.1. Estimation of B(t)

Generally, B(t) is obtained by solving the following problem

B(t) = argmin
B
∥X (t) − [[A(t − 1),B,C(t − 1)]]∥

2

F
. (4)

As the size of B(t) increases with time, minimizing (4) di-
rectly is possible but turns out to be inefficient when t is large.

Here, we exploit the fact that during the tracking process,
the two factors of fixed size A and C do not change much
between two consecutive time instances, i.e., A(t) ≊A(t−1)
and C(t) ≊C(t − 1) for almost t. Accordingly, we obtain
X (t) = X (t − 1) ⊞Y(t)
= [[A(t − 1),B(t − 1),C(t − 1)]] ⊞ [[A(t),B(t),C(t)]]
≊ [[A(t), [B(t − 1)⊺ ∣ B(t)⊺]⊺ ,C(t)]]. (5)

In parallel, when B(t − 1) satisfies the uniqueness condition
of BTD in Lemma 1 (i.e., full rank), adding a block of row
vectors to B(t−1) results in a new matrix which still satisfies
this condition, thanks to Lemma 2.



Lemma 2. Given a matrix Z ∈ Rn×m of rank r ≤min(m,n).
Adding any row vector b to Z does not decrease its rank

rank ( [Z⊺ ∣ b⊺]⊺ ) ≥ r ∀b ∈ R1×m. (6)

Proof. It is a corollary of Cauchy interlace theorem [17].

Together with (5), we can approximate B(t) as follows

B(t) ≊ [BP (t − 1)⊺ ∣ BP (t)⊺]
⊺
. (7)

Here, (.)P denotes the permutation operation according to
A(t) and C(t) to be presented later in Sec. 3.2 and the block
B(t) is derived from the following minimization

B(t) = argmin
B

∥Y(t) − [[A(t − 1),B,C(t − 1)]]∥
2

F
. (8)

To solve (8), we can recast it into the following form

B(t) = argmin
B

∥Y(2)(t)⊺ −HB(t)B⊺∥
2

F
, (9)

where Y(2)(t) is the mode-2 unfolding matrix of Y(t) and
HB(t) = [c1(t − 1)⊗A1(t − 1)∣ . . .

. . . ∣cR(t − 1)⊗AR(t − 1)]. (10)
The minimizer of (9) is then obtained by applying a regular-
ized least-squares (LS) solver

B(t) = [(HB(t)⊺HB(t) + αI)
−1
HB(t)⊺Y(2)(t)⊺]

⊺
, (11)

where the inclusion of a small regularization parameter α > 0
is to avoid pathological cases in practice. Note that, as HB(t)
is of Kronecker structure, we can apply the randomized LS
method to speed up the computation of B(t) when dealing
with large-scale tensors. See our companion works on stream-
ing CP and Tucker decompositions in [18, 19] for examples.

3.2. Estimation of A(t) and C(t)

Given B(t) and old estimates A(t − 1) and C(t − 1), we
update A(t) and C(t) by solving the following minimization

{A(t),C(t)} = argmin
A,C

t

∑
τ=1

βt−τ∥Y(τ) − [[A,B(τ),C]]∥
2

F

+ ρ

2
(∥A∥2F + ∥C∥2F ), (12)

where 0 < β ≤ 1 is a forgetting factor aiming to reduce the
effect of old observations and ρ > 0 is a small regularization
parameter. Here, the first term of (12) measures the resid-
ual error between the observed value and the estimated value
of data blocks, while the second term of (12) is for avoiding
pathological cases in practice.

As both terms of (12) are convex, the alternating optimiza-
tion framework can be useful for updating A(t) and C(t):

min
A

t

∑
τ=1

βt−τ∥Y(1)(τ) −AWA(τ)∥
2

F
+ ρ

2
∥A∥2F , (13)

min
C

t

∑
τ=1

βt−τ∥Y(3)(τ) −CWC(τ)∥
2

F
+ ρ

2
∥C∥2F , (14)

where WA(τ) and WC(τ) are defined as

WA(τ) = [c1(t − 1)⊗B1(τ)∣ . . .

. . . ∣cR(t − 1)⊗BR(τ)]
⊺
, (15)

WC(τ) = [(A1(t − 1)⊙B1(τ))1L1
∣ . . .

. . . ∣(AR(t − 1)⊙BR(τ))1LR
]
⊺
, (16)

with 1L = [1,1, . . . ,1]⊺ of size L × 1. In particular, taking
the natural gradient of (13) and (14) to zero, A(t) and C(t)
can be estimated efficiently over time. Due to the space lim-
itation, we present the update rule of A(t) only and omit its
derivation for brevity:

A(t) =DA(t)(SA(t) + ρI)
−1
, (17)

where DA(t) and SA(t) are recursively updated as follows

DA(t) = βDA(t − 1) +Y(1)(t)WA(t), (18)
SA(t) = βSA(t − 1) +WA(t)⊺WA(t). (19)

The update rule (17) is inexpensive as it uses simple matrix
multiplications and additions, and an inverse operation of a
small size matrix SA(t) + ρI (i.e., its size is (∑R

r=1Lr) ×
(∑R

r=1Lr) independent of data dimension, so its inverse is
not expensive). At t = 0, we set DA(0) and SA(0) to zeros.

We update C(t) in the same way as A(t).

3.3. Computational complexity

Let D = IK, S = ∑R
r=1Lr, and assume W (t) =W for all t.

At time t, the estimation of B(t) requires O(DS +WDS2)
flops. The update of A(t) comes from the computation of
WA(t), DA(t), and SA(t) which costs O(W (KS +DS +
KS2)) flops in total. Similarly, the computation of C(t)
costs O(W (IS + DR + IR2)) flops. As D > I + K and
S > R, the overall complexity of SBTD is O(WDS2) flops.

4. NUMERICAL EXPERIMENTS

In this section, we conduct some simulations to demonstrate
the tracking ability of SBTD w.r.t. three aspects: (i) effect of
random noise on its performance, (ii) its effectiveness in time-
varying environments, and (iii) performance comparison with
the state-of-the-art adaptive BTD algorithms.

Experiment setup: At each time t, Y(t) is generated un-
der the following model
Y(t) = [[A(t),B(t),C(t)]] + σnN (t) ∈ RI×W×K . (20)

Here, B(t) ∈ RW×∑R
r=1 Lr is a Gaussian matrix of zero-mean

and unit-variance entries, N (t) ∈ RI×W×K is a noise tensor
whose entries are i.i.d. from N (0,1). The two factors A(t)
and C(t) are varied as follows

A(t) =A(t − 1) + εNA(t) ∈ RI×∑R
r=1 Lr , (21)

C(t) =C(t − 1) + εNC(t) ∈ RK×R, (22)
where ε is a time-varying factor, NA(t) and NC(t) are two
matrices of standard normal random Gaussian noises.
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Fig. 2: Tracking ability of SBTD in noisy environments –
effect of the noise level σn.

To measure the tracking ability of algorithms, we use the
following evaluation metric

RE(Ytr,Yes) = ∥Ytr −Yes∥F /∥Ytr∥F , (23)
where Ytr (resp. Yes) refers to the ground truth (resp. esti-
mate).

Noisy Environments: By varying the value of σn, we can
evaluate the effect of noise on the performance of SBTD. We
select the noise level σn among {10−1,10−2,10−3} and then
measure the performance of SBTD on a streaming tensor of
size 20 × 2500 × 30 with three block terms (R = 3). Partic-
ularly, these blocks are composed of factors of rank L1 = 2,
L2 = 3, and L3 = 4, respectively. At each time t, we col-
lect and process a data batch of size W = 5. The time-varying
factor is set to ε = 10−4 and an abrupt change is specifically
created at t = 300 to evaluate how fast SBTD converges. We
fix the forgetting factor and two regularization parameters re-
spectively at β = 0.9 and α = ρ = 10−4 in all testing cases.

The experimental results are illustrated in Fig. 2. We can
see that SBTD is capable of tracking the underlying rank-
(Lr, Lr,1) BTD of streaming tensors in noisy environments.
Indeed, the noise level σn does not affect the convergence rate
of SBTD but its steady-state error. The lower the value of σn

is, the better the estimation accuracy SBTD achieves.
Nonstationary Environments: Next, we investigate the

tracking ability of SBTD in dynamic environments by vary-
ing the time-varying factor ε in the range [10−4,10−1]. Here,
we reuse the same experiment setup as in the previous task,
except the noise level which is fixed at σn = 10−3. Similar to
the effect of noise, the convergence rate of SBTD is not much
affected by ε but its estimation accuracy only, see Fig 3.

Performance Comparison: Finally, we compare SBTD
with OnlineBTD [13] and BTD-ALS [5].2 As OnlineBTD re-
quires a training set of data samples, 10% of temporal slices
(data streams) are used to initialize its warm start. Meanwhile,
BTD-ALS is a batch BTD algorithm that usually processes
data in batches/blocks. Thus, we define a window of 20 suc-

2As O-BTD-RLS [12] is not designed for dealing with streaming tensors
of which the second mode evolves with time, we omit it here since we cannot
have a fair performance comparison between SBTD and O-BTD-RLS.
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Fig. 3: Tracking ability of SBTD in time-varying environ-
ments – effect of the time-varying factor ε.

50 100 150 200 250 300
10

-4

10
-2

10
0

Fig. 4: Performance comparison among BTD algorithms.

cessive tensor slices as a batch and use old estimation of fac-
tors as a starting point for BTD-ALS at time t. In this task, we
still use the same synthetic tensor above but with 1500 tem-
poral slices, i.e., we consider the first 300 time instances. The
noise level and time-varying factor are set to σn = 10−3 and
ε = 10−4, respectively. As can be seen from Fig. 4, our algo-
rithm outperforms OnlineBTD and BTD-ALS in this context.
The tracking error of OnlineBTD seems unstable and fluctu-
ates widely, while that of BTD-ALS tends to increase as time
passes. Only SBTD converges to steady-state error.

5. CONCLUSIONS

In this paper, we have addressed the problem of streaming
block-term decomposition. A novel adaptive algorithm called
SBTD has been proposed to incrementally estimate the under-
lying rank-(Lr, Lr,1) block terms of streaming tensors over
time. Experimental results show that SBTD is capable of
tensor tracking in both noisy and time-varying environments
with high estimation accuracy, and it outperforms other adap-
tive BTD algorithms. In future works, it would be of great
interest to further extend SBTD for tracking the number of
blocks and their rank with time. Another interesting direction
would be to develop a robust variant of SBTD for dealing with
data corruptions and missing observations.
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