
1

OPIT: A Simple but Effective Method for Sparse
Subspace Tracking in High-dimension and

Low-sample-size Context
Thanh Trung Le, Karim Abed-Meraim, Fellow, IEEE, Nguyen Linh Trung, Senior Member, IEEE, and Adel

Hafiane, Member, IEEE.

Abstract—In recent years, sparse subspace tracking has at-
tracted increasing attention in the signal processing community.
In this paper, we propose a new provable effective method called
OPIT (which stands for Online Power Iteration via Thresholding)
for tracking the sparse principal subspace of data streams over
time. Particularly, OPIT introduces a new adaptive variant of
power iteration with space and computational complexity linear
to the data dimension. In addition, a new column-based thresh-
olding operator is developed to regularize the subspace sparsity.
Utilizing both advantages of power iteration and thresholding
operation, OPIT is capable of tracking the underlying subspace
in both the classical regime and high dimensional regime. We
also present a theoretical result on its convergence to verify
its consistency in high dimensions. Several experiments are
carried out on both synthetic and real data to demonstrate the
performance of OPIT.

Index Terms—Sparse subspace tracking, data streams, high
dimensions, thresholding, power iteration.

I. INTRODUCTION

Subspace tracking (ST) is a fundamental problem in adaptive
signal processing with various applications in sensor array
processing, wireless communication, image/video processing,
and more [1]. It involves the task of tracking a low-dimensional
subspace that can effectively represent data streams over time.
Specifically, when the underlying subspace can be represented
by a basis matrix consisting of sparse vectors, it is referred
to as a sparse subspace. In such cases, ST becomes sparse
subspace tracking (SST), which has gained significant interest
in recent applications due to the increasing dimensions of
data. By leveraging the advantages of sparse representation,
SST enables more efficient modeling and analysis of high-
dimensional streaming data.

In the literature, most subspace tracking methods are de-
signed to estimate the underlying subspace from the sample
covariance matrix (SCM); see [1]–[4] for good surveys. How-
ever, many rigorous theoretical results in random matrix theory

Thanh Trung Le is with the VNU University of Engineering and Technology,
Hanoi, Vietnam and the University of Orléans, INSA CVL, PRISME, France.
Email: thanhletrung@vnu.edu.vn.

Karim Abed-Meraim is with the University of Orléans, INSA CVL,
PRISME, France, and the Academic Institute of France. Email: karim.abed-
meraim@univ-orleans.fr

Nguyen Linh Trung (corresponding author) is with the VNU University of
Engineering and Technology, Vietnam. Email: linhtrung@vnu.edu.vn.

Adel Hafiane is with the University of Orléans, INSA CVL, PRISME,
France. Email: adel.hafiane@insa-cvl.fr.

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

(e.g., [5]–[7]) indicated that the SCM is not a good estimator of
the population (actual) covariance matrix in high-dimension,
low-sample-size (HDLSS) contexts where datasets are mas-
sive in both dimension n and sample size T , and typically
n/T → c ∈ (0,∞]. Without further structural knowledge about
the data, ST methods turn out to be inconsistent in such a
regime. Interestingly, the consistency of covariance estimation
can be guaranteed under suitably structured sparsity regulariza-
tions, such as [8]–[11]. As a result, several effective methods
have been proposed for sparse subspace estimation; see [12]–
[15] for examples and [16], [17] for comprehensive surveys.
However, in the adaptive (online) setting, there have been
only few studies on SST thus far. Moreover, the existing SST
methods suffer from certain limitations. Some of these methods
are designed specifically for tracking rank-1 subspaces, which
restricts their applicability to more general subspace tracking
scenarios. Additionally, certain methods only support row
sparsity which may not always align with practical situations.
Furthermore, these existing methods often demonstrate incon-
sistencies when confronted with high-dimensional data. For
detailed discussions, please refer to section II.

Contributions: In this paper, we introduce a new provable
adaptive algorithm called OPIT (OPIT stands for Online Power
Iteration via Thresholding) for SST.1 OPIT overcomes the
limitations mentioned earlier and offers several appealing
features as compared to state-of-the-art SST algorithms. By
leveraging the benefits of power iteration (PI) and thresholding
methods, OPIT demonstrates improved performance. One key
advantage of OPIT is its efficient use of past observations in
a recursive manner while maintaining linear space complexity.
As a result, OPIT achieves faster convergence rates and better
estimation accuracy compared to existing PI-based SST meth-
ods. Additionally, OPIT has the capability to track rank-r sub-
spaces and handle various sparsity scenarios, including row-
sparse, elementwise-sparse, and local region-sparse subspaces.
Notably, OPIT accurately tracks the sparse subspace in both
classical and HDLSS regimes thanks to a newly introduced
thresholding operator. Our theoretical analysis confirms the
guaranteed convergence of OPIT with this thresholding op-
eration under mild conditions. Moreover, OPIT is flexible and
adaptable for different scenarios. For instance, its procedure
can be adjusted to handle multiple incoming data streams or
incorporate a forgetting factor, allowing the discounting of
distant observations and enhancing OPIT’s tracking ability in

1A short part of this work has been presented at ICASSP 2022 [18].



2

dynamic environments. Additionally, by recasting its update
rule into a column-wise update and employing the deflation
transformation, we introduce a computationally efficient vari-
ant of OPIT called OPITd. This variant has lower complexity
in terms of computation and memory storage, making it
particularly suitable for tracking high-dimensional and large-
scale data streams.

Paper Organization: The rest of the paper is organized
as follows. Section II discusses the related works. Section III
formulates the SST problem. Section IV presents the proposed
OPIT algorithm and its variant OPITd, while Section V estab-
lishes its convergence analysis. Section VI provides several
experiments to demonstrate the performance of the proposed
algorithms as compared to state-of-the-art algorithms. Sec-
tion VII concludes the paper. For easy reference, Table I
summarizes frequently used acronyms and notations in this
paper.

TABLE I: Acronyms and notational conventions

Acronyms
ST Subspace tracking
SST Sparse ST
SCM Sample covariance matrix
PCA Principal component analysis
HDLSS High-dimension, low-sample-size
PAST Projection approximation subspace tracking
PI Power iteration
API Approximated PI
DPM Data projection method
RLS Recursive least-squares
SNR Signal to noise ratio
Notations
x,x, X, & X or X scalar, vector, matrix, and set/subset/support
xi or x(i) i-th entry of x
xi,j or X(i, j) (i, j)-th entry of X
X(i, ∶),X(∶, j) i-th row and j-th column of X
X⊺, X−1, X# transpose, inverse, and pseudo-inverse of X
λmax(X), λmin(X) largest and smallest singular values of X
∥⋅∥p, ∥⋅∥F ℓp-norm and Frobenius norm
∥X∥0 number of non-zero elements in X

κ(X) condition number of X equal to λmax(X)
λmin(X)

⌊x⌉ integer closest to x
max{x, y},min{x, y} maximum and minimum of x and y
(⋅)⊥ orthogonal (perpendicular) complement
E{⋅} expectation operator
Im identify matrix of size m
N(µ,σ2

) normal distribution of mean µ and variance σ2

N(µ,Σ)
multivariate normal distribution of mean vector µ
and covariance matrix Σ

θ(X,Y )
canonical angle (the largest principal angle)
between two subspaces span(X) and span(Y )

II. RELATED WORKS

In the literature, some online algorithms have been intro-
duced for sparse subspace tracking [4]. A few of them are
based on a two-stage approach in which one first utilizes a
standard ST algorithm to estimate the underlying subspace
and then seeks a sparse basis of the estimation under some
sparsity criteria. Particularly in [19]–[21], several variants of
the well-known Projection Approximation Subspace Track-
ing (PAST) [22] and Fast Approximated Power Iteration
(FAPI) [23] were proposed to track the sparse principal sub-
space. Another good approach is to regularize the objective

function that aims to account for the sparse basis. In [24], the
authors modified the objective function of PAST by adding
a ℓ1-norm regularization term on the subspace basis matrix
and then proposed a new robust variant of PAST called ℓ1-
PAST to optimize it. Similar to ℓ1-PAST, the authors in
[25] also introduced another adaptive algorithm using ℓ1-norm
minimization called SPCAur (Sparse PCA) for sparse subspace
tracking. SPCAur adopts the stochastic gradient descent on
Grassmann manifolds, and it is capable of tracking the under-
lying sparse subspace from incomplete observations. In [26],
a Bayesian-based algorithm called Online Variational Bayes
Subspace Learning (OVBSL) was proposed to deal with the
sparsity constraint on the subspace basis matrix. An advantage
of OVBSL is that it is fully automated, i.e., no finetuning
parameter is required. However, these algorithms are only
effective in the classical regime where the sample size is much
larger than the dimension, i.e., n/T → 0 asymptotically.

Through the lens of machine learning and statistics, SST
is generally referred to as the problem of online/streaming
sparse PCA. In [27], the authors introduced an Oja’s algorithm
with Iterative Soft Thresholding (OIST) for online sparse PCA.
Its convergence, steady-state, and phase transition were also
derived to investigate the use of OIST in high dimensions.
OIST is, however, designed only for rank-1 sparse subspaces.
In [28], another streaming sparse PCA (SSPCA) algorithm was
proposed and could estimate rank-r subspaces. Specifically,
this algorithm uses a simple row truncation operator, which
sets rows whose scores are smaller than a threshold to zero,
for tracking the sparse principal subspace over time. However,
this truncation operator is only designed for subspaces with a
row-sparse support (i.e., all eigenvectors must share the same
sparsity patterns) which may not always be met in practice.
Indeed, it turns out to be ineffective for a sparse subspace with
another support (e.g., elementwise sparsity). Its performance
in terms of estimation accuracy is typically lower than other
SST algorithms, see Fig. 5 and Fig. 6 for illustration.

It is worth noting that algorithms in [20], [21], OIST [27],
and SSPCA [28] can be viewed as online variants of a clas-
sical method for principal subspace estimation, namely power
iteration (PI). In the literature, there exist other power-based
subspace trackers, and they can be broadly categorized into the
following classes, Oja-types [29], [30], Natural Power (NP)-
types [31], [32], Data Projection Method (DPM)-types [33],
[34], and Approximated PI (API)-types [23], [35]. Specifically,
all of them are designed for tracking the principal subspace of
the SCM which is, however, not a good estimator of the true
data covariance matrix in high dimensions. Accordingly, they
turn out to be inconsistent estimators in the HDLSS regime.

In parallel, recent years have also witnessed considerable
research advances on robust ST (RST) which aims to track
the underlying subspace in the presence of data corruption [2]–
[4]. For example, several RST algorithms were developed to
handle sparse outliers, such as Grassmannian Robust Adap-
tive Subspace Tracking Algorithm (GRASTA) [36], Paral-
lel Subspace Estimation and Tracking by Recursive Least
Squares (PETRELS)-types [37]–[39], and Recursive Projected
Compressive Sensing (ReProCS)-types [40], [41]. To deal



3

with impulsive noises, three potential approaches are robust
statistics [42], [43], adaptive Kalman filtering [44], [45], and
weighted RLS [38], [46]. Very recently, α-divergence was
specifically exploited to bolster the tracking ability of the well-
known PAST and FAPI trackers in noisy and contaminated
environments [47], [48]. However, none of them are designed
for subspace tracking in the HDLSS context.

III. PROBLEM FORMULATION

Assume that at time t, we collect a data sample xt ∈ Rn

satisfying the standard signal model

xt = ℓt +nt. (1)

Here, ℓt ∈ Rn is a signal living in a low-dimensional subspace
spanned by a sparse matrix A ∈ Rn×r with r < n, i.e., ℓt =
Awt, where wt ∈ Rr is a weight vector. The vector nt ∈ Rn

represents a random noise, which is independent of wt. We
assume that both wt and nt follow Gaussian distributions,
wt ∼ N(0, σ

2
wIr) and nt ∼ N(0, σ

2
nIn), respectively.2

Sparse subspace tracking problem can be stated as follows:

SST Problem: Given a data stream {xt}
T
t=1, we aim

to estimate a sparse principle subspace basis A that
approximately spans the signals {ℓt}Tt=1.

Generally, the underlying subspace A can be extracted from
an estimated version of the population covariance matrix

C = E{xtx
⊺
t } = σ

2
wAA⊺ + σ2

nIn. (2)

Applying eigenvalue decomposition (EVD) on C yields

C
EVD
= UΛU⊺ = [Us Un] [

Λs 0
0 Λn

] [
U⊺s
U⊺n
] . (3)

Here, Λ ∈ Rn×n is a diagonal matrix whose diagonal elements
are eigenvalues of C sorted in decreasing order and U ∈ Rn×n

contains the corresponding eigenvectors. Accordingly, Us ∈
Rn×r and Un ∈ Rn×(n−r) represent the principal subspace
and the minor subspace of C, respectively. The orthogonal
projection matrix of the sparse principal subspace is unique
(i.e., UsU

⊺
s = AA#), so A can be obtained as A = UsQ

∗

with

Q∗ = argmin
Q∈Rr×r

∥UsQ∥0 s.t. Q is full-rank, (4)

where ∥⋅∥0 promotes the sparsity on A. In several applications,
we often emphasize the principal subspace rather than its
specific basis, such as dimensionality reduction [49] and array
processing [50]. In this work, our main objective is to track the
principal (signal) subspace of A while the sparsifying step (4)
is optional.

Most state-of-the-art SST algorithms estimate the principal
subspace of CT = 1/T ∑

T
t=1 xtx

⊺
t [4]. However, in a high-

dimensional regime where n/T ↛ 0 a.s., CT is a poor

2In an adaptive scheme, the matrix A may be slowly varying with time,
i.e., A = At. The Gaussian distribution assumption is employed for both
wt and nt to facilitate our convergence analysis, as detailed in Section V.
Our algorithm is capable of successfully estimating the underlying subspace
as well as tracking its variation over time in other settings. For illustrative
examples, please refer to Section VI.

estimator of C. This limitation in an adaptive scheme is not
necessarily due to a data shortage but to the time variation
which forces us to use a limited window of time instead of
all the data. Particularly, it has been shown that CT is not
a consistent estimate of C in the HDLSS regime, e.g., [51]–
[53]. As a result, most of SST algorithms are ineffective in
high dimensions, as illustrated in Fig. 6.

On the other hand, under certain conditions, it is proved in
[8], [9], [54] that

∥C − τ(CT , ⋅)∥2 → 0 a. s. as T →∞, (5)

where τ(CT , ⋅) is an appropriate thresholding operation on
CT . Thresholding serves as a regularization for covariance
matrices, aiming to reduce their variability and simplify their
structure by eliminating redundant parameters, and hence,
improve the precision and consistency of the covariance es-
timator. In the HDLSS regime, the sample covariance matrix
CT may contain unwanted by-products, such as correlations
between the signal and noise vectors, even when they are
expected to be independent. Therefore, CT may not accurately
reflect the true underlying covariance structure. By applying
thresholding, we can effectively capture the dominant patterns
and significant relationships among variables. It is achieved by
shrinking or eliminating small and less reliable components
in CT . By doing so, thresholding can mitigate the undesired
effects associated with HDLSS, enhancing the accuracy and
consistency of the covariance estimator. Thanks to (5), in the
next section, we derive a novel adaptive (online) algorithm
based on the power iteration and thresholding techniques that
are capable of tracking the sparse principal subspace in both
the classical regime and the HDLSS regime.

IV. PROPOSED METHODS

In this section, a novel effective algorithm using threshold-
ing is developed for sparse subspace tracking. This algorithm
is dubbed as OPIT which stands for Online Power Iteration
via Thresholding. We next derive a fast variant of OPIT called
OPITd with lower complexity, thanks to the deflation transfor-
mation. Some remarks on OPIT and OPITd are discussed in
the following subsection.

A. OPIT Algorithm

We first recall the main steps of the standard power iteration
(PI) method we primarily leverage in order to develop our
OPIT algorithm for computing the dominant eigenvectors of
Ct. At the ℓ-th iteration, PI updates (i) Sℓ ← CtUℓ−1 and (ii)
Uℓ ← QR(Sℓ), where Uℓ is the Q-factor of QR factorization
of Sℓ. PI starts from an initial matrix U0 ∈ Rn×r and
returns an orthonormal matrix UL, where L is the number
of iterations [1].

In an adaptive scheme, the iteration step of PI can coin-
cide with the data collection in time. At time t, the sample
covariance matrix Ct can be recursively updated by Rt =
Rt−1 + xtx

⊺
t and Ct = t−1Rt. As streaming data can vary

with time, we propose to use a forgetting factor β (0 < β ≤ 1)
to discount the impact of old observations exponentially. The



4

Algorithm 1: OPIT
INPUT: {xt}

T
t=1,xt ∈ Rn, target rank r, a forgetting factor

0 < β ≤ 1, window of length W ≥ 1, and a thresholding factor k:

k = {
⌊(1 − ωsparse)n⌉ if ωsparse is given,
⌊10r logn⌉ if ωsparse is unknown,

where ωsparse is the sparsity level of the sparse basis (i.e., the
percentage of zero-valued elements in the basis matrix).

INITIAL: Any U0 ∈ Rn×r , S0 = 0n×r,E0 = 0r×r

MAIN PROGRAM:

PROCEDURE
for t = 1,2, . . . , T /W do Complexity

Xt = [x(t−1)W+1, . . . ,xtW ] -
Zt = U

⊺

t−1Xt O(Wnr)

St = βSt−1Et−1 +XtZ
⊺

t O(nr2 +Wnr)

Ŝt = τ(St, k) // thresholding O(nr + rk log k)

Ut = {
QR(Ŝt)

Ŝt/∥Ŝt∥2

O(nr2)
O(nr2)

Et = U
⊺

t−1Ut O(nr2)

end for
OUTPUT: Ut ∈ Rn×r

// THRESHOLDING Ŝt = τ(St, k)

PROCEDURE
for i = 1,2, . . . , r do

si = St(∶, i)
Find the set Tt ⊂ [1,2, . . . , n] containing indices of k
strongest (absolute value) elements of si

Form Ŝt(∶, i) = ŝi, where ŝi(j) = {
si(j) if j ∈ Tt
0 if j ∉ Ttend for

OUTPUT: Ŝt ∈ Rn×r

underlying subspace Ut is then derived from spectral analysis
of Rt which is updated continuously by

Rt = βRt−1 +xtx
⊺
t . (6)

Together with the fact that QR(RtUt−1) = QR(CtUt−1), we
can rewrite the first step of PI as follows

St =RtUt−1 = βRt−1Ut−1 +xtz
⊺
t , (7)

where zt = U
⊺
t−1xt.

We can utilize the previous subspace as a warm start in the
tracking process. Hereby, a key step at each time t is to project
Ut onto the column space of Ut−1, i.e.,

Ut = Ut−1Et +Ut−1,⊥Ft, (8)

where Ut−1,⊥ is the orthogonal complement of Ut−1,3 Et =
U⊺t−1Ut and Ft = U⊺t−1,⊥Ut are coefficient matrices. Specif-
ically, the first term of (8) represents the “old” information
in Ut, while the second one is its distinctive new information.
Substituting Ut−1 according to (8) (one time-step delayed) into
(7) results in

St = βSt−1Et−1 + βRt−1Ut−2,⊥Ft−1 +xtz
⊺
t . (9)

The complement of projecting xt into the subspace Ut−1 at
time t can be given by

yt = (I −Ut−1U
⊺
t−1)xt = xt −Ut−1zt. (10)

3The columns of Ut−1,⊥ constitute an orthonormal basis for the orthogonal
complement of the column span of Ut−1.

Here, yt is orthogonal to the column space of Ut−1. For short,
we denote ∆Ut−1 = Ut−2,⊥Ft−1. Based on (10), we obtain
another expression of ∆Ut−1 as follows

∆Ut−1 = ȳt−1h
⊺
t−1 where ht−1 = U

⊺
t−1ȳt−1, (11)

where ȳt−1 = yt−1/∥yt−1∥2. See Section A in our supplemen-
tary document for its derivation. Under the assumption that
the underlying subspace is fixed or slowly varying with time
(i.e., Ut−2U

⊺
t−2 ≃ Ut−1U

⊺
t−1), ȳt−1 is nearly orthogonal to the

subspace spanned by Ut−1. In other words, angles between
ȳt−1 and columns of Ut−1 are very close to π/2, and hence,
the norm of ht−1 in (11) is very small. Therefore, ∆Ut−1
and Rt−1∆Ut−1 are negligible and can be ignored during the
tracking process without any major performance degradation.
It stems from the fact that the presence of a small perturbation
does not really affect the performance of power methods [55].
Accordingly, a good approximation to (9) can be given by

St ≃ βSt−1Et−1 +xtz
⊺
t . (12)

In this work, we utilize the threholding operator τ(⋅, ⋅) on
the update (12) in the following manner

Ŝt
∆
= τ(St, k), (13)

where the thresholding factor k can be determined as in
Algorithm 1. Here, Ŝt is computed from St by keeping the k
strongest (absolute value) elements in each column of St and
setting the remaining ones to zero. Then, the second step of
PI is replaced with

Ut =

⎧⎪⎪
⎨
⎪⎪⎩

QR(Ŝt) if orthonormalization,
Ŝt/∥Ŝt∥2 if normalization.

(14)

By definition, τ(⋅, ⋅) in (13) is a very versatile operator that
can be applied for several sparsity scenarios, e.g., row-sparse,
elementwise-sparse, and local region-sparse. Accordingly, it
makes OPIT adaptable and flexible in many tracking cases.
More importantly, with this thresholding operation, we are able
to establish the consistency of OPIT in high dimensions which
is currently challenging the state-of-the-art subspace tracking
methods, see Section V for details.

The OPIT algorithm introduces the window parameter W .
Here, the inclusion of W is useful in some applications where
we often collect multiple data samples instead of a single
sample at each time t. The main steps of OPIT are summarized
in Algorithm 1.

Complexity: For convenience of analysis, we suppose the
window length W = 1. Most of the steps in OPIT require
a computational complexity of O(nr2) except the thresh-
olding operator which costs O(nr + rk log k) operations.
Thus, the overall computational complexity of OPIT is
O(max{nr, k log k}r). In terms of memory storage, OPIT
operates in a recursive manner and does not need to go
back over past observations. Rather, it effectively utilizes the
information from previous data without the need to revisit
them. Hence, the proposed algorithm requires a space of nr
elements for saving the estimate Ut, while two buffer matrices
St and Et need only nr + r2 elements in total. In conclusion,
the space complexity of OPIT is linear in the data dimension n.



5

Algorithm 2: OPITd - OPIT with Deflation
INPUT: {xt}

T
t=1,xt ∈ Rn×1, target rank r, a forgetting factor

0 < β ≤ 1, and a thresholding factor k

k = {
⌊(1 − ωsparse)n⌉ if ωsparse is given,
⌊10r logn⌉ if ωsparse is unknown,

where ωsparse is the sparsity level of the sparse basis (i.e., the
percentage of zero-valued elements in the basis matrix).

INITIAL: Any U0 ∈ Rn×r , S0 = 0n×r,e0 = 1r×1.
// Denote ut,j = Ut(∶, j), st,j = St(∶, j), and et,j = et(j).
MAIN PROGRAM:

PROCEDURE
for t = 1,2, . . . , T do Complexity

for j = 1,2, . . . , r do
zt,j = u

⊺

t−1,jxt O(n)

st,j = βet−1,jst−1,j + zt,jxt O(n)
ŝt,j = τ(st,j , k) // thresholding O(n + k log k)
ut,j = ŝt,j/∥ŝt,j∥2 O(n)
et,j = u

⊺

t−1,jut,j O(n)

xt = xt −ut,ju
⊺

t,jxt // deflation O(n)

end for
end for
OUTPUT: Ut ∈ Rn×r

B. OPIT with Deflation

A low cost subspace tracking algorithm with linear complex-
ity of computation O(nr) is always preferable due to its fast
implementation time, especially for real-time applications.4

Here, we derive a fast variant of OPIT using deflation called
OPITd which can achieve linear complexity while preserving
the algorithm’s accuracy in most cases.

Our main motivation stems from the fact that if we apply
the following projection deflation

R̃t = (I −u1u
⊺
1)Rt(I −u1u

⊺
1), (15)

where u1 is the most dominant eigenvector of Rt, then the
eigenvectors of R̃t are exactly the same as Rt with eigenvalues
{0, λ2, . . . , λn−1, λn}. Here, λi is the ith strongest eigenvalue
of Rt. It means that the most dominant eigenvector of R̃t is
exactly the second most dominant eigenvector of Rt. As a re-
sult, once we estimate u1 by using a specific (online) method,
the second dominant eigenvector of Rt can be extracted
from R̃t in the same way as u1. Repeating this procedure
r times results in r leading eigenvectors of Rt. Interestingly,
in the case even when u1 is not a true eigenvector of Rt,
the projection deflation (15) still retains desirable properties
(e.g., positive semi-definiteness) that may be lost to other
deflation transformations [56]. Accordingly, we employ the
projection deflation (15) technique to OPIT in order to reduce
its complexity.

To update the jth column ut,j of Ut, for j = 1,2, . . . , r, in
sequential order, we replace the recursive rule (12) with5

st,j = βet−1,jst−1,j + zt,jxt, where (16a)
zt,j = u

⊺
t−1,jxt and et−1,j = u

⊺
t−2,jut−1,j , (16b)

4With respect to computational complexity, subspace tracking algorithms
are categorized into three groups: high complexity O(n2r) and O(n2

),
moderate complexity O(nr2), and low complexity O(nr). The last group,
which is referred to as fast algorithms, is the most important class for online
processing [1].

5Indeed, the update (16) corresponds to a rank-1 subspace version of (12).

where st,j , et−1,j , and zt,j are equivalent to St, Et−1, and zt
in (12) in the rank-1 subspace setting. Next, the thresholding
operation (13) becomes

ŝt,j = τ(st,j , k). (17)

Then, the column ut,j is simply derived from normalizing (17)
to unit length as ut,j = ŝt,j/∥ŝt,j∥2. At the end of the column-
wise update, we deflate the component ut,j from xt as xt ←
xt−ut,ju

⊺
t,jxt for the estimation of the next component ut,j+1.

The main steps of OPITd are summarized in Algorithm 2.
Complexity: The most expensive computation comes from

the thresholding operation τ(st,j , k) which requires a cost
of O(n + k log k). The remaining steps of OPITd require a
computational complexity of O(n) only. Accordingly, OPITd
costs a complexity of O(rmax{n, k log k}) for updating the
whole matrix Ut at each time t. In practice, we often set
the value of k to O(r logn) or ⌊(1 − ωsparse)n⌉ which might
be much smaller than n, and thus, the overall complexity of
OPITd is approximately linear to nr. OPITd also requires less
memory storage than OPIT. Specifically, its space complexity
is 2nr+r for storing Ut, St = [st,1,st,2, . . . ,st,r] of size n×r
and et = [et,1, et,2, . . . , et,r]

⊺ of size r × 1 at time t.

C. Discussions

1) Orthogonality and Sparsity: First, it is worth noting
that both OPIT and OPITd cannot enforce orthogonality and
strong sparsity in the estimate at the same time. On the one
hand, when the orthonormalization step using QR factorization
is applied, OPIT ensures orthogonality but reduces sparsity.
While the QR step improves the numerical stability of OPIT,
it affects sparsity, particularly when the target rank r is large.
In most cases, the Q-factor of the thresholded Ŝt is a dense
(orthogonal) matrix. However, if the columns of St exhibit
high sparsity, with mostly non-zero elements appearing in non-
overlapping sets within its row support, St tends to be nearly
orthogonal, resulting in a sparse Q-factor. This scenario occurs
when dealing with high-dimensional data streams character-
ized by a low rank (i.e., r ≪ n) and/or an extremely high
sparsity level ωsparse.

On the other hand, when the normalization step (e.g.,
Ut = Ŝt/∥Ŝt∥2) is computed instead of the QR step, OPIT
yields a sparse but non-orthogonal matrix Ut. This operation
has a complexity of O(nr), while the QR step costs O(nr2),
making it more computationally efficient, particularly when
the rank r is reasonably high as compared to the data di-
mension n. Importantly, with this simple normalization, OPIT
achieves excellent subspace estimation accuracy as compared
to state-of-the-art SST algorithms; please see Figs. 5 and 6 for
examples.

OPITd promotes sparsity; however, it may lead to a loss of
orthogonality among the estimated components. The deflation
used in OPITd enables efficient column-wise updates for track-
ing the underlying subspace and successfully achieving sparse
columns of Ut. This deflation approach has the advantage
to estimate the principal components while the matrix Ut in
OPIT can be any basis of the underlying subspace. Conse-
quently, OPITd has benefits in some applications such as data



6

whitening. By combining the thresholding operation τ(st,j , k)
and the column normalization, OPITd directly produces sparse
components in the estimate Ut at each time step. However,
the deflation process in OPITd can cause a loss of orthog-
onality and induces artifacts, which can adversely affect the
subsequent estimation of the next principal component [57]. In
scenarios where the target rank r is large, both the convergence
rate and estimation accuracy of OPITd are less than those of
OPIT, as illustrated in Fig. 9(b). In such cases, an effective
solution is to re-orthonormalize Ut after a period of time. This
approach not only addresses the issue but also enhances the
numerical stability of OPITd.

2) Parameter Selection: Now, let’s discuss how to choose
the value of k. Ideally, this factor should be an r × 1 vector
[k1, k2, . . . , kr], where kj represents the threshold level for
the jth column of the ground truth At. The value of kj should
ideally be close to the number of non-zero elements in At(∶, j).
In the case where the sparsity patterns of At are (nearly)
uniformly distributed, we can set k ≃ kj ≃ ⌊(1 − ωsparse)n⌉
when we have prior knowledge of the sparsity level ωsparse.
This threshold remains useful in other scenarios, particularly
in the HDLSS regime where the dimension n is significantly
larger than the number of non-zero elements in each column
of At, i.e., ωsparse is large. Consequently, the ratio ki/n is
small and close to kj/n, where i ≠ j, allowing us to assume
k/n ≈ kj/n ≈ 1−ωsparse. Even if this choice does not precisely
represent the true threshold level kj , it still captures the most
dominant elements in each column of At. As the presence of
a small error (caused by the choice of k) does not significantly
affect the estimation accuracy of power methods [55], the
performance of OPIT is still guaranteed. If the sparsity level
information is not available, we can tune this factor through
cross-validation or simply choose k = ⌊mr logn⌉ where m is
a positive number (we can choose the value of m in the range
[1,10] in practice).

The former approach is useful for batch sparse subspace es-
timation and sparse PCA [58]. However, it requires a validation
set and can be inefficient for tracking problems as it involves
multiple passes over the observations. The latter approach
is straightforward and performs reasonably well in practice.
It is based on rigorous evidence in [59]–[61] that sparse
subspace/PCA algorithms can recover the sparse principal
components in polynomial time when the expected number of
non-zero elements in each component is at mostO(

√
T / logn)

where T is the number of data samples. As shown later in
Section V, if T is on the order of O(ϵ−2n) where ϵ > 0
is a predefined accuracy, OPIT is guaranteed to converge.
Since logn <

√
T / logn for large n and T = O(ϵ−2n), we

can choose the thresholding factor k = O(logn) to achieve
this condition. A natural question arises here is whether the
tracking ability of OPIT deteriorates when the number of
selected elements is smaller than the actual number of non-
zero elements in At (e.g., it might occur due to low sparsity
levels). Fortunately, even in such cases, when the number of
observations is sufficiently large, OPIT still provides a good
estimate of At.

3) Novelty and Originality: Compared to state-of-the-
art power-based subspace tracking methods, OPIT has sev-
eral distinctive characteristics. While many power-based sub-
space trackers (such as, Oja-types, NP-types, and DPM-
types) estimate the underlying subspace using the update rule
Ut = orthnorm(Ut−1 + ηtxtz

⊺
t ) with ηt as the step size and

orthnorm(⋅) denoting an orthonormalization procedure [1],
OPIT distinguishes itself by incorporating Et−1 in (12), which
greatly bolsters its tracking ability. The matrix Et−1, com-
prising the cosines of the principal angles between successive
subspaces, acts as feedback during the tracking process. This
inclusion improves the adaptation rate and stability of OPIT,
particularly in nonstationary environments.

Approximated PI (API)-type subspace trackers, on the other
hand, rely on the projection approximation Ut ≃ Ut−1Θt,
where Θt is nearly orthogonal and close to an identity ma-
trix [23]. These trackers predict the current tracking perfor-
mance error and use it for estimating the true subspace. Specif-
ically, they follow the update rule Ut = Ut−1Θt + ytg

⊺
t Θt,

where yt represents the complement (error) of projecting
xt onto Ut−1 as defined in (10), gt is a gain vector, and
Θt = (Ir + ∥yt∥

2gtg
⊺
t )
−1/2. However, API-type trackers can

struggle when abrupt changes occur, such as impulsive noises,
outliers, or data drift. In such cases, the error yt becomes very
large and the state transition matrix Θt deviates significantly
from the ideal, resulting in degraded estimation accuracy
and convergence rate. See Section E.1 in our supplementary
document for examples. By contrast, OPIT leverages the past
tracking performance error (one time step delayed), which
is independent of the current error yt. This property makes
OPIT less sensitive to abrupt changes. Together with the hard-
thresholding operator τ(⋅, k) in (13), OPIT is distinct from
other existing models in both its design and tracking approach.
The tracking ability of OPIT is demonstrated through several
experiments in Section VI, where the results indicate that
OPIT outperforms state-of-the-art subspace trackers, including
various power-based methods, in both classical and high-
dimensional regimes.

V. CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis for the
proposed OPIT algorithm under the assumption that At = A
is unchanged over time and the forgetting factor β = 1.6

We make the following assumptions to facilitate our con-
vergence analysis:

(A1) A is chosen in the set U = {U ∈ Un,r, ∥U∥2 = 1, and
∥U(∶, i)∥0 = ∥U(∶, j)∥0 = n(1 − ωsparse) ∀i, j}, where Un,r

denotes the set of n × r well-conditioned matrices whose

6We limit our analysis in this work to a stationary case when At =A ∀t
and β = 1. Establishing the ϵ-relative-error approximation guarantee for OPIT
in nonstationary environments is non-trivial as data samples do not share
the same population. Specifically, finding a tight upper bound on the error
matrix ∆Ct – which plays a key role in establishing the two necessary
conditions (21) and (22) as well as Lemmas 1 and 2 – is challenging. Instead of
the normal sample covariance matrix (SCM), an exponential weighted variant
of the SCM is applied here because of the forgetting factor β < 1. It would
make the theoretical convergence analysis more complicated. We leave this
challenge for future work.



7

condition number is bounded by a small constant close to
one, independent of the data dimension n. Here, the parameter
ωsparse represents the sparsity level of A and serves as prior
information. In addition, A is sparse enough in the sense that
the number of non-zero entries in each column is at most√
n/ logn.
(A2) Coefficients {wt}t≥1 and noises {nt}t≥1 are modeled

as zero-mean random Gaussian vectors with covariance matrix
σ2
wIr and σ2

nIn, respectively and we also assume that σw ≥ σn.
In (A1), the underlying subspace is assumed to be sparse in

the sense of column sparsity defined by Vu et al. in [62].7 The
set U covers several supports such as row-sparse, elementwise-
sparse, and local region-sparse. Besides, the unit-norm con-
straint of (A1) is a very mild condition as we can rescale
A by recasting its operator norm into the signal power. Also,
(A1) ensures subspace trackers to estimate the sparse subspace
with high probability [59]. Meanwhile, (A2) is a common
assumption for subspace tracking problems and holds in many
situations [39]. Together with (A1), they help prevent the ill-
conditioned computation and support the perturbation analysis
of the QR decomposition from the thresholding operation.

Denote by St = Ut,FRt,F the QR decomposition of St,
where “F” stands for the “full entries” of St without thresh-
olding or setting small entries to zeros. This notation is used
to distinguish the QR representation of the original matrix St

from that of its thresholded version Ŝt. We provide Lemmas
1 and 2, which serve as crucial components in establishing the
convergence of OPIT as stated in Theorem 1.

Lemma 1. Denote by Ct = t−1∑
t
i=1 xix

⊺
i the sample co-

variance matrix, C the population covariance matrix, and let
∆Ct = Ct −C. We always have

∥A⊺⊥Ut,F∥2 ≤
σ2
n∥A

⊺
⊥Ut−1∥2 + ∥∆Ct∥2

([(σ2
w + σ

2
n)
√

1 − ∥A⊺⊥Ut−1∥
2
2 − ∥∆Ct∥2]

2

+ [σ2
n∥A

⊺
⊥Ut−1∥2 + ∥∆Ct∥2]

2

)

1/2

.

(18)

Proof. See Section B in our supplementary document.

Lemma 2. The distance between Ut and Ut,F is bounded by

∥U⊺t,⊥Ut,F∥2

≤

√
r(σ2

n∥A
⊺
⊥Ut−1∥2 + ∥∆Ct∥2)

((σ2
w + σ

2
n)
√

1 − ∥A⊺⊥Ut−1∥
2
2

− (1 +
√
r(1 +

√
2))(σ2

n∥A
⊺
⊥Ut−1∥2 + ∥∆Ct∥2))

,

(19)

7With respect to the concept of subspace sparsity, Vu et al. in [62]
introduced two notions: column sparsity and row sparsity. Specifically, a
subspace is said to be column sparse if some orthonormal basis contains sparse
vectors. Meanwhile, every orthonormal basis of a row sparse subspace must
consist of sparse vectors. Accordingly, row sparse subspaces also belong to the
class of column sparse subspaces. In this work, OPIT can achieve an ϵ-relative-
error approximation guarantee for the class of column sparse subspaces, and
thus, its convergence guarantee also holds under the row sparsity.

under the following condition

σ2
n∥A

⊺
⊥Ut−1∥2 + ∥∆Ct∥2

(σ2
w + σ

2
n)
√

1 − ∥A⊺⊥Ut−1∥
2
2

≤

√
2 − 1

√
r − 1 +

√
2
. (20)

Proof. See Section C in our supplementary document.

Given (A1), (A2), Lemmas 1 and 2, the main result of
OPIT’s convergence can be stated by the following theorem:

Theorem 1. Given (A1)-(A2), consider the data model (1) with
A of size n×r, the target rank r ≪ n, and the true covariance
matrix of form C = σ2

wAA⊺ + σ2
nI . Assume that a block of W

data samples is collected at each time t, the forgetting factor
β = 1, and the thresholding factor k = ⌊(1 − ωsparse)n⌉. Let
ϵ > 0 be a predefined accuracy, 0 < δ ≪ 1 be a predefined error
probability, and C be a universal positive number. Suppose
the initialization matrix U0 and the number of blocks of data
samples T satisfy the following conditions

T ≥
C log(2/δ)

Wϵ2
(
√
r + (

σ2
n

σ2
w

+ 2
σn

σw
)
√
n)

2

, (21)

max{ sin θ(A,U0), ϵ} ≤ (
3 − 2
√
2

r + 2
√
r(
√
2 − 1)

)

1/2

. (22)

Let Ut be the weight matrix computed by OPIT with the
orthonormalization step using QR factorization at time t. Then,
∀t ≥ T and with probability exceeding 1 − δ, we have

dt
∆
= sin θ(A,Ut) ≤ ϵ. (23)

Proof. First, we can express Ut = Ut,FW1 + Ut,F,⊥W2

where Ut,F,⊥ ∈ Rn×(n−r) is the orthogonal complement of
Ut,F (i.e., U⊺t,FUt,F,⊥ = 0), W1 ∈ Rr×r and W2 ∈ R(n−r)×r
are coefficient matrices; see Section F in our supplementary
document for its derivation. Specifically, it is easy to obtain that
∥W1∥2 = ∥U

⊺
t,FUt∥2 and ∥W2∥2 = ∥U

⊺
t,F,⊥Ut∥2. Accordingly,

we can bound the distance dt = sin θ(A,Ut) as follows:

dt = ∥A
⊺
⊥Ut∥2

(i)
= ∥A⊺⊥(Ut,FW1 +Ut,F,⊥W2)∥2
(i)
≤ ∥A⊺⊥Ut,F∥2∥W1∥2 + ∥A

⊺
⊥Ut,F,⊥∥2∥W2∥2

(ii)
≤ ∥A⊺⊥Ut,F∥2 + ∥U

⊺
t,⊥Ut,F∥2. (24)

Here, (i) is due to the triangle and matrix norm inequalities
∥M +N∥2 ≤ ∥M∥2 + ∥N∥2 and ∥MN∥2 ≤ ∥M∥2∥N∥2 for
all matrices M and N ; and (ii) is due to the following facts:
∥A⊥∥2 = ∥Ut∥2 = ∥Ut,F,⊥∥2 = 1, ∥W1∥2 ≤ ∥U

⊺
t,F∥2∥Ut∥2 ≤ 1,

∥A⊺⊥Ut,F,⊥∥2 ≤ ∥A
⊺
⊥∥2∥Ut,F,⊥∥2 ≤ 1, and ∥U⊺t,F,⊥Ut∥2 =

∥U⊺t,⊥Ut,F∥2.
The two terms of the right hand side of (24) can be bounded

by Lemma 1 and 2, respectively. Next, Lemma 3 indicates
an upper bound on ∥∆Ct∥2 which plays a crucial role in
Lemma 1 and 2 as well as establishing the two conditions
(21) and (22) for the convergence of OPIT.

Lemma 3. The error matrix ∆Ct is bounded in the operator
norm with a probability at least 1 − δ:

∥∆Ct∥2 ≤ cδ(σ
2
w

√
r

tW
+ (2σnσx + σ

2
n)

√
n

tW
), (25)



8

where δ > 0 is a predefined error probability, and cδ =
C
√
log(2/δ) with a universal positive number C > 0.

Proof. See Section D in our supplementary document.

Then, the necessary condition (20) for Lemma 2 is particu-
larly satisfied when (21) is met and the inequality holds

max{ sin θ(A,U0), ϵ} ≤

¿
Á
ÁÀ α(r, ρ)

1 − α(r, ρ)
, where (26)

α(r, ρ) =
(3 − 2

√
2)(σ2

w + σ
2
n)

2

(r + 2
√
r(
√
2 − 1) + 3 − 2

√
2)(σ2

n + r
−1ρσ2

w)
2
,

for any positive number ρ in the range (0, r], please see
Sec. D in our supplementary document for details. Clearly, (22)
provides a lower bound on

√
α(r, ρ)/(1 − α(r, ρ)).

Accordingly, Lemma 2 is achieved under the two condi-
tions (21) and (22) while Lemma 1 holds for all t. Now, given
Lemma 1, 2, and 3, dt can be bounded by Lemma 4.

Lemma 4. Let d0 = sin θ(A,U0), ω0 = max{d0, ϵ}, γ > 0 is
any positive number satisfying ω0 ≤ γr

√
1 − ω2

0 and ργ < 1.
Suppose that ω0 ≤

√
2/2, the two conditions (21) and (22) are

met, we obtain

dt ≤
rσ2

n + ρσ
2
w

rξ
√
1 − ω2

0

max{dt−1, ϵ}, (27)

where

ξ = 0.5max{[(1 + γ2r2)σ4
n + (1 − ργ)

2σ4
w

+ 2(1 + γ2r2 − ργ)σ2
nσ

2
w]

1/2
, (σ2

n + σ
2
w)(1 − ϱ)/

√
r},

(28)

with ϱ = γ(1+
√
r(1+

√
2)(rσ2

n+ρσ
2
w))(σ

2
n+σ

2
w)
−1

. Further-
more, dt ≤ ϵ also holds when t satisfies the condition (21).

Proof. See Section E in our supplementary document.

Remark 1. The presence of 1/ϵ2 in the sample bound (21)
introduces a slight deviation from the original HDLSS regime
in the batch setting. However, this holds more relevance and
value for the problem of (sparse) subspace tracking. It provides
a lower bound on the number of data samples required to
achieve a desired (predefined) estimation accuracy. Moreover,
this bound exhibits a close connection to the original HDLSS
regime, where both the data dimension n and data size T are
huge and comparable. Specifically, from (21), we deduce the
following bound

n

T
≤

Wϵ2

C log(2/δ)
(
σ2
n

σ2
w

+ 2
σn

σw
)
−2
. (29)

Here, the target rank r can be diminished as
√
r/
√
n → 0 as

n → ∞ and r ≪ n. The right-hand side of (29) is greater
than 0, a difference from the classical setting where n/T → 0
as T →∞.

Remarkably, the sample bound (21) is independent of the
subspace sparsity level ωsparse of A. In our analysis, this bound
is established through the error bound on ∥∆Ct∥2, quantifying
the closeness of the sample covariance matrix to the true one.
Beyond factors such as data dimension, rank, sample size,

and noise, this error bound relies on the spectral norm of
the subspace basis A rather than its sparsity. Therefore, the
resulting sample bound (21) is independent of ωsparse and the
threholding factor k. Accordingly, (21) can be applied to any
case of subspace sparsity. Also, conditions stated in Theorem 1
are mainly needed for the convergence analysis (sufficient but
not necessary conditions). In simulations, OPIT has proven
effective even when these conditions are not fully met, see
Section VI for details.

VI. EXPERIMENTS

In this section, we conduct several experiments on both
synthetic and real data to demonstrate the effectiveness and
efficiency of OPIT and its variant OPITd. Their performance
are evaluated in comparison with state-of-the-art algorithms.
Our simulations are implemented using MATLAB on a laptop
of Intel core i7 and 16GB of RAM. Our codes are also avail-
able online at https://github.com/thanhtbt/sst/
to facilitate replicability and reproducibility.

A. Experiments with Synthetic Data

1) Experiment Setup: Following the formulation in sec-
tion III, data samples {xt}t≥1 are generated at random under
the standard model:

xt =Atwt + σnnt, (30)

where nt ∈ Rn is a noise vector derived fromN(0,In), σn > 0
is to control the effect of the noise on algorithm’s performance,
wt ∈ Rr is an i.i.d. Gaussian random vector of zero-mean and
unit-variance to represent the subspace coefficient. The sparse
mixing matrix At ∈ Rn×r at time t is simulated as

At =Ω⊛ (At−1 + ςNt), (31)

where ⊛ denotes the Hadamard product, Ω ∈ Rn×r is a
Bernoulli random matrix with probability 1 − ωsparse, Nt is
a normalized Gaussian white noise matrix, and ς > 0 is the
time-varying factor aimed to control the subspace variation
with time. At t = 0, A0 is initialized as a random Gaussian
matrix with zero-mean and unit-variance entries.

In order to evaluate the subspace estimation performance,
we measure the following distance between two subspaces8

dt
∆
= sin θ(At,Ut), (32)

where Ut refers to the estimated subspace at time t.
2) Effect of the forgetting factor β: The choice of the

forgetting factor β plays an essential role in the tracking ability
of OPIT. We investigated its effect by varying its value from
0.1 to 1 and then evaluating the performance of OPIT. Here, the
data dimension, the true rank, the number of data samples were
set at n = 50, r = 10, and T = 1000, respectively. We fixed

8Given two matrices At and Ut of the same size, we always have
sin θ(At,Ut) = sin θ(orth(At),orth(Ut)) where orth(M) returns an
orthonormal basis for the range of the matrix M . Let At = orth(At) and
U t = orth(Ut). We can compute dt = sin θ(At,Ut) in (32) as follows:
dt = sin θ(At,U t) = ∥A

⊺

t,⊥U t∥2 = ∥U
⊺

t,⊥At∥2 = ∥AtA
⊺

t − U tU
⊺

t ∥2

where (⋅)⊥ denotes the orthogonal complement. In MATLAB, this distance
can be easily calculated by using the command sin(subspace(At,Ut)).



9

0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

(a) Stationary: ς = 0

0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

(b) Nonstationary: ς = 10−3

Fig. 1: Effect of the forgetting factor β.

0.2 0.4 0.6 0.8 1 3 5 7 9

90%

70%

50%

30%

10%
8.10

-3

6.10
-3

4.10
-3

2.10
-3

Fig. 2: Effect of the sparsity level ωsparse.

the sparsity level and the noise factor at ωsparse = 50% and
σn = 10

−3, respectively. Two time-varying levels were consid-
ered, namely ς = 0 (stationary) and ς = 10−3 (nonstationary).
Results are illustrated in Fig. 1. In the stationary environment
(Fig. 1(a)), we can see that the higher the value of β is, the
better the performance OPIT achieves, and β = 1 offers the
best tracking performance. In the time-varying environment
(Fig. 1(b)), 0≪ β < 1 can provide reasonably high subspace
estimation accuracy. When β is close to 0, OPIT can track the
underlying subspace over time but its accuracy is low. When
β = 1, OPIT’s performance degrades as time passes.

3) Effect of the sparsity level ωsparse: In order to assess
the influence of the sparsity level on the performance of
OPIT, we varied the value of ωsparse from 10% to 90% and
measured the accuracy of subspace estimation achieved by
OPIT under different settings of the ratio n/T . Throughout
the experiments, we fixed the true rank r = 10, the noise level
σn = 10

−3, the time-varying factor ς = 0, and the number of
data samples T = 1000. The data dimension n was selected
from the set {100,200, . . . ,1000,2000, . . . ,9000,10000} cor-
responding to the ratio n/T of {0.1,0.2, . . . ,1,2, . . . ,9,10}.
The experimental results, depicted in Fig. 2, indicate that
OPIT consistently achieved good subspace estimation with
sin θ(Atrue,Aest) ≤ 10

−2 across all scenarios. Notably, for
smaller data dimensions, OPIT yielded the best results when
sparsity was low. However, as the dimension n increased,
higher sparsity levels led to even better subspace estimation
performance by OPIT.

4) OPIT in Noisy and Dynamic Environments: To demon-
strate the tracking ability of OPIT in nonstationary envi-
ronments, we varied the value of the noise level σn and
the time-varying factor ς among {10−1,10−2,10−3} and then
evaluated its subspace estimation accuracy. Two case studies

0 200 400 600 800 1000
10

-4

10
-2

10
0

(a) n = 100, r = 5

0 200 400 600 800 1000
10

-4

10
-2

10
0

(b) n = 1000, r = 50

Fig. 3: Effect of the noise level σn on performance of OPIT:
sparsity level ωsparse = 90%, time-varying factor ς = 10−4, and
forgetting factor β = 0.9.

0
200

400
600

800
1000

10
-4

10
-2

10
0

(a) n = 100, r = 5

0 200 400 600 800 1000

10
-4

10
-2

10
0

(b) n = 1000, r = 50

Fig. 4: Effect of the time-varying factor ς on performance of
OPIT: sparsity level ωsparse = 90%, noise level σ = 10−4, and
forgetting factor β = 0.9.

were considered, including the small-scale {n = 100, r = 5}
and the large-scale {n = 1000, r = 50} in which the sparsity
level ωsparse was set to 90% and an abrupt change was
created at t = 500. The forgetting factor β was fixed at 0.9
in both cases. We set the value of the thresholding factor k to
⌊10r logn⌉.

Fig. 3 and Fig. 4 illustrate the effect of the noise level σn

and the time-varying factor ς on the performance of OPIT,
respectively. We can see that the value of σn and ς did not
affect the convergence rate of OPIT but its estimation error.
Despite the value of σn and ς , OPIT still tracked successfully
the underlying sparse subspace even in the presence of a
significant change at t = 500. The lower σn and ς are, the better
subspace estimation accuracy OPIT can achieve. Moreover,
these experimental results indicate that the dimension n and
rank r had in fact a small impact on how fast OPIT converges
in dynamic environments. Specifically, when dealing with the
large-scale setting, its convergence rate was faster than that
when handling the small-scale one.

5) OPIT versus Other Subspace Trackers: Here, perfor-
mance of OPIT is compared with the state-of-the-art subspace
trackers in different scenarios. The considered algorithms
are OPAST [63], FAPI [23], LORAF [64], GYAST [65],
L1-PAST [24], SS-FAPI [21], SSPCA [28], and Oja [30].
Except SSPCA and Oja, we kept the default hyperparame-
ters for the remaining subspace trackers. SSPCA relies on a
sparsity parameter and a window length which were set to
γ = ⌈n(1 − ωsparse)⌋ and W = ⌈logn⌋, respectively. For Oja,
we adopted the learning rate of ηt = 1/t in our experiments.

We used 1000 snapshots derived from the model (30) in



10

0 200 400 600 800 1000
10

-4

10
-2

10
0

(a) r = 2, ωsparse = 50%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(b) r = 2, ωsparse = 90%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(c) r = 10, ωsparse = 50%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(d) r = 10 , ωsparse = 90%

Fig. 5: Performance comparisons between OPIT and other ST
algorithms in the classical setting: dimension n = 50, snapshots
T = 1000, time-varying factor ς = 10−3, and noise level σn =
10−3.

0 200 400 600 800 1000
10

-4

10
-2

10
0

(a) n = 1000, ωsparse = 50%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(b) n = 1000, ωsparse = 90%

0 200 400 600 800 1000

10
-4

10
-2

10
0

(c) n = 10000, ωsparse = 50%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(d) n = 10000 , ωsparse = 90%

Fig. 6: Performance comparisons between OPIT and other SST
algorithms in high dimensions: rank r = 10, snapshots T =
1000, time-varying factor ς = 10−3, and noise level σn = 10

−3.

which the time-varying factor ς and the noise level σn were
fixed at 10−3. Here, two sparsity levels were investigated,
including 50% and 90%. The length of window was set to
W = ⌊logn⌉ for the large-scale settings and low noise levels,
while we used W = 1 for others. We fixed the forgetting
factor β at 0.97 for all simulations in this task. For OPIT, the
normalization step was used instead of the QR factorization.

Method
Dimension

n = 101 n = 102 n = 103 n = 104

OPAST 0.038 0.143 9.707 1156.6

L1-PAST 0.054 0.178 10.01 1175.9

LORAF 0.050 0.159 10.05 1131.9

FAPI 0.035 0.142 9.921 1158.9

SSFAPI 0.046 0.158 10.32 1163.5

GYAST 0.057 0.173 9.870 1162.1

Oja 0.041 0.147 10.04 1098.9

SSPCA (W = ⌊logn⌉) 0.033 0.040 1.518 117.2

OPIT (W = 1) 0.046 0.174 10.13 1178.1

OPIT (W = ⌊logn⌉) 0.043 0.048 1.638 132.4

TABLE II: Run time (s): target rank r = 5, snapshots T = 1000,
sparsity level ωsparse = 90%, time-varying factor ς = 10−3, and
noise level σn = 10

−3.

Parameters of other subspace trackers were kept default.
Results are shown as in Figs. 5, 6 and Tab. II. We can see

that OPIT outperformed completely other subspace trackers
in all settings (at low and high levels of noise as well as
sparsity in both regimes). Here, SSPCA was not able to track
the underlying subspace when the true rank is large (e.g.,
r = 10). Oja was capable of sparse subspace tracking but its
convergence rate was much lower than others. L1-PAST could
track the sparse subspace over time but its estimation accuracy
is low. The remaining other subspace trackers could work in
both regimes. However, their tracking performance in terms of
both estimation accuracy and convergence rate were much less
than that of OPIT. Other experimental results can be founded
in our supplementary document. Regarding runtime perfor-
mance, most subspace trackers exhibited similar performance
since they share the same order of computational complexity
O(nr2), except SSPCA and OPIT with W = ⌊logn⌉.

6) OPIT versus Data Dimension and Sample Size: Next,
we studied the effect of data dimension and sample size on
the tracking ability of OPIT. Particularly, we first varied the
data dimension n among {101, . . . ,105} and then measured the
subspace estimation accuracy of OPIT with different numbers
of snapshots T . In this task, we set the target rank r = 5,
the sparsity density ωsparse = 50% and the time-varying factor
ς = 10−3. Two noise levels were considered, namely σn = 10

−2

and σn = 10−3. Other experimental parameters were kept as
in the previous task. Figs. 7(a)-(b) illustrate the effect of the
pair {n,T} on the performance of OPIT. We can see that the
larger the number of snapshots T is, the better the performance
OPIT achieves. In addition, OPIT converges faster when the
data dimension n is not too large (e.g., n ≤ 103). Interestingly,
for a given n, it seemed that the convergence rate of OPIT
is close to linear on the logarithmic scale. Fig.7(c) illustrates
that OPIT outperforms state-of-the-art subspace trackers in the
setting of n/T = 1.

7) OPITd versus OPIT: We here investigated the tracking
ability of OPITd in comparison with the original OPIT with
respect to aspects: runtime, estimation accuracy, and robustness
to abrupt changes.

To measure how fast OPITd is, we tested many configura-
tions of {n, r} and reported its run time. Most other parameters
were kept fixed as in the previous task except the number



11

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

(a) OPIT: σn = 10−2

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

(b) OPIT: σn = 10−3

10
1

10
2

10
3

10
4

10
5

10
-4

10
-2

10
0

(c) Performance of other subspace trackers

Fig. 7: Effect of the data dimension and sample size {n,T}.

[1
0,

2]

[1
0,

5]

[2
0,

5]

[2
0,

10
]

[5
0,

5]

[5
0,

10
]

[1
00

,1
0]

[1
00

,2
0]

[5
00

,1
0]

[5
00

,1
0]

[1
00

0,
50

]

[1
00

0,
10

0]
0

100

200

300
OPIT

OPITd

[1
0,

2]

[1
0,

5]

[2
0,

5]

[2
0,

10
]

[5
0,

5]

[5
0,

10
]

[1
00

,1
0]

[1
00

,2
0]

10
-1

10
0

10
1

Fig. 8: OPITd versus OPIT: Run time.

of snapshots T , including the sparsity level ωsparse = 90%,
the noise level σn = 10−3, the time-varying factor ς = 10−3,
and the forgetting factor β = 0.97. We used 3000 snapshots
instead of 1000 for this task. The experimental results in Fig. 8
show that OPITd was faster than OPIT when the dimension
n and the target rank r were set to large values (n ≥ 100 and
r ≥ 10), especially when the dimension n is actually high, e.g.,
n = 1000.

We next investigate the tracking ability of OPITd in time-
varying environments with abrupt changes. We reused the
experiment setup above and created two abrupt changes at
t = 1000 and t = 2000 to evaluate how fast OPITd converges.
The noise level was set at σn = 10

−3. The results are illustrated
in Fig. 9 and Fig. 10. When the underlying model was of
low rank, OPITd had almost the same performance to OPIT,
see Fig. 9(a). When the target rank r was large, OPITd
did not work well, probably because the projection deflation
might lead to a cumulative error between successive estimates.
However, if the value of r is not too large, OPITd could
track successfully the underlying subspace over time when the

0 1000 2000 3000
10

-4

10
-2

10
0

(a) r = 5

0 1000 2000 3000
10

-4

10
-2

10
0

(b) r = 30

Fig. 9: Effect of the target rank r on performance of OPITd:
dimension n = 100, snapshots T = 3000, time-varying factor
ς = 10−3, noise level σn = 10

−3, sparsity level ωsparse = 90%,
forgetting factor β = 0.97, and two abrupt changes at t = 1000
and t = 2000.

0 1000 2000 3000
10

-4

10
-2

10
0

(a) ωsparse = 10%

0 1000 2000 3000
10

-4

10
-2

10
0

(b) ωsparse = 50%

Fig. 10: Effect of the sparsity level ωsparse on performance of
OPITd: dimension n = 100, rank r = 20, snapshots T = 3000,
time-varying factor ς = 10−3, noise level σn = 10

−3, forgetting
factor β = 0.97, and two abrupt changes at t = 1000 and t =
2000.

sparsity level ωsparse was not too high, as shown in Fig. 10.

B. Experiments with Real Video Data

In this task, four different video sequences are used to
illustrate the effectiveness and efficiency of OPIT for real data,
including “Lobby”, “Hall”, “Highway”, and “Park” whose
details are reported in Tab. III, (see Fig. 11 for an illustra-
tion).9 The Lobby video comprises 1546 images, each with
dimensions of 128 × 160 pixels. These images were captured
within an office lobby, highlighting the background changes
caused by the switching on and off of lights. The Hall video
comprises 3584 images with dimensions of 176 × 144 pixels,
taken in an airport hall. This video depicts a bustling airport
hall with numerous people entering and exiting the premises.
The Highway video consists of 1700 traffic images, where each
frame has 240 × 320 pixels. It captures vehicles traveling on
a two-lane highway, approaching the camera. Lastly, the Park
video contains 600 frames of size 288×362, capturing thermal
images of moving objects within a park.

We here compared the video background tracking ability of
OPIT with the state-of-the-art subspace tracking algorithms
(i.e., ℓ1-PAST, SS-FAPI, and PETRELS-ADMM [39]) and

9Video sequences: http://jacarini.dinf.usherbrooke.ca.



12

Dataset “Lobby” “Hall” “Highway” “Park”

Si
ze Tensor-based 128 × 160 × 1546 174 × 144 × 3584 320 × 240 × 1700 288 × 352 × 600

Matrix-based 20480 × 1546 25056 × 3584 76800 × 1700 101376 × 600

Evaluation metrics time(s) error time(s) error time(s) error time(s) error

Te
ns

or

SOAP 14.29 0.842 21.72 0.989 39.89 0.821 21.34 0.789

OLCP 10.50 0.161 19.98 0.154 27.07 0.219 14.19 0.096

OLSTEC 44.25 0.037 92.82 0.041 130.1 0.064 53.13 0.032

ROLCP 4.32 0.114 10.74 0.120 11.45 0.154 4.47 0.086

Su
bs

pa
ce

PETRELS-ADMM 118.4 0.015 305.5 0.018 452.6 0.009 203.6 0.032

ℓ1-PAST 14.11 0.031 33.73 0.101 46.78 0.159 19.21 0.058

SS-FAPI 12.99 0.023 32.72 0.100 46.37 0.160 17.56 0.056

OPIT (W = 1) 16.32 0.013 50.78 0.056 56.78 0.102 26.94 0.042

OPIT (W = ⌊log(IJ)⌉) 1.89 0.021 5.62 0.086 6.05 0.141 2.83 0.057

TABLE III: Runtime and averaged relative error of adaptive algorithms on tracking the four video sequences.

b) Halla) Lobby c) Highway d) Park

Fig. 11: Four video sequences used in this paper.

0 375 750 1125 1500
10

-4

10
-2

10
0

10
2

(a) “Lobby”

0 350 700 1050 1400 1700
10

-4

10
-2

10
0

10
2

(b) “Highway”

Fig. 12: Tracking ability of algorithms on the video datasets.

tensor tracking algorithms (i.e., SOAP [66], OLCP [67], OL-
STEC [68], and ROLCP [69]). In order to apply these subspace
tracking algorithms to the video sequences, each video frame
of size I ×J was reshaped into a IJ ×1 vector. Following the

studies on video tracking in [39] and [69], the tensor rank and
subspace rank were set to 10 for all simulations.

In this task, our main goal is to estimate the background
of a given video sequence by leveraging the assumption that
video frames can be expressed as a combination of a low-
rank background and a sparse foreground component. To
accomplish this, we first apply subspace/tensor trackers to
estimate the low-rank subspace/tensor from the video frames
over time. Once the subspace is estimated/tracked at each
time step, we projected the video frame onto this subspace,
thereby obtaining the corresponding subspace coefficient and
subsequently the low-rank component/vector. This vector is
then reshaped into a matrix of the same size as the video
frame, which we refer to as the video background. In the case
of the tensor-based approach, the video background is directly
recovered by utilizing the tensor product of the tracked loading
tensor factors.

In order to evaluate the estimation performance, we use the
following relative error metric

Relative−Error (t) =
∥Xtrue(t) −Xest(t)∥

2
F

∥Xtrue(t)∥2F
, (33)

where Xtrue(t) is the ground truth and Xest(t) is the estima-
tion of the video background at each time t.

Simulation results are shown in Tab. III and Fig. 12. As can
be seen that OPIT provided a competitive estimation accuracy
as compared to PETRELS-ADMM while its runtime was much
faster than that of the ADMM-based tracking algorithm. In-
deed, OPIT had a better performance than PETRELS-ADMM
on the “Lobby” data, see Fig. 12(a). Also, OPIT outperformed
most tracking algorithms, apart from PETRELS-ADMM. With
respect to runtime, ROLCP was the fastest “one-pass” tracking
algorithm, several times faster than the second-best. Interest-
ingly, our algorithm is also designed for handling a block
of multiple incoming samples at each time (i.e.,the length of
window W > 1). When W = ⌊log(IJ)⌉, OPIT was even faster
than ROLCP while still retaining a reasonable video tracking
accuracy.



13

VII. CONCLUSIONS

In this paper, we have proposed a new provable OPIT
algorithm which is fully capable of tracking the sparse prin-
cipal subspace over time in both classical regime and high-
dimension, low-sample-size regime. OPIT provides a competi-
tive performance in terms of both subspace estimation accuracy
and convergence rate in the classical regime, especially when
the SNR level is high. In high dimensions, OPIT outperforms
other sparse subspace tracking algorithms, its estimation ac-
curacy is much better than that of the second-best. Besides, a
fast variant of OPIT has been obtained using deflation called
OPITd. Its computational complexity and memory storage are
linear to the input size and they are lower than that of OPIT.
Simulations carried out on real video sequences indicated that
the proposed method has potential for real applications.

REFERENCES

[1] J. P. Delmas, “Subspace tracking for signal processing,” Adaptive Signal
Process.: Next Generation Solutions, pp. 211–270, 2010.

[2] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust
subspace learning: Robust PCA, robust subspace tracking, and robust
subspace recovery,” IEEE Signal Process. Mag., vol. 35, no. 4, pp. 32–
55, 2018.

[3] N. Vaswani and P. Narayanamurthy, “Static and dynamic robust PCA
and matrix completion: A review,” Proc. IEEE, vol. 106, no. 8, pp.
1359–1379, 2018.

[4] L. T. Thanh, N. V. Dung, N. L. Trung, and K. Abed-Meraim, “Robust
subspace tracking algorithms in signal processing: A brief survey,” REV
J. Electr. Commun., vol. 11, no. 1–2, pp. 16–25, 2021.

[5] N. El Karoui, “Spectrum estimation for large dimensional covariance
matrices using random matrix theory,” Ann. Stat., vol. 36, no. 6, pp.
2757–2790, 2008.

[6] X. Mestre, “On the asymptotic behavior of the sample estimates of
eigenvalues and eigenvectors of covariance matrices,” IEEE Trans. Signal
Process., vol. 56, no. 11, pp. 5353–5368, 2008.

[7] R. Vershynin, “How close is the sample covariance matrix to the actual
covariance matrix?” J. Theor. Probab., vol. 25, no. 3, pp. 655–686, 2012.

[8] N. El Karoui, “Operator norm consistent estimation of large-dimensional
sparse covariance matrices,” Ann. Stat., vol. 36, no. 6, pp. 2717–2756,
2008.

[9] P. J. Bickel and E. Levina, “Covariance regularization by thresholding,”
Ann. Stat., vol. 36, no. 6, pp. 2577–2604, 2008.

[10] I. M. Johnstone and A. Y. Lu, “On consistency and sparsity for principal
components analysis in high dimensions,” J. Am. Stat. Assoc., vol. 104,
no. 486, pp. 682–693, 2009.

[11] D. Shen, H. Shen, and J. S. Marron, “Consistency of sparse PCA in
high dimension, low sample size contexts,” J. Mult. Anal., vol. 115, pp.
317–333, 2013.

[12] A. A. Amini and M. J. Wainwright, “High-dimensional analysis of
semidefinite relaxations for sparse principal components,” Ann. Stat.,
vol. 37, no. 5B, p. 2877–2921, 2009.

[13] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, “Generalized
power method for sparse principal component analysis.” J. Mach. Learn.
Res., vol. 11, no. 2, 2010.

[14] Z. Ma, “Sparse principal component analysis and iterative thresholding,”
Ann. Stat., vol. 41, no. 2, pp. 772–801, 2013.

[15] T. T. Cai, Z. Ma, and Y. Wu, “Sparse PCA: Optimal rates and adaptive
estimation,” Ann. Stat., vol. 41, no. 6, pp. 3074–3110, 2013.

[16] T. T. Cai, Z. Ren, and H. H. Zhou, “Estimating structured high-
dimensional covariance and precision matrices: Optimal rates and adap-
tive estimation,” Electr. J. Stat., vol. 10, no. 1, pp. 1–59, 2016.

[17] H. Zou and L. Xue, “A selective overview of sparse principal component
analysis,” Proc. IEEE, vol. 106, no. 8, pp. 1311–1320, 2018.

[18] L. T. Thanh, K. Abed-Meraim, A. Hafiane, and N. L. Trung, “Sparse
subspace tracking in high dimensions,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2022, pp. 5892–5896.

[19] N. Lassami, K. Abed-Meraim, and A. Aı̈ssa-El-Bey, “Low cost subspace
tracking algorithms for sparse systems,” in European Signal Process.
Conf., 2017, pp. 1400–1404.

[20] N. Lassami, A. Aı̈ssa-El-Bey, and K. Abed-Meraim, “Fast sparse sub-
space tracking algorithm based on shear and givens rotations,” in Proc.
Asilomar Conf. Signals Syst. Comput., 2019, pp. 1667–1671.

[21] N. Lassami, A. Aı̈ssa-El-Bey, and K. Abed-Meraim, “Low cost sparse
subspace tracking algorithms,” Signal Process., vol. 173, p. 107522,
2020.

[22] B. Yang, “Projection approximation subspace tracking,” IEEE Trans.
Signal Process., vol. 43, no. 1, pp. 95–107, 1995.

[23] R. Badeau, B. David, and G. Richard, “Fast approximated power iteration
subspace tracking,” IEEE Trans. Signal Process., vol. 53, no. 8, pp.
2931–2941, 2005.

[24] X. Yang, Y. Sun, T. Zeng, T. Long, and T. K. Sarkar, “Fast STAP method
based on PAST with sparse constraint for airborne phased array radar,”
IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4550–4561, 2016.

[25] P. Xiao and L. Balzano, “Online sparse and orthogonal subspace estima-
tion from partial information,” in Proc. Allerton Conf. Commun. Control
Comput., 2016, pp. 284–291.

[26] P. V. Giampouras, A. A. Rontogiannis, K. E. Themelis, and K. D.
Koutroumbas, “Online sparse and low-rank subspace learning from
incomplete data: A Bayesian view,” Signal Process., vol. 137, pp. 199–
212, 2017.

[27] Chuang Wang and Y. M. Lu, “Online learning for sparse PCA in high
dimensions: Exact dynamics and phase transitions,” in Proc. IEEE Inf.
Theory Works., 2016, pp. 186–190.

[28] W. Yang and H. Xu, “Streaming sparse principal component analysis,”
in Proc. Int. Conf. Mach. Learn., 2015, pp. 494–503.

[29] K. Abed-Meraim, S. Attallah, A. Chkeif, and Y. Hua, “Orthogonal Oja
algorithm,” IEEE Signal Process. Lett., vol. 7, no. 5, pp. 116–119, 2000.

[30] Z. Allen-Zhu and Y. Li, “First efficient convergence for streaming k-
PCA: a global, gap-free, and near-optimal rate,” in IEEE Ann. Symp.
Found. Comput. Sci., 2017, pp. 487–492.

[31] Y. Hua, Y. Xiang, T. Chen, K. Abed-Meraim, and Y. Miao, “A new look
at the power method for fast subspace tracking,” Digital Signal Process.,
vol. 9, no. 4, pp. 297–314, 1999.

[32] K. Abed-Meraim, A. Chkeif, Y. Hua, and S. Attallah, “On a class of
orthonormal algorithms for principal and minor subspace tracking,” J.
VLSI Signal Process. Syst., vol. 31, no. 1, pp. 57–70, 2002.

[33] X. G. Doukopoulos and G. V. Moustakides, “Fast and stable subspace
tracking,” IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1452–1465,
2008.

[34] R. Wang, M. Yao, D. Zhang, and H. Zou, “A novel orthonormalization
matrix based fast and stable DPM algorithm for principal and minor
subspace tracking,” IEEE Trans. Signal Process., vol. 60, no. 1, pp.
466–472, 2011.

[35] Q. Wu, J. Zheng, Z. Dong, E. Panayirci, Z. Wu, and R. Qingnuobu, “An
improved adaptive subspace tracking algorithm based on approximated
power iteration,” IEEE Access, vol. 6, pp. 43 136–43 145, 2018.

[36] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the Grass-
mannian for online foreground and background separation in subsampled
video,” in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., 2012, pp.
1568–1575.

[37] Y. Chi, Y. C. Eldar, and R. Calderbank, “Petrels: Parallel subspace esti-
mation and tracking by recursive least squares from partial observations,”
IEEE Trans. Signal Process., vol. 61, no. 23, pp. 5947–5959, Dec 2013.

[38] N. L. Trung, V. D. Nguyen, M. Thameri, T. M. Chinh, and K. Abed-
Meraim, “Low-complexity adaptive algorithms for robust subspace track-
ing,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 6, pp. 1197–1212,
2018.

[39] L. T. Thanh, N. V. Dung, N. L. Trung, and K. Abed Meraim, “Robust
subspace tracking with missing data and outliers: Novel algorithm with
convergence guarantee,” IEEE Trans. Signal Process., vol. 69, pp. 2070–
2085, 2021.

[40] P. Narayanamurthy, V. Daneshpajooh, and N. Vaswani, “Provable sub-
space tracking from missing data and matrix completion,” IEEE Trans.
Signal Process., pp. 4245–4260, 2019.

[41] P. Narayanamurthy and N. Vaswani, “Provable dynamic robust PCA or
robust subspace tracking,” IEEE Trans. Inf. Theory, vol. 65, no. 3, pp.
1547–1577, 2019.

[42] S.-C. Chan, Y. Wen, and K.-L. Ho, “A robust PAST algorithm for
subspace tracking in impulsive noise,” IEEE Trans. Signal Process.,
vol. 54, no. 1, pp. 105–116, 2006.

[43] J. Zhang and T. S. Qiu, “A robust correntropy based subspace tracking
algorithm in impulsive noise environments,” Digital Signal Process.,
vol. 62, pp. 168–175, 2017.

[44] S. Chan, Z. Zhang, and Y. Zhou, “A new adaptive Kalman filter-based
subspace tracking algorithm and its application to DOA estimation,” in
Proc. IEEE Symp. Circuits Syst., 2006, pp. 129–132.



14

[45] B. Liao, Z. Zhang, and S.-C. Chan, “A new robust Kalman filter-based
subspace tracking algorithm in an impulsive noise environment,” IEEE
Trans. Circuits Syst. II Express Briefs, vol. 57, no. 9, pp. 740–744, 2010.

[46] V.-D. Nguyen, N. L. Trung, and K. Abed-Meraim, “Robust subspace
tracking algorithms using fast adaptive Mahalanobis distance,” Signal
Process., vol. 195, p. 108402, 2022.

[47] A. M. Rekavandi, A.-K. Seghouane, and K. Abed-Meraim, “TRPAST: A
tunable and robust projection approximation subspace tracking method,”
IEEE Trans. Signal Process., vol. 71, pp. 2407–2419, 2023.

[48] L. T. Thanh, A. M. Rekavandi, S. Abd-Krim, and K. Abed-Meraim,
“Robust subspace tracking with contamination via α-divergence,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2023, pp. 1–5.

[49] N. Kambhatla and T. K. Leen, “Dimension reduction by local principal
component analysis,” Neural Comput., vol. 9, no. 7, pp. 1493–1516,
1997.

[50] N. V. Dung, K. Abed-Meraim, N. L. Trung, and R. Weber, “Generalized
minimum noise subspace for array processing,” IEEE Trans. Signal
Process., vol. 65, no. 14, pp. 3789–3802, 2017.

[51] J.-M. Chaufray, W. Hachem, and P. Loubaton, “Asymptotic analysis of
optimum and suboptimum CDMA downlink MMSE receivers,” IEEE
Trans. Inf. Theory, vol. 50, no. 11, pp. 2620–2638, 2004.

[52] X. Mestre and M. Á. Lagunas, “Modified subspace algorithms for DoA
estimation with large arrays,” IEEE Trans. Signal Process., vol. 56, no. 2,
pp. 598–614, 2008.

[53] T. T. Cai, C.-H. Zhang, and H. H. Zhou, “Optimal rates of convergence
for covariance matrix estimation,” Ann. Stat., vol. 38, no. 4, pp. 2118–
2144, 2010.

[54] A. J. Rothman, E. Levina, and J. Zhu, “Generalized thresholding of large
covariance matrices,” J. Am. Stat. Assoc., vol. 104, no. 485, pp. 177–186,
2009.

[55] M. Hardt and E. Price, “The noisy power method: A meta algorithm
with applications,” Adv. Neural Inf. Process. Syst., vol. 27, 2014.

[56] L. Mackey, “Deflation methods for sparse PCA,” Adv. Neural Inf.
Process. Syst., vol. 21, 2008.

[57] J. Camacho, A. Smilde, E. Saccenti, J. Westerhuis, and R. Bro, “All
sparse PCA models are wrong, but some are useful. Part II: Limitations
and problems of deflation,” Chemometr. Intell. Lab. Syst., vol. 208, p.
104212, 2021.

[58] X.-T. Yuan and T. Zhang, “Truncated power method for sparse eigen-
value problems.” J. Mach. Learn. Res., vol. 14, no. 4, 2013.

[59] Y. Deshpande and A. Montanari, “Sparse pca via covariance threshold-
ing,” J. Mach. Learn. Res., vol. 17, no. 1, p. 4913–4953, 2016.

[60] T. Wang, Q. Berthet, and R. J. Samworth, “Statistical and computational
trade-offs in estimation of sparse principal components,” Ann. Stat.,
vol. 44, no. 5, pp. 1896–1930, 2016.

[61] R. Krauthgamer, B. Nadler, and D. Vilenchik, “Do semidefinite relax-
ations solve sparse PCA up to the information limit?” The Annals of
Statistics, vol. 43, no. 3, pp. 1300–1322, 2015.

[62] V. Q. Vu and J. Lei, “Minimax sparse principal subspace estimation in
high dimensions,” Ann. Stat., vol. 41, no. 6, pp. 2905–2947, 2013.

[63] K. Abed-Meraim, A. Chkeif, and Y. Hua, “Fast orthonormal PAST
algorithm,” IEEE Signal Process. Lett., vol. 7, no. 3, pp. 60–62, 2000.

[64] P. Strobach, “Low-rank adaptive filters,” IEEE Trans. Signal Process.,
vol. 44, no. 12, pp. 2932–2947, 1996.

[65] M. Arjomandi-Lari and M. Karimi, “Generalized YAST algorithm for
signal subspace tracking,” Signal Process., vol. 117, pp. 82–95, 2015.

[66] N. V. Dung, K. Abed-Meraim, and N. L. Trung, “Second-order opti-
mization based adaptive PARAFAC decomposition of three-way tensors,”
Digit. Signal Process., vol. 63, pp. 100–111, 2017.

[67] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating
online CP decompositions for higher order tensors,” in Proc. ACM Int.
Conf. Knowl. Discover. Data Min., 2016, pp. 1375–1384.

[68] H. Kasai, “Fast online low-rank tensor subspace tracking by CP decom-
position using recursive least squares from incomplete observations,”
Neurocomput., vol. 347, pp. 177–190, 2019.

[69] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “A fast
randomized adaptive CP decomposition for streaming tensors,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2021, pp. 2910–2914.


