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Supplementary Material
A. Derivation of ∆Ut

We first recall that

Ut = Ut−1Et +∆Ut, (A1)

where ∆Ut represents the distinctive new information in Ut.
Thanks to (10) in the main text, we have

xt = yt +Ut−1zt. (A2)

The matrix St in (7) can be expressed as follows

St =RtUt−1 = βRt−1Ut−1 +xtz
⊺

= βRt−1 [Ut−2 Ut−2,⊥] [Ut−2 Ut−2,⊥]
⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=In

Ut−1 +xtz
⊺
t

= βRt−1Ut−2U
⊺
t−2Ut−1 + βRt−1Ut−2,⊥U

⊺
t−2,⊥Ut−1 +xtz

⊺
t ,

(A3)

where U⊺t−2,⊥Ut−2 = 0n−r×r and U⊺t−2Ut−2,⊥ = 0r×n−r by def-
inition. As the underlying subspace is assumed to be fixed or
slowly varying with time, Ut−1 is nearly orthogonal to the noise
subspace of Ut−2, i.e., U⊺t−2,⊥Ut−1 ≊ 0. Therefore, the second
term of (A3) is negligible and can be discarded. In what follows,
we indicate that the QR decomposition of St in (A3) can be
expressed in terms of the augmented and updated terms of the QR
decomposition of St−1. Denote by UkRU,k the QR representation
of Sk for k = 1,2, . . . , t. Note that St−1 = Rt−1Ut−2, (A3) is
further expressed as follows

St ≊ βRt−1Ut−2U
⊺
t−2Ut−1 +xtz

⊺
t

= βUt−1RU,t−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

QR(St−1)

Et−1
±

U⊺t−2Ut−1

+ xtz
⊺
t

= Ut−1(βRU,t−1Et−1 + ztz⊺t ) + ytz
⊺
t

= [Ut−1 yt]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
augmented term

[βRU,t−1Et−1 + ztz⊺t
z⊺t

]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

updated term

. (A4)

Without loss of generality, we suppose that the Givens method is
used to compute the QR decomposition of St. By using a sequence
of Givens rotations, (A4) is recast into the following form

St ≊ ([Ut−1 yt]G⊺t ) (Gt [
βRU,t−1Et−1 + ztz⊺t

z⊺t
])

= ([Ut−1 ȳt]G⊺t ) (Gt [
βRU,t−1Et−1 + ztz⊺t

∥yt∥2z⊺t
]), (A5)

where ȳ = yt/∥yt∥2 is the normalized vector of yt, and Gt is a
(r + 1) × (r + 1) orthogonal matrix representing the sequence of
Givens rotations. The Givens rotations in Gt should be selected
such that the second term of (A5) is transformed into an upper
triangular matrix, i.e.,

Gt [
βRU,t−1Et−1 + ztz⊺t

∥yt∥2z⊺t
] = [RU,t

01×r
] , (A6)

to obtain the R-factor RU,t of St. Now, let ut = [Ut−1 ȳt]g⊺t
where gt is the last row of the Givens matrix Gt. To form the QR
representation of St, we have

St
QR= UtRU,t

= ([Ut−1 ȳt]G⊺t )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[Ut ut]

(Gt [
βRU,t−1Et−1 + ztz⊺t

∥yt∥2z⊺t
])

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⎡⎢⎢⎢⎢⎣

RU,t

01×r

⎤⎥⎥⎥⎥⎦

.

This gives rise the following recursion for updating Ut at time t

[Ut ut] =[Ut−1 ȳt]G⊺t . (A7)

As ȳ⊺t ȳt = 1 and [U
⊺
t−1
ȳ⊺t
] [Ut−1 ȳt] = I , we can express the

rotation matrix Gt as follows

G⊺t = [
U⊺t−1
ȳ⊺t
] [Ut ut] = [

U⊺t−1Ut U⊺t−1ut

ȳ⊺t Ut ȳ⊺t ut
]

= [Et U⊺t−1ut

h⊺t ȳ⊺t ut
] , (A8)

where Et = U⊺t−1Ut and ht = U⊺t ȳt are defined as in (8) and (11),
respectively. By substituting (A8) into (A7), we obtain

[Ut−1 ȳt] [
Et U⊺t−1ut

h⊺t ȳt
⊺ut
] = [Ut ut] , (A9)

and hence,

Ut = Ut−1Et + ȳth
⊺
t . (A10)

It implies that ∆Ut = ȳth
⊺
t , according to (A1).

B. Proof of Lemma 1
Because Ut,F is the Q-factor of St, we obtain θ(A,Ut,F) =
θ(A,St) and hence

tan θ(A,Ut,F) = max
∥v∥2=1

⎧⎪⎪⎨⎪⎪⎩
f(v) =

∥A⊺⊥Stv∥2
∥A⊺Stv∥2

⎫⎪⎪⎬⎪⎪⎭
. (B1)

For any vector v ∈ Rr×1 and ∥v∥2 = 1, we can rewrite f(v) in (B1)
as follows

f(v) =
∥A⊺⊥RtUt−1v∥2
∥A⊺RtUt−1v∥2

=
∥A⊺⊥(t(C +∆Ct))Ut−1v∥2
∥A⊺(t(C +∆Ct))Ut−1v∥2

=
∥A⊺⊥(σ2

xAA⊺ + σ2
nIN +∆Ct)Ut−1v∥2

∥A⊺(σ2
xAA⊺ + σ2

nIN +∆Ct)Ut−1v∥2
(i)=

∥σ2
nA

⊺
⊥Ut−1v +A⊺⊥∆CtUt−1v∥2

∥(σ2
x + σ2

n)A⊺Ut−1v +A⊺∆CtUt−1v∥2
(ii)
≤

σ2
n∥A⊺⊥Ut−1∥2 + ∥A

⊺
⊥∆CtUt−1∥2

(σ2
x + σ2

n)∥A⊺Ut−1∥2 − ∥A⊺∆CtUt−1∥2
(iii)
≤

σ2
n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2

(σ2
x + σ2

n)
√
1 − ∥A⊺⊥Ut−1∥22 − ∥∆Ct∥2

. (B2)
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Here, (i) is due to A⊺⊥A = 0 (orthogonal complement); (ii) uses
the inequality ∥P ∥2 − ∥Q∥2 ≤ ∥P +Q∥2 ≤ ∥P ∥2 + ∥Q∥2, ∀P ,Q
of the same size; and (iii) is derived from the following facts:
∥P∆Ct∥2 ≤ ∥P ∥2∥∆Ct∥2, ∥A∥2 = ∥A⊥∥2 = ∥Ut−1∥2 = 1, and

λ2min(A⊺Ut−1) + λ2max(A⊺⊥Ut−1) = 1, (B3)

where λmax(P ) and λmin(P ) represent the largest and smallest
singular value of P , respectively.
Indeed, the relation (B3) leads to

∥A⊺Ut−1∥2 = λmax(A⊺Ut−1) ≥ λmin(A⊺Ut−1)

=
√

1 − λ2max(A⊺⊥Ut−1) =
√

1 − ∥A⊺⊥Ut−1∥22, (B4)

and thus, (iii) follows.
In parallel, it is well known that sinψ = 1/

√
1 + tan−2 ψ ∀ψ ∈

[0, π/2] and h(x) = 1/
√
1 + x−2 is an increasing function in the

domain (0,∞), i.e., x1 ≤ x2 implies h(x1) ≤ h(x2). Accordingly,
we obtain

∥A⊺⊥Ut,F∥2 ≤
1√

1 + [maxv f(v)]
−2

=
σ2
n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2

([(σ2
x + σ2

n)
√

1 − ∥A⊺⊥Ut−1∥2 − ∥∆Ct∥2]
2

+

+ [σ2
n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2]

2

)
1/2

. (B5)

It ends the proof.

C. Proof of Lemma 2

We first recast ∥U⊺t,⊥Ut,F∥2 into the following form

∥U⊺t,⊥Ut,F∥2 = ∥U
⊺
t,F,⊥Ut∥2

= ∥U⊺t,F,⊥(Ut −Ut,F)∥2 = ∥U
⊺
t,F,⊥∆Ut∥2. (C1)

Under the following condition

(1 +
√
2)κ(St)∥St − Ŝt∥F < ∥St∥2, (C2)

where ∆St = St − Ŝt and κ(St) = ∥S#
t ∥2∥St∥2, we can bound

this distance as follows

∥U⊺t,F,⊥∆Ut∥2 ≤ ∥U
⊺
t,F,⊥∆Ut∥F

(i)
≤

κ(St)
∥U⊺t,F,⊥∆St∥F
∥St∥2

1 − (1 +
√
2)κ(St)

∥∆St∥F
∥St∥2

(ii)
≤ ∥∆St∥F
λmin(St) − (1 +

√
2)∥∆St∥F

. (C3)

Here, (i) follows immediately the perturbation theory for QR
decomposition [1, Theorem 3.1] and (ii) is obtained from the
facts that ∥Ut,F,⊥∥2 = 1, ∥PQ∥F ≤ ∥P ∥2∥Q∥F , and ∥P#∥2 =
λ−1min(P ) ∀P ,Q of suitable sizes.
We also know that there always exists two coefficient matrices
Ht ∈ Rr×r and Kt ∈ R(n−r)×r satisfying Ut−1 = AHt +A⊥Kt

(i.e., projection of Ut−1 onto the subspace A) and

λmax(Ht) = ∥A⊺Ut−1∥2, λmin(Ht) =
√

1 − ∥A⊺⊥Ut−1∥22, (C4)

λmax(Kt) = ∥A⊺⊥Ut−1∥2, λmin(Kt) =
√

1 − ∥A⊺Ut−1∥22. (C5)

Accordingly, we can express St by

St =RtUt−1 = t(CUt−1 +∆CtUt−1)
= t(AΣxA

⊺ + σ2
nIn(AHt +A⊥Kt) +∆CtUt−1)

= t(A(σ2
xIr + σ2

nIr)Ht + σ2
nA⊥Kt +∆CtUt−1). (C6)

Thanks to the fact that λi(P +Q) ≥ λi(P ) −λmax(Q) ∀P ,Q of
the same size, the lower bound on λmin(St) is given by

λmin(St) ≥ t(λmin((σ2
x + σ2

n)AHt) − λmax(σ2
nA⊥Kt)

− λmax(∆CtUt−1))
≥ t((σ2

x + σ2
n)λmin(Ht) − σ2

nλmax(Kt) − ∥∆Ct∥2)

= t((σ2
x + σ2

n)
√

1 − ∥A⊺⊥Ut−1∥22 − σ2
n∥A⊺⊥Ut−1∥2 − ∥∆Ct∥2),

(C7)

In what follows, we derive an upper bound on ∥∆St∥F . For short,
let us denote the support of A, Ut−1, and Ut by TA, Tt−1, and
Tt, respectively, and St = TA ∪Tt−1 ∪Tt. Here, we also know that
St,St = Rt,St×StUt−1 and Ŝt = St,Tt = τ(St,St , k). Accordingly,
we can bound ∥∆St∥F as follows

∥∆St∥F = ∥St,St −St,Tt∥F
(i)
≤ ∥St,St −St,TA∥F

= t∥σ2
nA⊥Kt +∆CtUt−1∥F

≤ t
√
r∥σ2

nA⊥Kt +∆CtUt−1∥2 ≤ t
√
r(σ2

n∥Kt∥2 + ∥∆Ct∥2)
= t
√
r(σ2

n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2), (C8)

where (i) is due to ∣Tt∣ ≥ ∣TA∣ ∀t (i.e., ∣St∖Tt∣ ≤ ∣St∖TA∣), thanks
the thresholding operator τ(⋅) with nωsparse ≤ k ≤

√
n/ logn.

In parallel, we can rewrite the sufficient and necessary condi-
tion (C2) as

(1 +
√
2)∥S#

t ∥2∥∆St∥F ≤ 1. (C9)

Since ∥S#
t ∥2 = λ−1min(St), substituting the (C7) for ∥S#

t ∥2
and (C8) for ∥∆St∥F results in

σ2
n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2

(σ2
x + σ2

n)
√

1 − ∥A⊺⊥Ut−1∥2
≤

√
2 − 1

√
r − 1 +

√
2
. (C10)

Under the condition (C10), the upper bound on ∥U⊺t,⊥Ut,F∥2 is

∥U⊺t,⊥Ut,F∥2

≤
√
r(σ2

n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2)

((σ2
x + σ2

n)
√

1 − ∥A⊺⊥Ut−1∥22 − σ
2
n∥A⊺⊥Ut−1∥2−

− ∥∆Ct∥2 −
√
r(1 +

√
2)(σ2

n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2))

=
√
r(σ2

n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2)

((σ2
x + σ2

n)
√

1 − ∥A⊺⊥Ut−1∥22 − (1 +
√
r(1 +

√
2))×

× (σ2
n∥A⊺⊥Ut−1∥2 + ∥∆Ct∥2))

, (C11)

thanks to (C3). It ends the proof.

D. Proof of Lemma 3
We begin the proof with the following proposition:

Proposition 1. Given two sets of random variable vectors {ai}Ni=1
and {bi}Ni=1 where ai

i.i.d.∼ N(0, σ2
aIn), bi

i.i.d.∼ N(0, σ2
bIm), and
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ai is independent of bj ,∀i, j. The following inequality holds with
a probability at least 1 − δ:

∥ 1
N

N

∑
i=1

aib
⊺
i ∥

2

≤ Cσaσb

√
log(2/δ)max{n,m}

N
. (D1)

where 0 < δ ≪ 1 and C > 0 is a universal positive number.

Proof. Its proof follows immediately Lemma 15 in [2].

Since xi =Awi +ni, we always have

∥∆Ct∥2 ≤ ∥A∥
2
2∥

1

tW

tW

∑
i=1

wiw
⊺
i − σ2

xIr∥
2

+

+ 2∥A∥2∥
1

tW

tW

∑
i=1

win
⊺
i ∥

2

+ ∥ 1

tW

tW

∑
i=1

nin
⊺
i − σ2

nIn∥
2

, (D2)

please see (D3) for a detailed derivation of (D2). Accordingly,
with a probability at least 1 − δ (0 < δ ≪ 1), three components in
the right hand side of (D2) are respectively bounded by

∥ 1

tW

tW

∑
i=1

wiw
⊺
i − σ2

wIr∥
2

≤ C1

√
log(2/δ)σ2

w

√
r

tW
, (D4)

∥ 1

tW

tW

∑
i=1

nin
⊺
i − σ2

nIn∥
2

≤ C2

√
log(2/δ)σ2

n

√
n

tW
, (D5)

∥ 1

tW

tW

∑
i=1

win
⊺
i ∥

2

≤ C3

√
log(2/δ)σwσn

√
n

tW
, (D6)

where C1,C2,C3 are universal positive parameters, thanks to
Proposition 1 and [3, Proposition 2.1]. As a result, we obtain

∥∆Ct∥2 ≤ cδ(σ
2
w

√
r

tW
+ (2σnσw + σ2

n)
√

n

tW
), (D7)

where cδ =max{C1,C2,C3}
√
log(2/δ). It ends the proof.

E. Proof of Lemma 4
We first use proof by induction to prove dt ≤ ω0 = max{d0, ϵ}.
Particularly, we already have the base case of d0 ≤ ω0. In the
induction step, we suppose dt−1 ≤ ω0 and then prove dt ≤ ω0 still
holds. After that, we indicate that dt ≤ ϵ is achievable when the
two conditions (17) and (18) are met.
Thanks to Lemma 3, when t satisfies (17), i.e.,

t ≥ C log(2/δ)r2
Wϵ2ρ2

(
√
r + (σ

2
n

σ2
x

+ 2σn
σx
)
√
n)

2

, (E1)

we obtain ∥∆Ct∥2 ≤ r−1ρσ2
xϵ with 0 < ρ ≤ r. In what follows,

two case studies dt−1 ≥ ϵ and dt−1 ≤ ϵ are investigated.
Case 1: When dt−1 ≥ ϵ, i.e., ∥∆Ct∥2 ≤ r−1ρσ2

xdt−1.
We can rewrite ∥A⊺⊥Ut,F∥2 as follows

∥A⊺⊥Ut,F∥2 ≤
(σ2

n + r−1ρσ2
x)dt−1

([(σ2
n + σ2

x)
√

1 − d2t−1 − r−1ρσ2
xdt−1]

2+
aaaaaaaaaaaa + (σ2

n + σ2
xρ/r)2d2t−1)

1/2

(i)
≤ (σ2

n + r−1ρσ2
x)dt−1

([(σ2
n + σ2

x)
√

1 − ω2
0 − r−1ρσ2

xω0]
2+

aaaaaaaaaaaaaaaaaaaaa + (σ2
n + r−1ρσ2

x)2ω2
0)

1/2

(ii)
≤ (σ2

n + r−1ρσ2
x)dt−1

((1 + γ2r2)σ4
n + (1 − ργ)2σ4

x+
aaaaaaaa + 2(1 − ργ + γ2r2)σ2

xσ
2
n)

1/2√
1 − ω2

0

. (E2)

Here, (i) is obtained from the fact that g(x) = ((a
√
1 − x2−bx)2+

cx2)−1/2 is an increasing function in the range [0,
√
2/2] where

a, b, and c are defined therein1 and (ii) is simple due to the fact
that there always exists a small parameter γ > 0 such that ργ < 1
and ω0 ≤ γr

√
1 − ω2

0 .
In the similar way, we obtain the following upper bound on
∥U⊺t,⊥Ut,F∥2:

∥U⊺t,⊥Ut,F∥2 ≤
√
r(σ2

n + r−1ρσ2
x)dt−1

(σ2
x + σ2

n)
√

1 − d2t − (1 +
√
r(1 +

√
2))×

× (σ2
n + r−1ρσ2

x)dt−1
(i)
≤

√
r(σ2

n + r−1ρσ2
x)dt−1

(σ2
x + σ2

n)
√
1 − ω2

0 − (1 +
√
r(1 +

√
2))(σ2

n + r−1ρσ2
x)ω0

(ii)
≤

√
r(σ2

n + r−1ρσ2
x)

(σ2
x + σ2

n)(1 − ϱ)
√
1 − ω2

0

dt−1, (E4)

where ϱ = γ(1+√r(1+
√
2)(rσ2

n+ρσ2
x))(σ2

x+σ2
n)−1. Specifically,

(i) is due to the increasing property of z(x) = (a
√
1 − x2 − bx)−1,

and (ii) thanks to ω0 ≤ γr
√
1 − ω2

0 .
Thanks to (E2) and (E4), we obtain

dt ≤ ∥A⊺⊥Ut,F∥2 + ∥U
⊺
t,⊥Ut,F∥2 ≤

rσ2
n + ρσ2

x

rξ
√
1 − ω2

0

dt−1, (E5)

where

ξ = 0.5max{((1 + γ2r2)σ4
n + (1 − ργ)2σ4

x

+ 2(1 − ργ + γ2r2)σ2
xσ

2
n)

1/2
, (σ2

x + σ2
n)(1 − ϱ)/

√
r}. (E6)

Note that in order to utilize the two bounds (E2) and (E4), the
condition (C10) must be satisfied which is equivalent to

(σ2
n + r−1ρσ2

x)ω0

(σ2
x + σ2

n)
√
1 − ω2

0

≤
√
2 − 1

√
r − 1 +

√
2
. (E7)

Accordingly, we obtain ω0 ≤ ( α(r,ρ)
1−α(r,ρ))

1/2
where

α(r, ρ) = (3 − 2
√
2)(σ2

x + σ2
n)2

(r + 2√r(
√
2 − 1) + 3 − 2

√
2)(σ2

n + r−1ρσ2
x)

2
. (E8)

In parallel, α(r, ρ) ≥ 3−2
√
2

r+2
√
r(
√
2−1)+3−2

√
2

for every 0 < ρ ≤ r. Thus,

we obtain ω0 ≤ ( 3−2
√
2

r+2
√
r(
√
2−1)
)1/2 which is exactly the condi-

tion (18) in Theorem 1. Moreover, there are various options of
p ∈ (0, r] satisfying ρσ2

x < rξ
√
1 − ω2

0 − rσ2
n, e.g., when the value

of ρ is very close to zero. In such cases, dt will decrease in each
time t, i.e., dt ≤ dt−1 ≤ ω0.
Case 2: When dt−1 ≤ ϵ, applying the same arguments in Case 1,
we also obtain dt ≤ rσ2

n+ρσ
2
x

rξ
√

1−ω2
0

ϵ ≤ ϵ ≤ ω0.

1Writing x = siny, the domain of y is [0, π/4]. Here, we can recast g(x) into
g(y) = ((a cosy − b siny)2 + c sin2 y)

−1/2. The derivative g′(y) is given by

g′(y) = 0.5((a cosy − b siny)2 + c sin2 y)−3/2×

× ((a2 − b2 − c) sin(2y) + ab cos(2y)). (E3)

Since a2 − b2 > c by their definition, g′(y) > 0 ∀y ∈ [0, π/4] and hence g′(x) =
g′(y)dy/dx = g′(y)/

√

1 − x2 > 0 ∀x ∈ [0,
√

2/2]. Accordingly, dt−1 ≤ ω0 ≤√

2/2 implies g(dt−1) ≤ g(ω0) which (i) then follows.
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∥∆Ct∥2 = ∥
1

tW

tW

∑
i=1

xix
⊺
i −C∥

2

= ∥ 1

tW

tW

∑
i=1
(Awiw

⊺
i A
⊺ +nin

⊺
i +Awin

⊺
i +niw

⊺
i A
⊺) − σ2

xAA⊺ − σ2
nIn∥

2

≤ ∥A( 1

tW

tW

∑
i=1

wiw
⊺
i − σ2

xIr)A⊺∥
2

+ ∥ 1

tW

tW

∑
i=1

nin
⊺
i − σ2

nIN∥
2

+ 2∥A( 1

tW

tW

∑
i=1

win
⊺
i )∥

2

≤ ∥A∥2
2
∥ 1

tW

tW

∑
i=1

wiw
⊺
i − σ2

xIr∥
2

+ ∥ 1

tW

tW

∑
i=1

nin
⊺
i − σ2

nIn∥
2

+ 2∥A∥
2
∥ 1

tW

tW

∑
i=1

win
⊺
i ∥

2

, (D3)

thanks to the inequality ∥PQ∥2 ≤ ∥P ∥2∥Q∥2 for all P and Q of suitable sizes.

To sum up, if the two conditions (17) and (18) are satisfied, then
dt ≤ max{dt−1, ϵ} = ω0. As a result, the statement dt ≤ ϵ holds if
and only if

( rσ
2
n + ρσ2

x

rξ
√
1 − ω2

0

)
tW

ω0 ≤ ϵ. (E9)

Specifically, (E9) is equivalent to

t ≥ log(ϵ/ω0)
W ( log(rσ2

n + ρσ2
x) − log(rξ

√
1 − ω2

0))
. (E10)

which is lower than the bound (17). Therefore, we can conclude
that dt ≤ ϵ holds and it ends the proof.

F. Decomposition of Ut

Let Ut,F =Dt and Ut,F,⊥ =Dt,⊥ for easy of representation. Now,
our objective is to demonstrate the existence of two matrices W1 ∈
Rr×r and W2 ∈ R(n−r)×r such that

Ut =DtW1 +Dt,⊥W2.

Proof. Given a full-rank matrix P ∈ Rn×n, we always find a matrix
W ∈ Rn×r such that

Ut = PW or u
(i)
t = Pw(i), i = 1,2, . . . , r,

where u
(i)
t and w(i) are the i-th column of Ut and W , re-

spectively. It is because w(i) = P −1u
(i)
t always exists. Form

P = [Dt Dt,⊥] (of size n × n, full rank n), we then obtain

Ut = [Dt Dt,⊥]W = [Dt Dt,⊥] [
W1

W2
] =DtW1 +Dt,⊥W2,

where W1 ∈ Rr×r and W2 ∈ R(n−r)×r are sub-matrices of W . It
implies that we always decompose Ut into two components as

Ut = Ut,FW1 +Ut,F,⊥,W2.
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