Supplementary Material

A. Derivation of ΔU_{t}

We first recall that

$$
\begin{equation*}
\boldsymbol{U}_{t}=\boldsymbol{U}_{t-1} \boldsymbol{E}_{t}+\boldsymbol{\Delta} \boldsymbol{U}_{t} \tag{A1}
\end{equation*}
$$

where $\boldsymbol{\Delta} \boldsymbol{U}_{t}$ represents the distinctive new information in \boldsymbol{U}_{t}. Thanks to (10) in the main text, we have

$$
\begin{equation*}
\boldsymbol{x}_{t}=\boldsymbol{y}_{t}+\boldsymbol{U}_{t-1} \boldsymbol{z}_{t} \tag{A2}
\end{equation*}
$$

The matrix \boldsymbol{S}_{t} in (7) can be expressed as follows

$$
\begin{align*}
\boldsymbol{S}_{t} & =\boldsymbol{R}_{t} \boldsymbol{U}_{t-1}=\beta \boldsymbol{R}_{t-1} \boldsymbol{U}_{t-1}+\boldsymbol{x}_{t} \boldsymbol{z}^{\top} \\
& =\beta \boldsymbol{R}_{t-1} \underbrace{\left[\begin{array}{ll}
\boldsymbol{U}_{t-2} & \boldsymbol{U}_{t-2, \perp}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{U}_{t-2} & \boldsymbol{U}_{t-2, \perp}
\end{array}\right]^{\top}}_{=\boldsymbol{I}_{n}} \boldsymbol{U}_{t-1}+\boldsymbol{x}_{t} \boldsymbol{z}_{t}^{\top} \\
& =\beta \boldsymbol{R}_{t-1} \boldsymbol{U}_{t-2} \boldsymbol{U}_{t-2}^{\top} \boldsymbol{U}_{t-1}+\beta \boldsymbol{R}_{t-1} \boldsymbol{U}_{t-2, \perp} \boldsymbol{U}_{t-2, \perp}^{\top} \boldsymbol{U}_{t-1}+\boldsymbol{x}_{t} \boldsymbol{z}_{t}^{\top}, \tag{A3}
\end{align*}
$$

where $\boldsymbol{U}_{t-2, \perp}^{\top} \boldsymbol{U}_{t-2}=\mathbf{0}_{n-r \times r}$ and $\boldsymbol{U}_{t-2}^{\top} \boldsymbol{U}_{t-2, \perp}=\mathbf{0}_{r \times n-r}$ by definition. As the underlying subspace is assumed to be fixed or slowly varying with time, \boldsymbol{U}_{t-1} is nearly orthogonal to the noise subspace of \boldsymbol{U}_{t-2}, i.e., $\boldsymbol{U}_{t-2, \perp}^{\top} \boldsymbol{U}_{t-1} \cong \mathbf{0}$. Therefore, the second term of (A3) is negligible and can be discarded. In what follows, we indicate that the QR decomposition of S_{t} in (A3) can be expressed in terms of the augmented and updated terms of the QR decomposition of \boldsymbol{S}_{t-1}. Denote by $\boldsymbol{U}_{k} \boldsymbol{R}_{U, k}$ the QR representation of \boldsymbol{S}_{k} for $k=1,2, \ldots, t$. Note that $\boldsymbol{S}_{t-1}=\boldsymbol{R}_{t-1} \boldsymbol{U}_{t-2}$, (A3) is further expressed as follows

$$
\begin{align*}
\boldsymbol{S}_{t} & \approx \beta \boldsymbol{R}_{t-1} \boldsymbol{U}_{t-2} \boldsymbol{U}_{t-2}^{\top} \boldsymbol{U}_{t-1}+\boldsymbol{x}_{t} \boldsymbol{z}_{t}^{\top} \\
& =\beta \underbrace{\boldsymbol{U}_{t-1} \boldsymbol{R}_{U, t-1}}_{\mathrm{QR}\left(\boldsymbol{S}_{t-1}\right)} \underbrace{\boldsymbol{E}_{t-1}}_{\boldsymbol{U}_{t-2}^{\top} \boldsymbol{U}_{t-1}}+\boldsymbol{x}_{t} \boldsymbol{z}_{t}^{\top} \\
& =\boldsymbol{U}_{t-1}\left(\beta \boldsymbol{R}_{U, t-1} \boldsymbol{E}_{t-1}+\boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top}\right)+\boldsymbol{y}_{t} \boldsymbol{z}_{t}^{\top} \\
& =\underbrace{\left[\begin{array}{ll}
\boldsymbol{U}_{t-1} & \boldsymbol{y}_{t}
\end{array}\right]}_{\text {augmented term }} \underbrace{\beta \boldsymbol{R}_{U, t-1} \boldsymbol{E}_{t-1}+\boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top}}_{\text {updated term }} \begin{array}{|}
\boldsymbol{z}_{t}^{\top}
\end{array}] \tag{A4}
\end{align*}
$$

Without loss of generality, we suppose that the Givens method is used to compute the QR decomposition of \boldsymbol{S}_{t}. By using a sequence of Givens rotations, (A4) is recast into the following form

$$
\begin{align*}
\boldsymbol{S}_{t} & \left.\approx\left(\begin{array}{ll}
\boldsymbol{U}_{t-1} & \boldsymbol{y}_{t}
\end{array}\right] \boldsymbol{G}_{t}^{\top}\right)\left(\boldsymbol{G}_{t}\left[\begin{array}{c}
\beta \boldsymbol{R}_{U, t-1} \boldsymbol{E}_{t-1}+\boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} \\
\boldsymbol{z}_{t}^{\top}
\end{array}\right]\right) \\
& =\left(\left[\begin{array}{ll}
\boldsymbol{U}_{t-1} & \overline{\boldsymbol{y}}_{t}
\end{array}\right] \boldsymbol{G}_{t}^{\top}\right)\left(\boldsymbol{G}_{t}\left[\begin{array}{c}
\beta \boldsymbol{R}_{U, t-1} \boldsymbol{E}_{t-1}+\boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} \\
\left\|\boldsymbol{y}_{t}\right\|_{2} \boldsymbol{z}_{t}^{\top}
\end{array}\right]\right), \tag{A5}
\end{align*}
$$

where $\overline{\boldsymbol{y}}=\boldsymbol{y}_{t} /\left\|\boldsymbol{y}_{t}\right\|_{2}$ is the normalized vector of \boldsymbol{y}_{t}, and \boldsymbol{G}_{t} is a $(r+1) \times(r+1)$ orthogonal matrix representing the sequence of Givens rotations. The Givens rotations in \boldsymbol{G}_{t} should be selected such that the second term of (A5) is transformed into an upper triangular matrix, i.e.,

$$
\boldsymbol{G}_{t}\left[\begin{array}{c}
\beta \boldsymbol{R}_{U, t-1} \boldsymbol{E}_{t-1}+\boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} \tag{A6}\\
\left\|\boldsymbol{y}_{t}\right\|_{2} \boldsymbol{z}_{t}^{\top}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{R}_{U, t} \\
\mathbf{0}_{1 \times r}
\end{array}\right],
$$

to obtain the R-factor $\boldsymbol{R}_{U, t}$ of \boldsymbol{S}_{t}. Now, let $\boldsymbol{u}_{t}=\left[\begin{array}{cc}\boldsymbol{U}_{t-1} & \overline{\boldsymbol{y}}_{t}\end{array}\right] \boldsymbol{g}_{t}^{\top}$ where \boldsymbol{g}_{t} is the last row of the Givens matrix \boldsymbol{G}_{t}. To form the QR representation of \boldsymbol{S}_{t}, we have

$$
\begin{aligned}
\boldsymbol{S}_{t} & \stackrel{\mathrm{QR}}{=} \boldsymbol{U}_{t} \boldsymbol{R}_{U, t} \\
& =\underbrace{\left(\left[\begin{array}{ll}
\boldsymbol{U}_{t-1} & \overline{\boldsymbol{y}}_{t}
\end{array}\right] \boldsymbol{G}_{t}^{\top}\right)}_{\left[\begin{array}{ll}
\boldsymbol{U}_{t} & \boldsymbol{u}_{t}
\end{array}\right]} \underbrace{\left(\boldsymbol{G}_{t}\left[\begin{array}{c}
\beta \boldsymbol{R}_{U, t-1} \boldsymbol{E}_{t-1}+\boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} \\
\left\|\boldsymbol{y}_{t}\right\|_{2} \boldsymbol{z}_{t}^{\top}
\end{array}\right]\right)}_{\left[\begin{array}{l}
\boldsymbol{R}_{U, t} \\
\mathbf{0}_{1 \times r}
\end{array}\right]}
\end{aligned}
$$

This gives rise the following recursion for updating \boldsymbol{U}_{t} at time t

$$
\left[\begin{array}{ll}
\boldsymbol{U}_{t} & \boldsymbol{u}_{t}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{U}_{t-1} & \overline{\boldsymbol{y}}_{t} \tag{A7}
\end{array}\right] \boldsymbol{G}_{t}^{\top} .
$$

As $\overline{\boldsymbol{y}}_{t}^{\top} \overline{\boldsymbol{y}}_{t}=1$ and $\left[\begin{array}{c}\boldsymbol{U}_{t-1}^{\top} \\ \overline{\boldsymbol{y}}_{t}^{\top}\end{array}\right]\left[\begin{array}{ll}\boldsymbol{U}_{t-1} & \overline{\boldsymbol{y}}_{t}\end{array}\right]=\boldsymbol{I}$, we can express the rotation matrix \boldsymbol{G}_{t} as follows

$$
\begin{align*}
\boldsymbol{G}_{t}^{\top}=\left[\begin{array}{c}
\boldsymbol{U}_{t-1}^{\top} \\
\overline{\boldsymbol{y}}_{t}^{\top}
\end{array}\right]\left[\begin{array}{ll}
\boldsymbol{U}_{t} & \boldsymbol{u}_{t}
\end{array}\right] & =\left[\begin{array}{cc}
\boldsymbol{U}_{t-1}^{\top} \boldsymbol{U}_{t} & \boldsymbol{U}_{t-1}^{\top} \boldsymbol{u}_{t} \\
\overline{\boldsymbol{y}}_{t}^{\top} \boldsymbol{U}_{t} & \overline{\boldsymbol{y}}_{t}^{\top} \boldsymbol{u}_{t}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\boldsymbol{E}_{t} & \boldsymbol{U}_{t-1}^{\top} \boldsymbol{u}_{t} \\
\boldsymbol{h}_{t}^{\top} & \overline{\boldsymbol{y}}_{t}^{\top} \boldsymbol{u}_{t}
\end{array}\right] \tag{A8}
\end{align*}
$$

where $\boldsymbol{E}_{t}=\boldsymbol{U}_{t-1}^{\top} \boldsymbol{U}_{t}$ and $\boldsymbol{h}_{t}=\boldsymbol{U}_{t}^{\top} \overline{\boldsymbol{y}}_{t}$ are defined as in (8) and (11), respectively. By substituting (A8) into (A7), we obtain

$$
\left[\begin{array}{ll}
\boldsymbol{U}_{t-1} & \overline{\boldsymbol{y}}_{t}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{E}_{t} & \boldsymbol{U}_{t-1}^{\top} \boldsymbol{u}_{t} \tag{A9}\\
\boldsymbol{h}_{t}^{\top} & \overline{\boldsymbol{y}}_{t}^{\top} \boldsymbol{u}_{t}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{U}_{t} & \boldsymbol{u}_{t}
\end{array}\right]
$$

and hence,

$$
\begin{equation*}
\boldsymbol{U}_{t}=\boldsymbol{U}_{t-1} \boldsymbol{E}_{t}+\overline{\boldsymbol{y}}_{t} \boldsymbol{h}_{t}^{\top} \tag{A10}
\end{equation*}
$$

It implies that $\boldsymbol{\Delta} \boldsymbol{U}_{t}=\overline{\boldsymbol{y}}_{t} \boldsymbol{h}_{t}^{\top}$, according to (A1).

B. Proof of Lemma 1

Because $\boldsymbol{U}_{t, \mathcal{F}}$ is the Q -factor of \boldsymbol{S}_{t}, we obtain $\theta\left(\boldsymbol{A}, \boldsymbol{U}_{t, \mathcal{F}}\right)=$ $\theta\left(\boldsymbol{A}, \boldsymbol{S}_{t}\right)$ and hence

$$
\begin{equation*}
\tan \theta\left(\boldsymbol{A}, \boldsymbol{U}_{t, \mathcal{F}}\right)=\max _{\|\boldsymbol{v}\|_{2}=1}\left\{f(\boldsymbol{v})=\frac{\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{S}_{t} \boldsymbol{v}\right\|_{2}}{\left\|\boldsymbol{A}^{\top} \boldsymbol{S}_{t} \boldsymbol{v}\right\|_{2}}\right\} \tag{B1}
\end{equation*}
$$

For any vector $\boldsymbol{v} \in \mathbb{R}^{r \times 1}$ and $\|\boldsymbol{v}\|_{2}=1$, we can rewrite $f(\boldsymbol{v})$ in (B1) as follows

$$
\begin{align*}
& f(\boldsymbol{v})=\frac{\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{R}_{t} \boldsymbol{U}_{t-1} \boldsymbol{v}\right\|_{2}}{\left\|\boldsymbol{A}^{\top} \boldsymbol{R}_{t} \boldsymbol{U}_{t-1} \boldsymbol{v}\right\|_{2}}=\frac{\left\|\boldsymbol{A}_{\perp}^{\top}\left(t\left(\boldsymbol{C}+\boldsymbol{\Delta} \boldsymbol{C}_{t}\right)\right) \boldsymbol{U}_{t-1} \boldsymbol{v}\right\|_{2}}{\left\|\boldsymbol{A}^{\top}\left(t\left(\boldsymbol{C}+\boldsymbol{\Delta} \boldsymbol{C}_{t}\right)\right) \boldsymbol{U}_{t-1} \boldsymbol{v}\right\|_{2}} \\
&=\frac{\left\|\boldsymbol{A}_{\perp}^{\top}\left(\sigma_{x}^{2} \boldsymbol{A} \boldsymbol{A}^{\top}+\sigma_{n}^{2} \boldsymbol{I}_{N}+\boldsymbol{\Delta} \boldsymbol{C}_{t}\right) \boldsymbol{U}_{t-1} \boldsymbol{v}\right\|_{2}}{\left\|\boldsymbol{A}^{\top}\left(\sigma_{x}^{2} \boldsymbol{A} \boldsymbol{A}^{\top}+\sigma_{n}^{2} \boldsymbol{I}_{N}+\boldsymbol{\Delta} \boldsymbol{C}_{t}\right) \boldsymbol{U}_{t-1} \boldsymbol{v}\right\|_{2}} \\
& \stackrel{(i)}{=} \frac{\left\|\sigma_{n}^{2} \boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1} \boldsymbol{v}+\boldsymbol{A}_{\perp}^{\top} \boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1} \boldsymbol{v}\right\|_{2}}{\left\|\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \boldsymbol{A}^{\top} \boldsymbol{U}_{t-1} \boldsymbol{v}+\boldsymbol{A}^{\top} \boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1} \boldsymbol{v}\right\|_{2}} \\
&(i i) \\
& \leq \frac{\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1}\right\|_{2}}{\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right)\left\|\boldsymbol{A}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}-\left\|\boldsymbol{A}^{\top} \boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1}\right\|_{2}} \tag{B2}\\
& \stackrel{(i i i)}{\leq} \frac{\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}}{\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}^{2}}-\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}} .
\end{align*}
$$

Here, (i) is due to $\boldsymbol{A}_{\perp}^{\top} \boldsymbol{A}=\mathbf{0}$ (orthogonal complement); (ii) uses the inequality $\|\boldsymbol{P}\|_{2}-\|\boldsymbol{Q}\|_{2} \leq\|\boldsymbol{P}+\boldsymbol{Q}\|_{2} \leq\|\boldsymbol{P}\|_{2}+\|\boldsymbol{Q}\|_{2}, \forall \boldsymbol{P}, \boldsymbol{Q}$ of the same size; and (iii) is derived from the following facts: $\left\|\boldsymbol{P} \boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2} \leq\|\boldsymbol{P}\|_{2}\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2},\|\boldsymbol{A}\|_{2}=\left\|\boldsymbol{A}_{\perp}\right\|_{2}=\left\|\boldsymbol{U}_{t-1}\right\|_{2}=1$, and

$$
\begin{equation*}
\lambda_{\min }^{2}\left(\boldsymbol{A}^{\top} \boldsymbol{U}_{t-1}\right)+\lambda_{\max }^{2}\left(\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right)=1 \tag{B3}
\end{equation*}
$$

where $\lambda_{\max }(\boldsymbol{P})$ and $\lambda_{\min }(\boldsymbol{P})$ represent the largest and smallest singular value of \boldsymbol{P}, respectively.
Indeed, the relation (B3) leads to

$$
\begin{align*}
\left\|\boldsymbol{A}^{\top} \boldsymbol{U}_{t-1}\right\|_{2} & =\lambda_{\max }\left(\boldsymbol{A}^{\top} \boldsymbol{U}_{t-1}\right) \geq \lambda_{\min }\left(\boldsymbol{A}^{\top} \boldsymbol{U}_{t-1}\right) \\
& =\sqrt{1-\lambda_{\max }^{2}\left(\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right)}=\sqrt{1-\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}^{2}} \tag{B4}
\end{align*}
$$

and thus, (iii) follows.
In parallel, it is well known that $\sin \psi=1 / \sqrt{1+\tan ^{-2} \psi} \forall \psi \epsilon$ $[0, \pi / 2]$ and $h(x)=1 / \sqrt{1+x^{-2}}$ is an increasing function in the domain $(0, \infty)$, i.e., $x_{1} \leq x_{2}$ implies $h\left(x_{1}\right) \leq h\left(x_{2}\right)$. Accordingly, we obtain

$$
\begin{align*}
\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2} \leq \frac{1}{\sqrt{1+\left[\max _{\boldsymbol{v}} f(\boldsymbol{v})\right]^{-2}}} \\
=\frac{\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}}{\left(\left[\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|^{2}}-\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right]^{2}+\right.} \tag{B5}\\
\left.\quad+\left[\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right]^{2}\right)^{1 / 2}
\end{align*}
$$

It ends the proof.

C. Proof of Lemma 2

We first recast $\left\|\boldsymbol{U}_{t, \perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2}$ into the following form

$$
\begin{align*}
\left\|\boldsymbol{U}_{t, \perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2} & =\left\|\boldsymbol{U}_{t, \mathcal{F}, \perp}^{\top} \boldsymbol{U}_{t}\right\|_{2} \\
& =\left\|\boldsymbol{U}_{t, \mathcal{F}, \perp}^{\top}\left(\boldsymbol{U}_{t}-\boldsymbol{U}_{t, \mathcal{F}}\right)\right\|_{2}=\left\|\boldsymbol{U}_{t, \mathcal{F}, \perp}^{\top} \boldsymbol{\Delta} \boldsymbol{U}_{t}\right\|_{2} . \tag{C1}
\end{align*}
$$

Under the following condition

$$
\begin{equation*}
(1+\sqrt{2}) \kappa\left(\boldsymbol{S}_{t}\right)\left\|\boldsymbol{S}_{t}-\hat{\boldsymbol{S}}_{t}\right\|_{F}<\left\|\boldsymbol{S}_{t}\right\|_{2} \tag{C2}
\end{equation*}
$$

where $\boldsymbol{\Delta} \boldsymbol{S}_{t}=\boldsymbol{S}_{t}-\hat{\boldsymbol{S}}_{t}$ and $\kappa\left(\boldsymbol{S}_{t}\right)=\left\|\boldsymbol{S}_{t}^{\#}\right\|_{2}\left\|\boldsymbol{S}_{t}\right\|_{2}$, we can bound this distance as follows

$$
\begin{align*}
\left\|\boldsymbol{U}_{t, \mathcal{F}, \perp}^{\top} \boldsymbol{\Delta} \boldsymbol{U}_{t}\right\|_{2} & \leq\left\|\boldsymbol{U}_{t, \mathcal{F}, \perp}^{\top} \boldsymbol{\Delta} \boldsymbol{U}_{t}\right\|_{F} \\
& \stackrel{(i)}{\leq} \frac{\kappa\left(\boldsymbol{S}_{t}\right) \frac{\left\|\boldsymbol{U}_{t, \mathcal{F}, \perp}^{\top} \boldsymbol{\Delta} \boldsymbol{S}_{t}\right\|_{F}}{\left\|\boldsymbol{S}_{t}\right\|_{2}}}{1-(1+\sqrt{2}) \kappa\left(\boldsymbol{S}_{t}\right) \frac{\left\|\boldsymbol{\Delta} \boldsymbol{S}_{t}\right\|_{F}}{\left\|\boldsymbol{S}_{t}\right\|_{2}}} \\
& \stackrel{(i i)}{\leq} \frac{\left\|\boldsymbol{\Delta} \boldsymbol{S}_{t}\right\|_{F}}{\lambda_{\min }\left(\boldsymbol{S}_{t}\right)-(1+\sqrt{2})\left\|\boldsymbol{\Delta} \boldsymbol{S}_{t}\right\|_{F}} \tag{C3}
\end{align*}
$$

Here, (i) follows immediately the perturbation theory for QR decomposition [1, Theorem 3.1] and (ii) is obtained from the facts that $\left\|\boldsymbol{U}_{t, \mathcal{F}, \perp}\right\|_{2}=1,\|\boldsymbol{P} \boldsymbol{Q}\|_{F} \leq\|\boldsymbol{P}\|_{2}\|\boldsymbol{Q}\|_{F}$, and $\left\|\boldsymbol{P}^{\#}\right\|_{2}=$ $\lambda_{\text {min }}^{-1}(\boldsymbol{P}) \forall \boldsymbol{P}, \boldsymbol{Q}$ of suitable sizes.
We also know that there always exists two coefficient matrices $\boldsymbol{H}_{t} \in \mathbb{R}^{r \times r}$ and $\boldsymbol{K}_{t} \in \mathbb{R}^{(n-r) \times r}$ satisfying $\boldsymbol{U}_{t-1}=\boldsymbol{A} \boldsymbol{H}_{t}+\boldsymbol{A}_{\perp} \boldsymbol{K}_{t}$ (i.e., projection of \boldsymbol{U}_{t-1} onto the subspace \boldsymbol{A}) and

$$
\begin{align*}
& \lambda_{\max }\left(\boldsymbol{H}_{t}\right)=\left\|\boldsymbol{A}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}, \lambda_{\min }\left(\boldsymbol{H}_{t}\right)=\sqrt{1-\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}^{2}}, \tag{C4}\\
& \lambda_{\max }\left(\boldsymbol{K}_{t}\right)=\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}, \lambda_{\min }\left(\boldsymbol{K}_{t}\right)=\sqrt{1-\left\|\boldsymbol{A}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}^{2}} \tag{C5}
\end{align*}
$$

Accordingly, we can express \boldsymbol{S}_{t} by

$$
\begin{align*}
\boldsymbol{S}_{t} & =\boldsymbol{R}_{t} \boldsymbol{U}_{t-1}=t\left(\boldsymbol{C} \boldsymbol{U}_{t-1}+\boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1}\right) \\
& =t\left(\boldsymbol{A} \boldsymbol{\Sigma}_{x} \boldsymbol{A}^{\top}+\sigma_{n}^{2} \boldsymbol{I}_{n}\left(\boldsymbol{A} \boldsymbol{H}_{t}+\boldsymbol{A}_{\perp} \boldsymbol{K}_{t}\right)+\boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1}\right) \\
& =t\left(\boldsymbol{A}\left(\sigma_{x}^{2} \boldsymbol{I}_{r}+\sigma_{n}^{2} \boldsymbol{I}_{r}\right) \boldsymbol{H}_{t}+\sigma_{n}^{2} \boldsymbol{A}_{\perp} \boldsymbol{K}_{t}+\boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1}\right) . \tag{C6}
\end{align*}
$$

Thanks to the fact that $\lambda_{i}(\boldsymbol{P}+\boldsymbol{Q}) \geq \lambda_{i}(\boldsymbol{P})-\lambda_{\max }(\boldsymbol{Q}) \forall \boldsymbol{P}, \boldsymbol{Q}$ of the same size, the lower bound on $\lambda_{\min }\left(\boldsymbol{S}_{t}\right)$ is given by

$$
\begin{align*}
& \lambda_{\min }\left(\boldsymbol{S}_{t}\right) \geq t\left(\lambda_{\min }\left(\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \boldsymbol{A} \boldsymbol{H}_{t}\right)\right.-\lambda_{\max }\left(\sigma_{n}^{2} \boldsymbol{A}_{\perp} \boldsymbol{K}_{t}\right) \\
&\left.-\lambda_{\max }\left(\boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1}\right)\right) \\
& \geq t\left(\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \lambda_{\min }\left(\boldsymbol{H}_{t}\right)-\sigma_{n}^{2} \lambda_{\max }\left(\boldsymbol{K}_{t}\right)-\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right) \\
&=t\left(\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}^{2}}-\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}-\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right), \tag{C7}
\end{align*}
$$

In what follows, we derive an upper bound on $\left\|\boldsymbol{\Delta} \boldsymbol{S}_{t}\right\|_{F}$. For short, let us denote the support of $\boldsymbol{A}, \boldsymbol{U}_{t-1}$, and \boldsymbol{U}_{t} by $\mathcal{T}_{A}, \mathcal{T}_{t-1}$, and \mathcal{T}_{t}, respectively, and $\mathcal{S}_{t}=\mathcal{T}_{A} \cup \mathcal{T}_{t-1} \cup \mathcal{T}_{t}$. Here, we also know that $\boldsymbol{S}_{t, \mathcal{S}_{t}}=\boldsymbol{R}_{t, \mathcal{S}_{t} \times \mathcal{S}_{t}} \boldsymbol{U}_{t-1}$ and $\hat{\boldsymbol{S}}_{t}=\boldsymbol{S}_{t, \mathcal{T}_{t}}=\tau\left(\boldsymbol{S}_{t, \mathcal{S}_{t}}, k\right)$. Accordingly, we can bound $\left\|\Delta S_{t}\right\|_{F}$ as follows

$$
\begin{align*}
& \left\|\boldsymbol{\Delta} \boldsymbol{S}_{t}\right\|_{F}=\left\|\boldsymbol{S}_{t, \mathcal{S}_{t}}-\boldsymbol{S}_{t, \mathcal{T}_{t}}\right\|_{F} \stackrel{(i)}{\leq}\left\|\boldsymbol{S}_{t, \mathcal{S}_{t}}-\boldsymbol{S}_{t, \mathcal{T}_{A}}\right\|_{F} \\
& =t\left\|\sigma_{n}^{2} \boldsymbol{A}_{\perp} \boldsymbol{K}_{t}+\boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1}\right\|_{F} \\
& \leq t \sqrt{r}\left\|\sigma_{n}^{2} \boldsymbol{A}_{\perp} \boldsymbol{K}_{t}+\boldsymbol{\Delta} \boldsymbol{C}_{t} \boldsymbol{U}_{t-1}\right\|_{2} \leq t \sqrt{r}\left(\sigma_{n}^{2}\left\|\boldsymbol{K}_{t}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right) \\
& =t \sqrt{r}\left(\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right) \tag{C8}
\end{align*}
$$

where (i) is due to $\left|\mathcal{T}_{t}\right| \geq\left|\mathcal{T}_{A}\right| \forall t$ (i.e., $\left|\mathcal{S}_{t} \backslash \mathcal{T}_{t}\right| \leq\left|\mathcal{S}_{t} \backslash \mathcal{T}_{A}\right|$), thanks the thresholding operator $\tau(\cdot)$ with $n \omega_{\text {sparse }} \leq k \leq \sqrt{n / \log n}$.
In parallel, we can rewrite the sufficient and necessary condition (C2) as

$$
\begin{equation*}
(1+\sqrt{2})\left\|\boldsymbol{S}_{t}^{\#}\right\|_{2}\left\|\Delta \boldsymbol{S}_{t}\right\|_{F} \leq 1 \tag{C9}
\end{equation*}
$$

Since $\left\|\boldsymbol{S}_{t}^{\#}\right\|_{2}=\lambda_{\text {min }}^{-1}\left(\boldsymbol{S}_{t}\right)$, substituting the (C7) for $\left\|\boldsymbol{S}_{t}^{\#}\right\|_{2}$ and (C8) for $\left\|\Delta \boldsymbol{S}_{t}\right\|_{F}$ results in

$$
\begin{equation*}
\frac{\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}}{\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|^{2}}} \leq \frac{\sqrt{2}-1}{\sqrt{r}-1+\sqrt{2}} \tag{C10}
\end{equation*}
$$

Under the condition (C10), the upper bound on $\left\|\boldsymbol{U}_{t, 1}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2}$ is

$$
\begin{align*}
& \left\|\boldsymbol{U}_{t, \perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2} \\
& \leq \frac{\sqrt{r}\left(\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right)}{\left(\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}^{2}}-\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}-\right.} \\
& \left.-\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}-\sqrt{r}(1+\sqrt{2})\left(\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right)\right) \tag{C11}\\
& =\frac{\sqrt{r}\left(\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right)}{\left(\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}^{2}}-(1+\sqrt{r}(1+\sqrt{2})) \times\right.}, \\
& \left.\quad \times\left(\sigma_{n}^{2}\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t-1}\right\|_{2}+\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}\right)\right)
\end{align*}
$$

thanks to (C3). It ends the proof.

D. Proof of Lemma 3

We begin the proof with the following proposition:
Proposition 1. Given two sets of random variable vectors $\left\{\boldsymbol{a}_{i}\right\}_{i=1}^{N}$ and $\left\{\boldsymbol{b}_{i}\right\}_{i=1}^{N}$ where $\boldsymbol{a}_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(\mathbf{0}, \sigma_{a}^{2} \boldsymbol{I}_{n}\right), \boldsymbol{b}_{i} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(\mathbf{0}, \sigma_{b}^{2} \boldsymbol{I}_{m}\right)$, and
\boldsymbol{a}_{i} is independent of $\boldsymbol{b}_{j}, \forall i, j$. The following inequality holds with a probability at least $1-\delta$:

$$
\begin{equation*}
\left\|\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{a}_{i} \boldsymbol{b}_{i}^{\top}\right\|_{2} \leq C \sigma_{a} \sigma_{b} \sqrt{\log (2 / \delta) \frac{\max \{n, m\}}{N}} . \tag{D1}
\end{equation*}
$$

where $0<\delta \ll 1$ and $C>0$ is a universal positive number.
Proof. Its proof follows immediately Lemma 15 in [2].
Since $\boldsymbol{x}_{i}=\boldsymbol{A} \boldsymbol{w}_{i}+\boldsymbol{n}_{i}$, we always have

$$
\begin{align*}
& \left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2} \leq\|\boldsymbol{A}\|_{2}^{2}\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{\top}-\sigma_{x}^{2} \boldsymbol{I}_{r}\right\|_{2}^{+} \\
& \quad+2\|\boldsymbol{A}\|_{2}\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{w}_{i} \boldsymbol{n}_{i}^{\top}\right\|_{2}+\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{n}_{i} \boldsymbol{n}_{i}^{\top}-\sigma_{n}^{2} \boldsymbol{I}_{n}\right\|_{2} \tag{D2}
\end{align*}
$$

please see (D3) for a detailed derivation of (D2). Accordingly, with a probability at least $1-\delta(0<\delta \ll 1)$, three components in the right hand side of (D2) are respectively bounded by

$$
\begin{align*}
&\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{\top}-\sigma_{w}^{2} \boldsymbol{I}_{r}\right\|_{2} \leq C_{1} \sqrt{\log (2 / \delta)} \sigma_{w}^{2} \sqrt{\frac{r}{t W}}, \tag{D4}\\
&\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{n}_{i} \boldsymbol{n}_{i}^{\top}-\sigma_{n}^{2} \boldsymbol{I}_{n}\right\|_{2} \leq C_{2} \sqrt{\log (2 / \delta)} \sigma_{n}^{2} \sqrt{\frac{n}{t W}}, \tag{D5}\\
&\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{w}_{i} \boldsymbol{n}_{i}^{\top}\right\|_{2} \leq C_{3} \sqrt{\log (2 / \delta)} \sigma_{w} \sigma_{n} \sqrt{\frac{n}{t W}}, \tag{D6}
\end{align*}
$$

where C_{1}, C_{2}, C_{3} are universal positive parameters, thanks to Proposition 1 and [3, Proposition 2.1]. As a result, we obtain

$$
\begin{equation*}
\left\|\Delta \boldsymbol{C}_{t}\right\|_{2} \leq c_{\delta}\left(\sigma_{w}^{2} \sqrt{\frac{r}{t W}}+\left(2 \sigma_{n} \sigma_{w}+\sigma_{n}^{2}\right) \sqrt{\frac{n}{t W}}\right) \tag{D7}
\end{equation*}
$$

where $c_{\delta}=\max \left\{C_{1}, C_{2}, C_{3}\right\} \sqrt{\log (2 / \delta)}$. It ends the proof.

E. Proof of Lemma 4

We first use proof by induction to prove $d_{t} \leq \omega_{0}=\max \left\{d_{0}, \epsilon\right\}$. Particularly, we already have the base case of $d_{0} \leq \omega_{0}$. In the induction step, we suppose $d_{t-1} \leq \omega_{0}$ and then prove $d_{t} \leq \omega_{0}$ still holds. After that, we indicate that $d_{t} \leq \epsilon$ is achievable when the two conditions (17) and (18) are met.
Thanks to Lemma 3, when t satisfies (17), i.e.,

$$
\begin{equation*}
t \geq \frac{C \log (2 / \delta) r^{2}}{W \epsilon^{2} \rho^{2}}\left(\sqrt{r}+\left(\frac{\sigma_{n}^{2}}{\sigma_{x}^{2}}+2 \frac{\sigma_{n}}{\sigma_{x}}\right) \sqrt{n}\right)^{2}, \tag{E1}
\end{equation*}
$$

we obtain $\left\|\Delta \boldsymbol{C}_{t}\right\|_{2} \leq r^{-1} \rho \sigma_{x}^{2} \epsilon$ with $0<\rho \leq r$. In what follows, two case studies $d_{t-1} \geq \epsilon$ and $d_{t-1} \leq \epsilon$ are investigated.
Case 1: When $d_{t-1} \geq \epsilon$, i.e., $\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2} \leq r^{-1} \rho \sigma_{x}^{2} d_{t-1}$. We can rewrite $\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2}$ as follows

$$
\left.\begin{array}{l}
\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2} \leq \frac{\left(\sigma_{n}^{2}+r^{-1} \rho \sigma_{x}^{2}\right) d_{t-1}}{\left(\left[\left(\sigma_{n}^{2}+\sigma_{x}^{2}\right) \sqrt{1-d_{t-1}^{2}}-r^{-1} \rho \sigma_{x}^{2} d_{t-1}\right]^{2}+\right.} \\
\left.+\left(\sigma_{n}^{2}+\sigma_{x}^{2} \rho / r\right)^{2} d_{t-1}^{2}\right)^{1 / 2}
\end{array}\right] .
$$

Here, (i) is obtained from the fact that $g(x)=\left(\left(a \sqrt{1-x^{2}}-b x\right)^{2}+\right.$ $\left.c x^{2}\right)^{-1 / 2}$ is an increasing function in the range $[0, \sqrt{2} / 2]$ where a, b, and c are defined therein ${ }^{1}$ and (ii) is simple due to the fact that there always exists a small parameter $\gamma>0$ such that $\rho \gamma<1$ and $\omega_{0} \leq \gamma r \sqrt{1-\omega_{0}^{2}}$.
In the similar way, we obtain the following upper bound on $\left\|\boldsymbol{U}_{t, 1}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2}:$

$$
\begin{align*}
& \left\|\boldsymbol{U}_{t, \perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2} \leq \frac{\sqrt{r}\left(\sigma_{n}^{2}+r^{-1} \rho \sigma_{x}^{2}\right) d_{t-1}}{\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-d_{t}^{2}}-(1+\sqrt{r}(1+\sqrt{2})) \times} \\
& \quad \times\left(\sigma_{n}^{2}+r^{-1} \rho \sigma_{x}^{2}\right) d_{t-1}
\end{aligned} \quad \begin{aligned}
& (i) \quad \frac{\sqrt{r}\left(\sigma_{n}^{2}+r^{-1} \rho \sigma_{x}^{2}\right) d_{t-1}}{\leq} \frac{\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-\omega_{0}^{2}}-(1+\sqrt{r}(1+\sqrt{2}))\left(\sigma_{n}^{2}+r^{-1} \rho \sigma_{x}^{2}\right) \omega_{0}}{\leq} \frac{\sqrt{r}\left(\sigma_{n}^{2}+r^{-1} \rho \sigma_{x}^{2}\right)}{\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right)(1-\varrho) \sqrt{1-\omega_{0}^{2}}} d_{t-1},
\end{align*}
$$

where $\varrho=\gamma\left(1+\sqrt{r}(1+\sqrt{2})\left(r \sigma_{n}^{2}+\rho \sigma_{x}^{2}\right)\right)\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right)^{-1}$. Specifically, (i) is due to the increasing property of $z(x)=\left(a \sqrt{1-x^{2}}-b x\right)^{-1}$, and (ii) thanks to $\omega_{0} \leq \gamma r \sqrt{1-\omega_{0}^{2}}$.
Thanks to (E2) and (E4), we obtain

$$
\begin{equation*}
d_{t} \leq\left\|\boldsymbol{A}_{\perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2}+\left\|\boldsymbol{U}_{t, \perp}^{\top} \boldsymbol{U}_{t, \mathcal{F}}\right\|_{2} \leq \frac{r \sigma_{n}^{2}+\rho \sigma_{x}^{2}}{r \xi \sqrt{1-\omega_{0}^{2}}} d_{t-1} \tag{E5}
\end{equation*}
$$

where

$$
\begin{align*}
\xi= & 0.5 \max \left\{\left(\left(1+\gamma^{2} r^{2}\right) \sigma_{n}^{4}+(1-\rho \gamma)^{2} \sigma_{x}^{4}\right.\right. \\
& \left.\left.+2\left(1-\rho \gamma+\gamma^{2} r^{2}\right) \sigma_{x}^{2} \sigma_{n}^{2}\right)^{1 / 2},\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right)(1-\varrho) / \sqrt{r}\right\} \tag{E6}
\end{align*}
$$

Note that in order to utilize the two bounds (E2) and (E4), the condition (C10) must be satisfied which is equivalent to

$$
\begin{equation*}
\frac{\left(\sigma_{n}^{2}+r^{-1} \rho \sigma_{x}^{2}\right) \omega_{0}}{\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right) \sqrt{1-\omega_{0}^{2}}} \leq \frac{\sqrt{2}-1}{\sqrt{r}-1+\sqrt{2}} \tag{E7}
\end{equation*}
$$

Accordingly, we obtain $\omega_{0} \leq\left(\frac{\alpha(r, \rho)}{1-\alpha(r, \rho)}\right)^{1 / 2}$ where

$$
\begin{equation*}
\alpha(r, \rho)=\frac{(3-2 \sqrt{2})\left(\sigma_{x}^{2}+\sigma_{n}^{2}\right)^{2}}{(r+2 \sqrt{r}(\sqrt{2}-1)+3-2 \sqrt{2})\left(\sigma_{n}^{2}+r^{-1} \rho \sigma_{x}^{2}\right)^{2}} \tag{E8}
\end{equation*}
$$

In parallel, $\alpha(r, \rho) \geq \frac{3-2 \sqrt{2}}{r+2 \sqrt{r}(\sqrt{2}-1)+3-2 \sqrt{2}}$ for every $0<\rho \leq r$. Thus, we obtain $\omega_{0} \leq\left(\frac{3-2 \sqrt{2}}{r+2 \sqrt{r}(\sqrt{2}-1)}\right)^{1 / 2}$ which is exactly the condition (18) in Theorem 1. Moreover, there are various options of $p \in(0, r]$ satisfying $\rho \sigma_{x}^{2}<r \xi \sqrt{1-\omega_{0}^{2}}-r \sigma_{n}^{2}$, e.g., when the value of ρ is very close to zero. In such cases, d_{t} will decrease in each time t, i.e., $d_{t} \leq d_{t-1} \leq \omega_{0}$.
Case 2: When $d_{t-1} \leq \epsilon$, applying the same arguments in Case 1, we also obtain $d_{t} \leq \frac{r \sigma_{n}^{2}+\rho \sigma_{x}^{2}}{r \xi \sqrt{1-\omega_{0}^{2}}} \epsilon \leq \epsilon \leq \omega_{0}$.

[^0]\[

$$
\begin{align*}
\left\|\boldsymbol{\Delta} \boldsymbol{C}_{t}\right\|_{2}=\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top}-\boldsymbol{C}\right\|_{2} & =\left\|\frac{1}{t W} \sum_{i=1}^{t W}\left(\boldsymbol{A} \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{\top} \boldsymbol{A}^{\top}+\boldsymbol{n}_{i} \boldsymbol{n}_{i}^{\top}+\boldsymbol{A} \boldsymbol{w}_{i} \boldsymbol{n}_{i}^{\top}+\boldsymbol{n}_{i} \boldsymbol{w}_{i}^{\top} \boldsymbol{A}^{\top}\right)-\sigma_{x}^{2} \boldsymbol{A} \boldsymbol{A}^{\top}-\sigma_{n}^{2} \boldsymbol{I}_{n}\right\|_{2} \\
& \leq\left\|\boldsymbol{A}\left(\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{\top}-\sigma_{x}^{2} \boldsymbol{I}_{r}\right) \boldsymbol{A}^{\top}\right\|_{2}+\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{n}_{i} \boldsymbol{n}_{i}^{\top}-\sigma_{n}^{2} \boldsymbol{I}_{N}\right\|_{2}+2\left\|\boldsymbol{A}\left(\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{w}_{i} \boldsymbol{n}_{i}^{\top}\right)\right\|_{2} \\
& \leq\|\boldsymbol{A}\|_{2}^{2}\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{w}_{i} \boldsymbol{w}_{i}^{\top}-\sigma_{x}^{2} \boldsymbol{I}_{r}\right\|_{2}+\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{n}_{i} \boldsymbol{n}_{i}^{\top}-\sigma_{n}^{2} \boldsymbol{I}_{n}\right\|_{2}+2\|\boldsymbol{A}\|_{2}\left\|\frac{1}{t W} \sum_{i=1}^{t W} \boldsymbol{w}_{i} \boldsymbol{n}_{i}^{\top}\right\|_{2} \tag{D3}
\end{align*}
$$
\]

thanks to the inequality $\|\boldsymbol{P} \boldsymbol{Q}\|_{2} \leq\|\boldsymbol{P}\|_{2}\|\boldsymbol{Q}\|_{2}$ for all \boldsymbol{P} and \boldsymbol{Q} of suitable sizes.

To sum up, if the two conditions (17) and (18) are satisfied, then $d_{t} \leq \max \left\{d_{t-1}, \epsilon\right\}=\omega_{0}$. As a result, the statement $d_{t} \leq \epsilon$ holds if and only if

$$
\begin{equation*}
\left(\frac{r \sigma_{n}^{2}+\rho \sigma_{x}^{2}}{r \xi \sqrt{1-\omega_{0}^{2}}}\right)^{t W} \omega_{0} \leq \epsilon \tag{E9}
\end{equation*}
$$

Specifically, (E9) is equivalent to

$$
\begin{equation*}
t \geq \frac{\log \left(\epsilon / \omega_{0}\right)}{W\left(\log \left(r \sigma_{n}^{2}+\rho \sigma_{x}^{2}\right)-\log \left(r \xi \sqrt{1-\omega_{0}^{2}}\right)\right)} \tag{E10}
\end{equation*}
$$

which is lower than the bound (17). Therefore, we can conclude that $d_{t} \leq \epsilon$ holds and it ends the proof.

F. Decomposition of \boldsymbol{U}_{t}

Let $\boldsymbol{U}_{t, \mathcal{F}}=\boldsymbol{D}_{t}$ and $\boldsymbol{U}_{t, \mathcal{F}, \perp}=\boldsymbol{D}_{t, \perp}$ for easy of representation. Now, our objective is to demonstrate the existence of two matrices $\boldsymbol{W}_{1} \in$ $\mathbb{R}^{r \times r}$ and $\boldsymbol{W}_{2} \in \mathbb{R}^{(n-r) \times r}$ such that

$$
\boldsymbol{U}_{t}=\boldsymbol{D}_{t} \boldsymbol{W}_{1}+\boldsymbol{D}_{t, \perp} \boldsymbol{W}_{2}
$$

Proof. Given a full-rank matrix $\boldsymbol{P} \in \mathbb{R}^{n \times n}$, we always find a matrix $\boldsymbol{W} \in \mathbb{R}^{n \times r}$ such that

$$
\boldsymbol{U}_{t}=\boldsymbol{P} \boldsymbol{W} \quad \text { or } \quad \boldsymbol{u}_{t}^{(i)}=\boldsymbol{P} \boldsymbol{w}^{(i)}, i=1,2, \ldots, r
$$

where $\boldsymbol{u}_{t}^{(i)}$ and $\boldsymbol{w}^{(i)}$ are the i-th column of \boldsymbol{U}_{t} and \boldsymbol{W}, respectively. It is because $\boldsymbol{w}^{(i)}=\boldsymbol{P}^{-1} \boldsymbol{u}_{t}^{(i)}$ always exists. Form $\boldsymbol{P}=\left[\begin{array}{ll}\boldsymbol{D}_{t} & \boldsymbol{D}_{t, 1}\end{array}\right]$ (of size $n \times n$, full rank n), we then obtain

$$
\boldsymbol{U}_{t}=\left[\begin{array}{ll}
\boldsymbol{D}_{t} & \boldsymbol{D}_{t, \perp}
\end{array}\right] \boldsymbol{W}=\left[\begin{array}{ll}
\boldsymbol{D}_{t} & \boldsymbol{D}_{t, \perp}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{W}_{1} \\
\boldsymbol{W}_{2}
\end{array}\right]=\boldsymbol{D}_{t} \boldsymbol{W}_{1}+\boldsymbol{D}_{t, \perp} \boldsymbol{W}_{2}
$$

where $\boldsymbol{W}_{1} \in \mathbb{R}^{r \times r}$ and $\boldsymbol{W}_{2} \in \mathbb{R}^{(n-r) \times r}$ are sub-matrices of \boldsymbol{W}. It implies that we always decompose \boldsymbol{U}_{t} into two components as

$$
\boldsymbol{U}_{t}=\boldsymbol{U}_{t, \mathcal{F}} \boldsymbol{W}_{1}+\boldsymbol{U}_{t, \mathcal{F}, \perp}, \boldsymbol{W}_{2}
$$

References

[1] X.-W. Chang, "On the perturbation of the q-factor of the qr factorization," Numerical Linear Algebra with Applications, vol. 19, no. 3, pp. 607-619, 2012.
[2] I. Mitliagkas, C. Caramanis, and P. Jain, "Memory limited, streaming PCA," in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 2886-2894.
[3] R. Vershynin, "How close is the sample covariance matrix to the actual covariance matrix?" J. Theor. Probab., vol. 25, no. 3, pp. 655-686, 2012.

[^0]: ${ }^{1}$ Writing $x=\sin y$, the domain of y is $[0, \pi / 4]$. Here, we can recast $g(x)$ into $g(y)=\left((a \cos y-b \sin y)^{2}+c \sin ^{2} y\right)^{-1 / 2}$. The derivative $g^{\prime}(y)$ is given by

 $$
 \begin{align*}
 g^{\prime}(y)=0.5((a \cos y & \left.-b \sin y)^{2}+c \sin ^{2} y\right)^{-3 / 2} \times \\
 & \times\left(\left(a^{2}-b^{2}-c\right) \sin (2 y)+a b \cos (2 y)\right) . \tag{E3}
 \end{align*}
 $$

 Since $a^{2}-b^{2}>c$ by their definition, $g^{\prime}(y)>0 \forall y \in[0, \pi / 4]$ and hence $g^{\prime}(x)=$ $g^{\prime}(y) d y / d x=g^{\prime}(y) / \sqrt{1-x^{2}}>0 \forall x \in[0, \sqrt{2} / 2]$. Accordingly, $d_{t-1} \leq \omega_{0} \leq$ $\sqrt{2} / 2$ implies $g\left(d_{t-1}\right) \leq g\left(\omega_{0}\right)$ which (i) then follows.

