Supplementary Material

A. Derivation of AU;
We first recall that
U, =U;E, + AUy, (A1)

where AU, represents the distinctive new information in Us.
Thanks to (10) in the main text, we have

Ty =y + U124 (A2)
The matrix S; in (7) can be expressed as follows
Si = RU;_1 = R \Up_y + 22"
=BR1 [Uia Uiz, |[Uis Ut72,J.]T Uiy +x2{
=I,
= BR;_1U;oU, Uy 1 + BRyq Ut—Q,LUt.r_27lUt—1 + Xz,
(A3)

where UtT_mUt_g = 0p—pxr and U] ,U; 9, = 0pyp—y by def-
inition. As the underlying subspace is assumed to be fixed or
slowly varying with time, U;_; is nearly orthogonal to the noise
subspace of U,_o, i.e., UtT_Z’lUt,l ~ 0. Therefore, the second
term of (A3) is negligible and can be discarded. In what follows,
we indicate that the QR decomposition of S; in (A3) can be
expressed in terms of the augmented and updated terms of the QR
decomposition of S;_;. Denote by Uy, Ry, the QR representation
of S for k = 1,2,...,t. Note that S; 1 = R, 1U; 5, (A3) is
further expressed as follows

~ T T
St 4 ﬁRt—lUt72Ut72Ut—1 + Xz,
T
=BU 1 Ryi-1 Eiq + a2,
| S —

——

QR(Si—1) UiUin

=U1(BRu -1 B + 202] ) + yr2]

BRUt 1Et 1+ ZtZT
— t— - t
= [Ut—l yt] [ T .
2
————— L
augmented term

(A4)

updated term

Without loss of generality, we suppose that the Givens method is
used to compute the QR decomposition of S;. By using a sequence
of Givens rotations, (A4) is recast into the following form
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where § = y¢/|y:||2 is the normalized vector of y;, and G is a
(r+1) x (r+ 1) orthogonal matrix representing the sequence of
Givens rotations. The Givens rotations in G; should be selected
such that the second term of (AS5) is transformed into an upper
triangular matrix, i.e.,

Ry 1 Eiq+2z2] R
G, BRy-1E:_1 tt:|:|:01U,t:|’ (A6)
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to obtain the R-factor Ry ; of S;. Now, let u; = [Ut_l y_t] gtT
where g; is the last row of the Givens matrix G;. To form the QR
representation of Sy, we have
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This gives rise the following recursion for updating U, at time ¢

U w]=[U1 9:]G]. (A7)

.
As gy = 1 and [U;;Fl][th 9] = I, we can express the
t
rotation matrix G as follows
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where E; = U, ,U; and h, = U}y, are defined as in (8) and (11),
respectively. By substituting (A8) into (A7), we obtain

(A8)

_ Et UtT_l’U,t _
[Ut—l yt] |:hz y_tTut = [Ut Ut]a (A9)
and hence,
U,=U, 1E, + y:h]. (A10)

It implies that AU, = g:h], according to (Al).

B. Proof of Lemma 1

Because U, r is the Q-factor of S;, we obtain 0(A,U; 5) =
0(A,S;) and hence

tan8(A, U, 7) = max f(v):M. B1)
T el |ATS:v],

For any vector v € R™! and |v | = 1, we can rewrite f(v) in (B1)

as follows
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Here, (i) is due to AT A = 0 (orthogonal complement); (ii) uses
the inequality [Pz - |Q|2 < [P+ Q]2 < [P]2+[Q]2, VP.Q
of the same size; and (iii) is derived from the following facts:
IPAC,|2 < | Pls| AC ]2, |Alz = [A.l2 = |Ui-1]z = 1, and

mln(ATUt 1) + /\max(AIUt—l) = 17 (BS)

where Apax(P) and Apin (P) represent the largest and smallest
singular value of P, respectively.
Indeed, the relation (B3) leads to

”ATUt—l H = Amax(ATUtfl) 2 Amin(ATUt—l)

\/1 )‘max AIUtfl) =V 1- HAIUt&H;; (B4)

and thus, (iii) follows.

In parallel, it is well known that sin¢ = 1/y/1+tan™2¢) Vo €
[0,7/2] and h(x) = 1/V/1+ 272 is an increasing function in the
domain (0, 00), i.e., 21 < x5 implies h(xz1) < h(zz). Accordingly,
we obtain
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It ends the proof.
C. Proof of Lemma 2
We first recast HUtT U, ]:” , into the following form
|8, U7, = [T, Uel
= Ul . (U - U z)l, = Ul 7 AT, €D
Under the following condition
(1+\/§)K(St)||5t—5’t P < H5t||2, (C2)

where AS,; = S; - S; and k(S;) = HS;#HQHStHQ, we can bound
this distance as follows
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U, AS
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Here, (i) follows immediately the perturbation theory for QR
decomposition [1, Theorem 3.1] and (ii) is obtained from the
facts that [Upr.|2 = 1, |[PQ|r < |Pl2|Q|F. and [P#]; =
AL (P) YP,Q of suitable sizes.

We also know that there always exists two coefficient matrices
H, ¢ R™" and K, ¢ R""")*" satisfying U,_, = AH, + A, K,
(i.e., projection of U;_1 onto the subspace A) and

)\max(Ht) =
)\max(Kt) =

HATUt—l H27 )\min(Ht) =
HAIUtfl HQ» Amin(Kt) =

1- AU 3, (C4)

1- AU 3. (CS)

Accordingly, we can express S; by

St = RtUt—l = t(CUt_l + ACtUt_l)
=t(AX, AT +021,(AH, + A, K,) + AC,U,_1)

=t(A(02I, +o’1,)H; + 02 A, K + AC,U;_1).  (C6)

Thanks to the fact that \;(P+ Q) > \i(P) — Anax(Q) VP, Q of
the same size, the lower bound on A, (S;) is given by
Amin (S¢) > t(Amin((02 + 02)AH,) = Amax (02 A Ky )
= Amax(ACU;1))
2 t((07 + 07) Amin(Ht) = 03 Amax (K:) = |AC2)

1-[ATU |3 - 03| AU -1 |2 - [AC2),

=t((o7 +07) Tl
(C7)

In what follows, we derive an upper bound on | AS;| . For short,
let us denote the support of A, U;_1, and U; by T4, T;_1, and
T:, respectively, and S; = T4 UT;_1 UT;. Here, we also know that
St.s, = Ris,xs,Ui-1 and S, = St 1, = 7(Sts,, k). Accordingly,
we can bound |AS;|F as follows

|asi], = |Ss, - Sirl, €

=tlo2 ALK, + ACUL |,

<tVr|on ALK + AC U ||, < tV/r(op | Kel2 + |AC2)

= /(02| ATU 12 + [ACH]). €5
where (i) is due to 77| > |Ta| ¥t (ie., |S; N Ty < |S; ~ Tal), thanks

the thresholding operator 7(-) with nwsparse < k <+/n/logn.
In parallel, we can rewrite the sufficient and necessary condi-

tion (C2) as

HSt75t - St,TA HF

(1+V2)|S7|,|as, (C9)
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Since |S7 |y = A;L.(S:). substituting the (C7) for |S7|,
and (C8) for |AS|F results in
2
oa|ATU |, + [AC 2 . V2-1 . «€10)
(02 + 21— [AIU P VT 1+V2

Under the condition (C10), the upper bound on |U; U 7|2 is
(lepreres B

\/F(ngHAIUt—IH + HACt“z)

((a§+ai)\/l—|ATUt 02| AU,

- 18C - Vi1« VE) (2| ALUL A + 1ACL))

] V(oAU ], + 1ACH) e

((Ui + ‘7721,)\/ 1- HAIUHI@ - (1 +/r(1+ \/5))><

< (2] ATU |, + |AC, |2))

thanks to (C3). It ends the proof.

D. Proof of Lemma 3
We begin the proof with the following proposition:

Proposition 1. Given two sets of random variable vectors {a; }fv 1

and {b;}Y, where a; "'~ N(O,O’QI“) b, kb N(0,0}1,,), and



a; is independent of bj, Vi, j. The following inequality holds with
a probability at least 1 - §:

1 X max{n,m}

‘ ¥ ;aib; i < Coaab\/log(Q/é)N. (D1)
where 0 < § < 1 and C >0 is a universal positive number.
Proof. Its proof follows immediately Lemma 15 in [2]. O
Since x; = Aw; + n;, we always have

||ACtH2s |AH2 Zwl +
2
+2| Al —sznz Znn o2L,|| , (D2)
w i=1 2 2

please see (D3) for a detailed derlvatlon of (D2). Accordingly,
with a probability at least 1 - § (0 < § < 1), three components in
the right hand side of (D2) are respectively bounded by

tW
‘ ! Zwl 021, gcﬂ/mg(z/&)a?m/#, (D4)
2
tPV
H ! an -021, <ng/log(2/(5)afﬂ/%, (D5)
2
1 tW
i L wn] gC’g\/log(Q/(;)awUm/%, (D6)

where C1,C5,C3 are umversal positive parameters, thanks to
Proposition 1 and [3, Proposition 2.1]. As a result, we obtain

n

)7 (D7)

|ac,, < 05( VRN

where cg5 = max{Cl,Cg,Cg}\/log(2/5). It ends the proof.

E. Proof of Lemma 4

We first use proof by induction to prove d; < wp = max{do,€}.
Particularly, we already have the base case of dy < wy. In the
induction step, we suppose d;_; < wg and then prove d; < wy still
holds. After that, we indicate that d; < € is achievable when the
two conditions (17) and (18) are met.
Thanks to Lemma 3, when ¢ satisfies (17), i.e.,
2 2 2

201;?/(;22)74 (\/F+(Z§+2Z)ﬁ) : (E1)
we obtain |AC|s < 77 poZe with 0 < p < r. In what follows,
two case studies d;_; > € and d;_; < € are investigated.
Case 1: When d;_;1 > ¢, ie., [AC||2 < r‘lpaidt_l.
We can rewrite |A]U; |2 as follows

(02 +77 po2)ds4
W1-d?,-r" pa 2d,_ 1] 12
+ (o +alp/r)?dy,)
(i) (o2 +r 7 po2)d;
((0 + o2/ 1-wg -1 pa? wo g s
+ (07 77 po2)%w])
@ (02 + 771 po2)d
(L)t + (1= py) ot
+2(1-py+7*r?) oo 2)

ATUV}‘ <
MG,

(E2)
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Here, (i) is obtained from the fact that g(z) = ((aVv/'1 - 22 -bx)?+

ch)_l/Q is an increasing function in the range [0,v/2/2] where
a,b, and c are defined therein' and (ii) is simple due to the fact
that there always exists a small parameter v > 0 such that py < 1
and wo < yr/1 - wg.

In the similar way, we obtain the following upper bound on
U, Ut F 2

V(o +r7tpo?)diy
(02 +0 )\/1 d? - (1 +\/1_"(1+\/§))><
X (Ui + r_lpoi)dt_l
(i) V(a2 +rpe?)ds
C(02+02)/1-w2 - (1+/r(1+V2))(02 + 771 po2)wp
(w) V(a2 +r71pa?)
(02 +02)(1-0)\/1- Wo
where 0 = v(1+/r(1+V2)(ro2+po2))(o2+02) . Specifically,
(i) is due to the increasing property of z(x) = (aV'1 - 22 —bx)™!,

and (i) thanks to wq < yr/1 - w?.
Thanks to (E2) and (E4), we obtain

HIJJLIJLJEHQ <

(E4)

2
ro2 + po?
dt 1

réy/1-wg

di < |ATU# |, + UL, U £, < (ES)

where
&= O.5max{((1 +72r?) ot + (1 - py)?os
1/2
+2(1-py+7r7)0202) (02 +02) (1= o)V} (E6)

Note that in order to utilize the two bounds (E2) and (E4), the
condition (C10) must be satisfied which is equivalent to

(a2 +77 po?)wy V2-1 E7)
(62+02)\/1-w? Tr-1+V2
Accordingly, we obtain wg < (f&fl) )1/2 where
3-2v2) (02 +07)?

(r+2yr(vV2-1)+3-2v2)(o2 + r‘lpag)z.
3-2/2

r+2f(f 1)+/3 2v2
. 3 2f 1/2

v.ve obtaln. wp < (7” NG \/571)) which is exa.ctly the.cond1-

tion (18) in Theorem 1. Moreover, there are various options of

p e (0,r] satisfying po? < r¢\/1-w2 —ro2, e.g., when the value

of p is very close to zero. In such cases, d; will decrease in each

time t, i.e., d; < dy_1 < wp.

Case 2: When d;_; < 6 apglymg the same arguments in Case 1,

ro? LTPoL

In parallel, a(r, p) > for every 0 < p < r. Thus,

we also obtain d; < e<e<wy.

ré l—wo
'Writing z = siny, the domain of y is [0, 7/4]. Here, we can recast g(z) into

g(y) = ((a cosy — bsiny)? + csin? y)_l . The derivative g’(y) is given by

g’ (y) =0.5((acosy - bsiny)? + csin? y)_3/2><

x ((a2 - b2 - ¢)sin(2y) + abcos(2y)). (E3)
Since a2 - b? > ¢ by their definition, ¢’ (y) > 0 Vy € [0,7/4] and hence ¢'(z) =
g (y)dy/dz = g’ (y)/V1-22 > 0 Yz € [0,+/2/2]. Accordingly, d¢-1 < wo <
V/2/2 implies g(d¢-1) < g(wo) which (i) then follows.
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thanks to the inequality |PQ|2 < |P]2[Q|2 for all P and Q of suitable sizes.
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To sum up, if the two conditions (17) and (18) are satisfied, then
d; < max{d;_1,€} =wp. As a result, the statement d; < € holds if
and only if

ro2 + po? W
—n___ wo < €. (E9)
( réy/1-w? )

Specifically, (E9) is equivalent to
log (€/wo)
W (log(ro2 + po2) —log(ré&\/1 - wo))

which is lower than the bound (17). Therefore, we can conclude
that d; < € holds and it ends the proof.

(E10)

F. Decomposition of U,

LetU, 7 = D;and U, 5, = D, , for easy of representation. Now,
our objective is to demonstrate the existence of two matrices W €
R™" and W5 € R™=")*" quch that

Ut = DtW1 + Dt,LW2.

Proof. Given a full-rank matrix P € R™", we always find a matrix
W e R™" such that

U,=PW or ugi) :Pw(i),i: 1,2,...,7,

where 'u,() and w® are the i-th column of U; and W, re-
spectively. It is because w(® = P 'u{” always exists. Form
P=[D, D,,] (of size n xn, full rank n), we then obtain

W,

U~ (D0 DW= [D; DL

] DWW, + D, J_WQa

where W, € R™*" and Wy € R("")*" are sub-matrices of W. It
implies that we always decompose U, into two components as

U =U s W1 + Uy 7., Wa.
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