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ABSTRACT
We studied the problem of robust subspace tracking (RST) in
contaminated environments. Leveraging the fast approximated
power iteration and α-divergence, a novel robust algorithm
called αFAPI was developed for tracking the underlying prin-
cipal subspace of streaming data over time. αFAPI is fast and
it outperforms many RST methods while only having a low
complexity linear to the data dimension. Some experiments
were conducted to illustrate the performance of αFAPI.
Index Terms— Subspace tracking, robust algorithms, non-
Gaussian noises, contamination, α-divergence.

1. INTRODUCTION
Subspace tracking (ST), which corresponds to the problem
of estimating the underlying subspace of streaming data over
time, plays an important role in adaptive signal processing [1].
In practice, ST has already been applied to many applications,
from direction of arrivals (DOA) [2] and channel estimation [3]
to video background/foreground separation [4].
The emergence of big data streams has recently led to several
challenges for streaming data analysis and subspace tracking
in particular [5, 6]. Among them is the problem of dealing
with uncertainty, imperfection, and contamination which may
occur at any level in modern online applications [6]. ST han-
dling such issues is referred to as robust ST (RST). Particu-
larly, RST requires not only robustness against data corrup-
tion together with high subspace estimation accuracy but also
fast implementation. Over the years, many RST methods have
been proposed for specific scenarios (e.g., sparse outliers and
missing data) and we refer the readers to [7–10] for good sur-
veys. Most of the existing (robust) subspace trackers are, how-
ever, not designed for dealing with contaminated noises (i.e.,
non-standard Gaussian noises) which have been observed in
several signal processing applications [11].
In the literature, there exist some RST methods capable of
tracking the underlying subspace in contaminated environ-
ments [10]. To deal with impulsive noises for example, a few
of them were developed by incorporating robust statistics into
the well-known projection approximation subspace tracking
(PAST) algorithm [12], such as RPAST [13], MCC-PAST [14],
and BNC-PAST [15]. Some others were based on the adaptive
Kalman filtering technique, e.g., KFVM [16] and its variant
KFVNM [17]. Another good approach is the weighted re-
cursive least-squares (WRLS) method. Some notable WRLS-
based RST trackers are ROBUSTA [18], ROBUSTQR [19],

RYAST [19], and TRPAST [20]. To deal with colored noises,
the authors in [21] proposed two variants of PAST, namely IV-
PAST and extended IV-PAST, using instrumental variable (IV)
technique. Another IV-based PAST’s variant with a variable
forgetting factor and a variable regularization was proposed
in [22]. Oblique projection is also a potential direction to deal
with colored noises, e.g., obPAST [23] and obYAST [24]. In
parallel, there are several RST algorithms capable of deal-
ing with sparse outliers, such as GRASTA [25], PETRELS-
ADMM [4], ReProCS [26], and FedOA-PM [27]. They are
mainly based on using ℓp-norm minimization techniques. De-
spite having some advantages, most of the subspace trackers
above are either designed for a specific kind of noise or sen-
sitive to a particular choice of algorithmic parameters. This
motivates us to develop a new generalized robust subspace
tracker to avoid the drawbacks.
Contribution: The main contribution of this paper is a robust
subspace tracker called αFAPI which is capable of tracking
successfully the underlying subspace over time in the presence
of data corruption. αFAPI provides several appealing advan-
tages over the state-of-the-art subspace trackers. Among them
is that it offers robustness against outliers and contaminated
mixture noises. Specifically, a robust version of the sample
covariance matrix with a novel weight is introduced to mit-
igate the detrimental effect of such contamination, thanks to
α-divergence. As a result, αFAPI outperforms most of the ex-
isting (robust) ST algorithms. In addition, αFAPI is a fast and
efficient subspace tracker which only requires a low complex-
ity linear to the dimension of data. This feature is highly bene-
ficial for dealing with high-dimensional and high-velocity data
streams in fast time-varying environments. Moreover, αFAPI
guarantees the orthonormality of the estimated subspace basis
which is useful to improve the numerical stability and also for
some tracking applications, such as DOA estimation.

2. PRELIMINARIES
In this section, we first formulate the problem of robust sub-
space tracking and then recall the well-known FAPI algorithm
on which we highly leverage for developing our method. After
that, we briefly introduce the alpha-divergence which is ex-
ploited to design a novel weight against data contamination.

2.1. Subspace Tracking Problem
In this work, we consider the following signal model

x(t) = ℓ(t) + n(t) =As(t) + n(t), (1)



Here, x(t) ∈ Cn×1 is an observation vector, ℓ(t) ∈ Cn×1 is the
low-rank component of x(t)which lives in a subspace spanned
by a deterministic rank-r matrix1 A ∈ Cn×r (i.e., ℓ(t) =As(t)
where s(t) ∈ Cr×1 is a coefficient vector), and n(t) ∈ Cn×1 is
a noise vector independent of the signal ℓ(t). On the arrival of
x(t) at time t, we want to estimate a principal subspace such
that it covers the span of A.
Ideally, the underlying subspace can be derived from the spec-
tral analysis of Cxx(t) = E{x(t)x(t)H}. Denote by {λi,ui}
the i-th pair of eigenvalue and eigenvector of Cxx(t) and as-
sume that the eigenvalues are sorted in decreasing order. Ac-
cordingly, the matrix Us = [u1,u2, . . . ,ur] ∈ Cn×r represents
the principal (signal) subspace of Cxx(t). As Cxx(t) is not al-
ways available in practice, we often use the following sample
covariance matrix as a surrogate

Cxx(t) =
t

∑
k=1

βt−kx(k)x(k)H = βCxx(t − 1) + x(t)x(t)H , (2)

where 1 ≥ β > 0 is a forgetting factor aimed to discount the
effect of past observations and to facilitate the tracking ability
of subspace estimators in nonstationary environments.

2.2. FAPI Algorithm
We begin with the conventional power iteration method for
computing the dominant eigenvectors of Cxx(t):

Cxy(t) =Cxx(t)U(t − 1), (3a)
U(t)R(t) =Cxy(t), (3b)

where U(t−1) is the old estimation of the subspace at t−1 and
R(t) ∈ Rr×r is a square root of Cxy(t)HCxy(t). Badeau et al.
in [28] proposed the well-known FAPI algorithm which offers
a fast approximated implementation of (3). In particular, the
following orthogonal projection was exploited: U(t)U(t)H ≃
U(t − 1)U(t − 1)H or U(t) ≃ U(t − 1)Θ(t), where Θ(t)
plays the role of a state transition matrix. As a result, we can
rewrite the matrix Cxy(t) in (3) as follows

Cxy(t) = βCxy(t − 1)Θ(t − 1) + x(t)y(t)H , (4)

with y(t) = U(t − 1)Hx(t). Based on (4), the underlying
subspace U(t) can be recursively updated by

U(t) = [U(t − 1) + e(t)g(t)H]Θ(t), (5)
where

e(t) = x(t) −U(t − 1)y(t), (6)
g(t) = h(t)/(β + y(t)Hh(t)), (7)
h(t) = Z(t − 1)y(t), (8)
Z(t) = β−1Θ(t)H[I − g(t)y(t)H]Z(t − 1)Θ(t)−H , (9)

and Θ(t) can be an inverse square root of I+∥e(t)∥22g(t)g(t)H .
We refer the readers to [28] for its derivations and variants.

2.3. α-Divergence
α-divergence is a family of divergence measures generalizing
the Kullback–Leibler divergence (KLD) [29, 30]. There are

1This matrix is represented as a constant one but allowed later to be slowly
time varying in our adaptive scheme.

Algorithm 1: αFAPI
INPUT: {x(t)}Nt=1,x(t) ∈ C

n×1, target rank r
Parameters: 0 < β ≤ 1, 0 < α ≤ 1, 0 < p ≤ 2

INITIALIZATION: U0 = [
Ir

0(n−r)×r] and Z = Ir
MAIN PROGRAM:
for t = 1,2, . . . ,N do

// Compute weight
y(t) =U(t − 1)Hx(t)

e(t) = x(t) −U(t − 1)y(t)

ω(t) = exp(− 1−α
2
∥e(t)∥p)

h(t) = Z(t − 1)Hy(t)

ḡ(t) =
ω(t)h(t)

β+ω(t)y(t)Hh(t)
// Update subspace

ϵ2(t) = ∥x(t)∥2 − ∥y(t)∥2

τ(t) =
ϵ2(t)

1+ϵ2(t)∥ḡ(t)∥2+
√

1+ϵ2(t)∥ḡ(t)∥2
ξ(t) = 1 − τ(t)∥ḡ(t)∥2

w(t) = Z(t − 1)H(ξ(t)y(t) + τ(t)ḡ(t))

r(t) = τ(t)ξ(t)−1(Z(t − 1)ḡ(t) − (w(t)H ḡ(t))ḡ(t))

Z(t) = β−1(Z(t − 1) − ḡ(t)w(t)H + r(t)ḡ(t)H)
U(t) =U(t − 1) + (ξ(t)x(t) −U(t − 1)w(t))ḡ(t)H

end
OUTPUT: U(t) ∈ Cn×r

several forms, modifications, and extensions of this divergence
(see [30] for a good survey). Here, we adopt the form consid-
ered in [20, 31]

Dα{g ∣∣ f} =
1

α(1 − α)
[∫ g(θ)αf(θ)1−αdθ − 1], (10)

where g and f are two given distributions and α ∈ R/{0,1}.
At α = 0 and α = 1, Dα{p ∣∣ q} is defined as limiting cases
for α → 0 and α → 1, respectively. Specifically when α → 1,
Dα{p ∣∣ q} boils down to the KLD between p and q. One of
the most appealing features of α-divergence is that it can offer
robustness to outliers and non-Gaussian noises which is then
exploited in the next section.

3. PROPOSED METHOD
In this section, we introduce a novel robust variant of FAPI,
called αFAPI, to track the underlying principal subspace using
α-divergence. The main steps of αFAPI are summarized in
Algorithm 1. In the following, we show how to incorporate this
divergence into FAPI in order to bolster its robustness against
data contamination.
Robust Sample Covariance Matrix: Instead of Cxx(t), we
propose to use the following robust sample covariance matrix

C̄xx(t) = βC̄xx(t − 1) + ω(t)x(t)x(t)H . (11)
Here, 0 ≤ ω(t) ≤ 1 plays as a weight to mitigate the ef-
fect of corruption caused by, for examples, outliers and im-
pulsive noises. In the presence of strong corruption, a small
weight ω(t) is set to reduce its impact on the subspace track-
ing. When ω(t) = 1, C̄xx(t) becomes the sample covariance
matrix Cxx(t) in (2). The form of ω(t) will be provided later.
Subspace Update: With the new robust variant C̄xx(t), we
can recast (4) into the following form

C̄xy(t) = βC̄xy(t − 1)Θ(t − 1) + ω(t)x(t)y(t)H . (12)



Let C̄yy(t) = βC̄yy(t−1)+ω(t)y(t)y(t)H . It is easy to indi-
cate that C̄yy(t) = Θ(t)R(t) which then plays the same role
as Z(t)−1 of FAPI. As C̄yy(t) is a rank-one-update matrix,
applying the Sherman–Morrison formula yields
Z(t) = β−1Θ(t)H[I − ḡ(t)y(t)H]Z(t − 1)Θ(t)−H , (13)

where the vector ḡ(t) is given by

ḡ(t) = ω(t)h(t)
β + ω(t)y(t)Hh(t)

. (14)

Now, we can utilize the fast implementation of FAPI to update
Z(t) in (13) and the underlying subspace U(t) with a linear
complexity as follows. Let ϵ2(t) = ∥x(t)∥2 − ∥y(t)∥2,

τ(t) = ϵ2(t)
1 + ϵ2(t)∥ḡ(t)∥2 +

√
1 + ϵ2(t)∥ḡ(t)∥2

, (15)

and ξ(t) = 1 − τ(t)∥ḡ(t)∥2. The state transition matrix Θ(t)
can be given by

Θ(t) = I − τ(t)ḡ(t)ḡ(t)H , (16)

which is an inverse square root of I+ϵ2(t)ḡ(t)ḡ(t)H . Finally,
substituting (16) into (13) and (5) results in
Z(t) = β−1(Z(t − 1) − ḡ(t)w(t)H + r(t)ḡ(t)H), (17)
U(t) =U(t − 1) + (ξ(t)x(t) −U(t − 1)w(t))ḡ(t)H , (18)

where r(t) = τ(t)ξ(t)−1(Z(t − 1)ḡ(t) − (w(t)H ḡ(t))ḡ(t))
with w(t) = Z(t − 1)H(ξ(t)y(t) + τ(t)ḡ(t)).
How To Choose The Weight? Here, we propose to use the
following weight:

ω(t) = exp( − 1 − α
2
∥x(t) −U(t − 1)y(t)∥p), (19)

where 0 < α ≤ 1 and 0 < p ≤ 2. Particularly, the choice of ω(t)
stems from the following observations.
Assume that the assumed density and true density of (1) are,
respectively, f(x,U) and g(x,U∗) = (1−δ)f(x,U∗)+δh(x)
where f(x,U∗) is the “nominal” one, h(x) is to repre-
sent contamination in the data, and δ is to control the con-
tamination proportion. The authors in [20] indicated that
when data samples are corrupted, the underlying princi-
pal subspace can be obtained by minimizing α-divergence
Dα(g(x,U∗)∣∣f(x,U)) which is defined as in (10). In prac-
tice g(x,U∗) is not known generally, we can solve the follow-
ing optimization instead

Uα(t) = argmax
U

1

1 − α

t

∑
k=1

βt−kf(x(k),U)1−α, (20)

see [20, appendix] for details. In parallel, the multivariate
Gaussian density is often adopted for modeling f(x,U) (i.e.,
standard Gaussian noise). In such a case, (20) is equivalent to

Uα(t) = argmin
U

t

∑
k=1

βt−kℓα(x(k),U) where (21)

ℓα(x,U) =
1

1 − α
(1 − exp ( − c∥x −UUHx∥2)), (22)

with c = (1 − α)/2. Under the assumption that U(t)U(t)H ≃
U(t − 1)U(t − 1)H , taking the gradient of ℓα(.) with respect

to U results in the following score function
ℓ′α(x(t),U) ≃ exp(−c∥e(t)∥2)(x(t) −Uy(t))y(t)H . (23)

Interestingly, (23) can lead to a weighted recursive least-
squares (LS) estimation with a weight relatively proportional
to exp(−c∥e(t)∥2). On the other hand, the principal subspace
of C̄xx(t) in (11) can also be derived from minimizing the
following exponentially weighted LS function [18]

argmin
U

t

∑
k=1

βt−kω(k)∥x(k) −UUHx(k)∥2. (24)

As a result, we can set ω(t) = exp(−c∥e(t)∥p) with 0 < p ≤ 2.
The introduction of p is to remedy the sensitivity of αFAPI to
the choice of α, see Fig. 1 for an illustration. Some features of
ω(t) are as follows

“clean” data: lim
∥e(t)∥→0

ω(t) = 1, (25)

outlier data: lim
∥e(t)∥→∞

ω(t) = 0, (26)

for every 0 < α < 1 and 0 < p ≤ 2. When α = 1, ω(t) = 1 which
corresponds to the case where observations are outlier-free.
Complexity: With respect to the space complexity, αFAPI
only requires a nr + r2 words of memory to save U(t) and
Z(t) at time t. With respect to the computational complex-
ity, the overall cost of αFAPI is O(nr) flops, similar to the
conventional FAPI algorithm.

4. EXPERIMENTS
In this section, we provide some experiments to demonstrate
the tracking ability of αFAPI. Its performance is evaluated
in comparison with the state-of-the-art subspace trackers, in-
cluding FAPI [28], GRASTA [25], ROBUSTA [18], RYAST
[19], and TRPAST [20]. Source codes are available online at
https://github.com/thanhtbt/aFAPI/.

4.1. Robust Subspace Tracking
Signals {x(t)}t≥1 were generated under the following model:

x(t) =A(t)s(t) + n(t). (27)
Here, the underlying subspace A(t) ∈ Rn×r was simulated as
A(t) =A(t − 1)+εV(t)where V(t)was a normalized Gaus-
sian noise matrix and ε > 0 was the time-varying factor aimed
to control the subspace variation over time. At t = 0, each el-
ement in A0(i, j) was independent and identically distributed
(i.i.d.) from N(0,1). The subspace coefficient s(t) ∈ Rr×1

was an i.i.d. Gaussian random vector of zero mean and unit
variance. The noise vector n(t) ∈ Rn×1 was derived from the
following contaminated mixture model:
[n(t)]i ∼ (1 − δ)N(0, σ2

n) + δN(µ, ησ2
n), 1 ≤ i ≤ n, (28)

where (1−δ) and δ were the mixing probabilities (i.e., δ repre-
sents the contamination rate2), σn > 0 was a standard deviation
of the “main” noise distribution, and the pair {µ ≥ 0, η ≥ 1}
was to define the “contaminated” distribution.

2When δ = 0, (28) becomes a Gaussian model, i.e., n(t) is a Gaussian
noise. The value δ = 0.2, for example, represents 20% data contamination.
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Fig. 1: Performance of αFAPI with different choices {α, p}.
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(b) Uniform noises (with magnitude 10) at abrupt changes

Fig. 2: Subspace tracking with non-Gaussian noises and abrupt
changes at t = 400, 600, and 800.

To measure the tracking ability of ST algorithms, we used the
following Subspace Estimation Performance (SEP) metric

SEP =
tr{U(t)#(In −A(t)A(t)#)U(t)}
tr{U(t)#(A(t)A(t)#)U(t)}

,

where (.)# denotes the pseudo-inverse operator and U(t) is
the tracked subspace at time t. The smaller the value of SEP
is, the better accuracy the tracker has. The experimental results
were averaged over 10 independent runs.
We set the experimental parameters as follows: data dimen-
sion n = 50, rank r = 5, the time varying factor ϵ = 10−3, the
noise level σn = 1, the contaminate rate δ = 0.2, and µ = η = 1.
The forgetting factor β was fixed at 0.99 for all subspace
trackers. Both TRPAST and αFAPI are dependent on the α-
divergence parameter which was set to 0.9. Fig. 1 illustrates
the performance of αFAPI with different choices of α and p.
It can be seen that when p < 2, it can remedy the sensitivity
of αFAPI to the particular choice of α. Thus, we fixed p = 1.5
for αFAPI in all performance comparisons. Fig. 2(a) and (b)
show the performance of subspace tracking algorithms when
abrupt changes (at t = 400,600, and 800) were created by
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Fig. 3: DOA tracking: 20 sensors, 3 target sources, the back-
ground noise level SNR = 0dB, and contaminated mixture
noises (δ = 0.2, µ = 10, η = 5) appear from t = 500 to t = 599.

strong contaminated mixture noises with {µ = 10, η = 5} and
strong uniform noises with magnitude in interval [0,10], re-
spectively. FAPI and GRASTA failed to track the underlying
subspace. RYAST and ROBUSTA provided better estimation
accuracy than the two former trackers, but they were still af-
fected by abrupt changes. TRPAST and αFAPI were capable
of tracking successfully the underlying subspace over time.
Specifically, the convergence rate of αFAPI was faster than
that of TRPAST.

4.2. Direction of Arrival (DOA) Tracking
In this task, we considered a uniform linear array with 20
sensors (two adjacent sensors were separated by half of a
wavelength) and 3 target signals impinging on it. The steering
matrix had the form A(t) = [a(ω1(t)), . . . ,a(ω3(t))] with
a(ωk(t)) = [1, ejωk(t), . . . , ej(n−1)ωk(t)]⊺ where ωk(t) was
the angular frequency associated to the k-th source at time t,
i.e., ωk(t) = π sin θk(t). The 3 × 1 vector s(t) (source signal)
is a complex normal random vector following a covariance
matrix Cs = I3. The background Gaussian noise level was
fixed at SNR = 0dB. To create abrupt changes, data observa-
tions were corrupted by the contaminated mixture noises (with
δ = 0.2, µ = 10, η = 5) from t = 500 to t = 599.
To track the DOAs of the moving sources (by linearly vary-
ing the value of θk(t)), we first applied ST algorithms to es-
timate the subspace A(t) and then used the well-known ES-
PRIT method [32] to extract {ωk(t)}3k=1. The results are il-
lustrated in Fig. 3. We can see that FAPI, RYAST, and RO-
BUSTA were capable of tracking the DOAs over time when
the background noises were Gaussian. However, they failed to
deal with the contaminated mixture noises. Only TRPAST and
αFAPI were robust to abrupt changes due to such noises.

5. CONCLUSIONS
In this paper, we have addressed the problem of robust sub-
space tracking in the presence of nonstandard Gaussian noises.
A novel robust adaptive algorithm called αFAPI has been pro-
posed to track the principal subspace of data streams over time.
The experimental results indicated that αFAPI was capable of
dealing with different data contamination and outperformed
other (robust) subspace tracking algorithms.
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