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† Institute of Computer Science, University of Maribor, Maribor, Slovenia

ABSTRACT
This paper introduces TenSOFO, a novel tensor-based method
specifically designed for blind source separation (BSS). Ten-
SOFO presents a new efficient alternating direction method of
multipliers framework, allowing for simultaneous decomposi-
tion of two symmetric third-order tensors under the individual
differences in scaling (INDSCAL) format. By establishing a
fundamental link between joint INDSCAL decomposition and
BSS using second and fourth order statistics, TenSOFO proves
to be effective for BSS. The performance of TenSOFO is eval-
uated in both joint INDSCAL decomposition and BSS tasks,
showcasing its remarkable accuracy and potential applications.
Index Terms— Blind source separation, second-order statis-
tics, fourth-order statistics, tensor decomposition, INDSCAL.

1. INTRODUCTION
Let’s consider the basic blind source separation (BSS) model:

x(t) =As(t) + n(t), t = 0,1,2, . . . , T − 1, (1)

where x(t) ∈ RM represents the data observation, A ∈ RM×R

is the mixing matrix, s(t) ∈ RR is the source vector, n(t) ∈ RR

denotes the noise. The main objective of BSS is to estimate the
source signals and/or the mixing matrix from the set of data
observations {x(t)}T−1t≥0 .
The literature offers many methods proposed for BSS. For a
comprehensive overview, readers are referred to good refer-
ences such as [1–3]. Notably, with the advances in tensor
decomposition (TD), several algorithms have leveraged ten-
sor formats to reformulate BSS models, leading to a promis-
ing application of TD in BSS [3]. A pioneering tensor-based
BSS algorithm was introduced by De Lathauwer et al. in [4]
wherein the higher-order SVD model was deployed to perform
BSS. They further proposed an independent component analy-
sis algorithm by means of simultaneous tensor diagonalization
in [5]. Subsequently, in [6], a connection between canonical
polyadic (CP) decomposition and joint (simultaneous) diag-
onalization was established, paving the way for various CP-
based BSS methods. Some notable examples of CP-based BSS
methods include tensor-pICA [7], FOOBI [8], SOBIUM [9],
CP-VDM [10], PARAFAC-SD [11], and DC-CPD [12]. An-
other tensor approach in BSS is the block component analysis
or block term decomposition (BTD) [13,14]. Specifically, ten-
sorization techniques like Hankelization [15], Löwnerization
[16], and segmentation [17] have been developed to enable the
use of BTD for BSS on certain classes of source signals such
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as exponential and polynomials.
In BSS tasks, statistical properties of data play a crucial
role [18]. Many BSS methods have effectively utilized second-
order (SO) and/or fourth-order (FO) statistics for source sep-
aration, as demonstrated in [19–25], among others. SO statis-
tics offer insights into the correlation and linear relationships
among observed signals, while FO statistics can capture the
non-Gaussian nature of the sources and higher-order depen-
dencies among the data observations. Most existing methods,
however, either focus solely on one type of data statistics
(e.g., SO or FO) or partially exploit their information. Con-
sequently, our objective is to fully integrate both SO and
FO statistics with tensor analysis for BSS. This approach is
expected to provide a more comprehensive set of statistical
features and leverage the benefits of tensor representation,
leading to enhanced robustness and accuracy in performance.
In this paper, we contribute to the literature on blind source
separation by introducing a new tensor method that effectively
utilizes both SO and FO statistics. Our method is based on
a joint (simultaneous) analysis called individual differences in
scaling (INDSCAL), which is a symmetric variant of CP for
third-order tensors with symmetry in two modes [26,27]. IND-
SCAL offers improved interpretability as compared to the clas-
sical CP model for BSS, which uses SO and FO represented
by symmetric matrices (covariance) and tensors (quadricovari-
ance), respectively. We propose an effective alternating direc-
tion method of multipliers (ADMM)-based joint INDSCAL
decomposition of two symmetric third-order tensors. Addi-
tionally, we establish a link between SO-FO based BSS and
joint INDSCAL decomposition, allowing us to effectively ap-
ply the proposed INDSCAL method for BSS tasks.
Notations: Scalars, vectors, matrices, and tensors are denoted
using lowercase, boldface lowercase, boldface capital, and
bold calligraphic letters, respectively. Symbols ○,⊙,⊗,⊛,
and ⊞ represent the outer, Khatri-Rao, Kronecker, Hadamard
products, and tensor concatenation, respectively. We use the
operators vec(⋅) for vectorization, diag(⋅) for diagonalization,
mat(⋅) for matricization, and length(⋅) for calculating the
number of entries in a vector, matrix, or tensor. Transpose is
represented as (⋅)⊺, pseudo-inverse as (⋅)#, and the norm as
∥ ⋅ ∥. We denote the trace inner product as ⟨X,Y⟩ = tr(X⊺Y).
The mode-n unfolding matrix ofX is denoted as X(n). Lastly,
the CP/PARAFAC decomposition is denoted by [[⋅]].

2. PRELIMINARIES
2.1. BSS Using Data Statistics
Let’s consider a data vector u(t) ∈ RI of zero mean. We can
analyze its second-order (SO) and fourth-order (FO) statistics



using the covariance matrix Ru ∈ RI×I and the quadricovari-
ance tensor Cu ∈ RI×I×I×I , respectively. These statistics are
defined as follows:

Ru(t, τ) = E{u(t)u(t − τ)⊺}, (2)
Cuijkl(t,{τ}) = Cum{ui(t), uj(t − τ1),

uk(t − τ2), ul(t − τ3)}, (3)
for the time lags τ and τ ≡ {τ1, τ2, τ3}, where ui(t) is the i-th
entry of u(t). In this work, we express the quadricovariance
tensor Cu as a matrix Cu of size I2 × I2, whose elements are
defined as Cu

(i−1)I+j,(k−1)I+l = C
u
ijkl. From (1), we obtain

Rx(t, τ) =ARs(t, τ)A⊺ +Rn(t, τ) (4)
Cx(t,{τ}) =A⊙2Cs(t,{τ})A⊺⊙2 +Cn(t,{τ}). (5)

where A⊙2 =A⊙A. Given a set of statistics {Rx(t, τn)}N1

n=1
and {Cx(t,{τn})}N2

n=1, we want to identify the mixing A.
To facilitate the development of our algorithm in the next
section, we assume that the additive noise is white, Gaussian
distributed and the underlying sources are stationary, non-
Gaussian and mutually statistically independent, while being
individually correlated for different lags.

2.2. INDSCAL
The INdividual Differences in SCALing (INDSCAL) repre-
sents a special variant of CP/PARAFAC decomposition that
enables the factorization of symmetric tensors [26, 27]. Under
the INDSCAL model, a third-order tensor X ∈ RI×I×K with
elements satisfying xijk = xjik for all i, j, k can be decom-
posed into two factors A ∈ RI×R and C ∈ RK×R (R being the
tensor rank) as follows

X ∆= [[A,A,C]] = ∑R
r=1 ar ○ ar ○ cr, (6)

where ar and cr are the r-th columns of A and C, respec-
tively. Its computation typically follows the same iterative
procedure to computing the classical CP decomposition (i.e.,
CP-ALS) [27]. In CP-ALS, the two “A” matrices are treated
as separate factors, denoted as AL and AR (for left and right,
respectively), and they are updated independently without an
explicit constraint enforcing their equality. Despite starting
with different initial estimates, the inherent symmetry of the
data together with the essential uniqueness of CP decomposi-
tion eventually lead the two “A” matrices to converge, up to
a scaling factor. Being a special case of CP, the uniqueness of
INDSCAL is also guaranteed under mild conditions [28].

2.3. ADMM
The Alternating Direction Method of Multipliers (ADMM) is
an effective primal-dual optimization framework designed to
deal with convex constrained problems of the form [29]

min
x,y

f(x) + g(y) subject to z(x,y) = c. (7)

The augmented Lagrangian corresponding to (7) is given by

L(x,y,µ) = f(x) + g(y) + ρ
2
∥c − z(x,y)∥2

F

+µ⊺(c − z(x,y)), (8)
where ρ > 0 is a regularized parameter and µ is the dual vari-
able. ADMM relies on the duality theory for convex optimiza-

tion, where the objective is to minimize the augmented La-
grangian w.r.t. x, y and a fixed µ. Conversely, the dual func-
tion h(µ) = minx,y L(x,y,µ) should be maximized w.r.t. µ.
Consequently, ADMM performs an alternation between min-
imizing L(⋅) w.r.t. x and y and employing gradient ascent to
maximize h(µ). In the next section, we adapt this ADMM
framework to compute a joint INDSCAL decomposition, en-
abling blind source separation (BSS) using data statistics.

3. PROPOSED METHOD

In this section, we first present a fundamental connection be-
tween joint INDSCAL decomposition and BSS. Subsequently,
we introduce a novel tensor method for BSS named TenSOFO
(where Ten, SO, FO, refer to Tensors, Second Order statis-
tics, and Fourth Order statistics, respectively), which effec-
tively leverages both SO and FO statistics.

3.1. SO-FO Based BSS As Joint INDSCAL Decomposition
Under the assumptions stated in Section 2.1, we obtain

Rs(t, τ) = diag{σ2
1(τ), σ2

2(τ), . . . , σ2
R(τ)}, (9)

Cs(t,{τ}) = diag{κ1({τ}), κ2({τ}), . . . , κR({τ})}, (10)

where σ2
r(τ) = E{sr(t)sr(t−τ)} and κr({τ}) = Cum{sr(t),

sr(t − τ1), sr(t − τ2), sr(t − τ3)}. Accordingly, if we con-
struct two tensors R ∈ RM×M×N1 and C ∈ RM2×M2×N2

from the set of N1 matrices1 {Rx(t, τn)}N1

n=1 and N2 matrices
{Cx(t,τn)}N2

n=1 as follows
R =Rx(t, τ1) ⊞Rx(t, τ2) ⊞ ⋅ ⋅ ⋅ ⊞Rx(t, τN1), (11)
C =Cx(t,{τ1}) ⊞Cx(t,{τ2}) ⊞ ⋅ ⋅ ⋅ ⊞Cx(t,{τN2}), (12)

then they admit the following INDSCAL factorization [3]
R ≈ [[A,A,Σ]] and C ≈ [[A⊙2,A⊙2,K]]. (13)

Here, Σ ∈ RN1×R is a matrix whose the (n, r)-th element
represents the autocorrelation σ2

r(τn), while the (n, r)-th ele-
ment of K ∈ RN2×R corresponds to κr({τn}). Consequently,
through the joint INDSCAL decomposition of both R and C
in (13), we directly estimate the mixing matrix A. In next
subsection, we present an efficient optimization framework to
simultaneously decomposeR and C.

3.2. Optimization Framework
The joint INDSCAL decomposition ofR and C in (13) can be
obtained by solving the following constrained minimization

min f(B,K) + g(A,Σ) subject to B =A⊙2, (14)

where f(B,K) = ∥C − [[B,B,K]]∥2F and g(A,Σ) = ∥R −
[[A,A,Σ]]∥2F . Here, (14) can be expressed in the ADMM
form, and thus, we can construct the corresponding augmented
Lagrangian function with a parameter ρO as follows
LO(B,K,A,Σ,U) = f(B,K) + g(A,Σ)

+ ρO
2
∥B −A⊙2 +U∥

2

F
− ρO

2
∥U∥2

F
, (15)

where U ∈ RM2×R is the (scaled) dual variable. The proposed
ADMM solver can be summarized as follows

1Since the noise is white which means that Rn
(t, τ) = 0 for τ ≠ 0, we

usually select non-zero lags to get rid of the noise term in (4).



while stopping criteria are not met do

{B(k),K(k)} = argmin
B,K

{f(B,K)

+
ρO
2
∥B −A

(k−1)
⊙2 +U(k−1)∥

2

F
} (16a)

{A(k),Σ(k)} = argmin
A,Σ

{g(A,Σ)

+
ρO
2
∥B(k) −A⊙2 +U

(k−1)
∥
2

F
} (16b)

U(k) =U(k−1) +B(k) −A
(k)
⊙2 (16c)

k = k + 1
end

Updates of B(k) and K(k): Minimization (16a) is equivalent
to the following constrained optimization

argmin
BL,BR,K

∥C − [[BL,BR,K]]∥
2

F
+ ρO

2
∥BL −A(k−1)⊙2 +U(k−1)∥2

F

subject to BL = BR, (17)
where the two “B” matrices in f(B,K) are considered as sep-
arate loading factors, denoted as BL and BR for the left and
right, respectively. The corresponding augmented Lagrangian
function is expressed as follows

LB(BL,BR,K,D) = ∥C − [[BL,BR,K]]∥
2

F
− ρB

2
∥D∥2

F

+ρO
2
∥BL −A(k−1)⊙2 +U(k−1)∥2

F
+ ρB

2
∥BL −BR +D∥

2

F
. (18)

Here, ρB > 0 is a regularized parameter, and D ∈ RM2×R de-
notes the (scaled) dual variable. To find the optimal solution
of (18), the optimization process involves an iterative loop,
with the i-th iteration step as follows:

K(k,i) =C(3)(B
(k,i−1)
L ⊙B

(k,i−1)
R )([(B(k,i−1)L )⊺B(k,i−1)L ]

⊛ [(B(k,i−1)R )⊺B(k,i−1)R ])
#

, (19a)

B
(k,i)
L = (C(1)P

(k,i−1)
R + ρO(A(k−1)⊙2 −U(k−1)) + ρB(B(k,i−1)R

−D(k,i−1)))((P(k,i−1)R )⊺P(k,i−1)R + (ρO + ρB)IR)
−1
, (19b)

B
(k,i)
R = (C(2)P

(k,i−1)
L + ρB(B(k,i−1)L −D(k,i−1)))

((P(k,i−1)L )⊺P(k,i−1)L + ρBIR)
−1
, (19c)

D(k,i) =D(k,i−1) +B(k,i)L −B(k,i)R , (19d)

where P
(k,i−1)
L =K(k,i) ⊙B

(k,i−1)
L and P

(k,i)
R = K(k,i) ⊙

B
(k,i−1)
R . At the initial step (i = 0), we set K(k,0) = K(k−1)

and B
(k,0)
L = B(k,0)R = B(k−1). The iterative procedure (19)

continues until convergence or until stopping criteria are met
after Istop iterations. We align the two “B” matrices as follows

{Π(k)B ,Λ
(k)
B } = argmin

ΠB,ΛB

∥B(k,Istop)L −B(k,Istop)R ΠBΛB∥F , (20)

where ΠB and ΛB are a permutation matrix and a diagonal
matrix, respectively. At the end, we take Λ(k)B = Λ(k,Istop)B and
B(k) = 0.5(B(k,Istop)L +B(k,Istop)R Π

(k)
B Λ

(k)
B ).

Updates of A(k) and Σ(k): We also recast (16b) into the fol-
lowing ADMM form

argmin
AL,AR,Σ

∥R − [[AL,AR,Σ]]∥
2

F
+ ρo

2
∥B(k) −A⊙2 +U(k−1)∥

2

F

subject to AL =AR. (21)

In a way similar to (19), we employ an iterative procedure to

update A(k) and Σ(k). Starting at j = 0, we initialize Σ(k,0) =
Σ(k−1), and obtain A

(k,0)
L and A

(k,0)
R from A

(k,0)
⊙2 which is

computed as follows

A
(k,0)
⊙2 = (R⊺(3)Σ

(k,0) + ρO(B(k) +U(k−1)))
((Σ(k,0))⊺Σ(k,0) + ρOI)

−1
. (22)

Specifically, we know that A(k,0)⊙2 =A(k,0)L ⊙A
(k,0)
R leads to

A
(k,0)
⊙2 (∶, r) = vec{A

(k,0)
L (∶, r)A(k,0)R (∶, r)⊺},1 ≤ r ≤ R. (23)

We can obtain the (normalized) r-th column of A
(k,0)
L and

A
(k,0)
R from the most dominant left and right singular vectors

of reshape{A(k,0)⊙2 (∶, r), [M,M]}, respectively. At the j-th

iteration, we denote F(k) = B(k) + U(k−1), Q
(k,j−1)
L =

Σ(k,j) ⊙A
(k,j−1)
L , Q(k,j−1)R = Σ(k,j) ⊙A

(k,j−1)
R , G(k,j−1)L =

(IR ⊙ A
(k,j−1)
L ) ⊗ IM , G(k,j−1)R = (IR ⊙ A

(k,j−1)
R ) ⊗ IM ,

T
(k,j−1)
L = reshape{G(k,j−1)L vec{F(k)},[M,R]}, T(k,j−1)R =

reshape{G(k,j−1)R vec{F(k)}, [M,R]}, and read

Σ(k,j) =R(3)(A
(k,j−1)
L ⊙A

(k,j−1)
R )([(A(k,j−1)L )⊺A(k,j−1)L ]

⊛[(A(k,j−1)R )⊺A(k,j−1)R ])
#

, (24a)

A
(k,j)
L = (R(1)Q

(k,j−1)
R + ρOT(k,j−1)R + ρA(A(k,j−1)R

−E(k,j−1)))((H(k,j−1)R + ρAIR)
−1
, (24b)

A
(k,j)
R = (R(2)Q

(k,j−1)
L + ρOT(k,j−1)L + ρA(A(k,j−1)L

−E(k,j−1)))(H(k,j−1)L + ρAIR)
−1
, (24c)

E(k,j) = E(k,j−1) +A(k,j)L −A(k,j)R . (24d)

Here, H(k,j−1)L = (Q(k,j−1)L )⊺Q(k,j−1)L +ρo(G(k,j−1)L )⊺G(k,j−1)L

and H
(k,j−1)
R = (Q(k,j−1)R )⊺Q(k,j−1)R +ρo(G(k,j−1)R )⊺G(k,j−1)R .

While ρA and E play the same role as ρB and D in (18), respec-
tively. Once (24) meets the stopping criteria, we estimate Π(k)A

and Λ
(k)
A using a way similar to (20), and then, set Σ(k) =

Σ(k,Jstop) and A(k) = 0.5(A(k,Jstop)
L +A(k,Jstop)

R Π
(k)
A Λ

(k)
A ).

3.3. Stopping Criteria, Parameter Selection & Complexity
Stopping Criteria & Parameter Selection: Our method con-
sists of an outer loop (16), and two inner loops (19) and (24).
We have set their maximum number of iterations to predefined
values: Kstop = 100, Istop = 10, and Jstop = 10, respectively.
Following the guidelines in [29], we adopt the following stop-
ping criteria, which rely on the primal and dual residuals
∥Vcur −Zcur∥F ≤ εpri, ∥ρ(Zcur −Zold)∥F ≤ εdual, (25)

where “cur” and “old” represent the current and old estimates,
respectively, and

εpri = ϵabs
√
length(Vcur) + ϵrelmax{∥Vcur∥2, ∥Zcur∥2},

εdual = ϵabs
√
length(Scur) + ϵrel∥ρScur∥2.

Here, ϵabs > 0 and ϵrel > 0 represent the absolute and rel-
ative tolerance, respectively. The primal variables are de-
noted by V and Z, where V includes (B,BL,AL), and Z
includes (A⊙2,BR,AR). The dual variables (U,D,E) are
represented by S. While ρ represents the regularized param-
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Fig. 1: INDSCAL decomposition: M = 5,N = 100, individual
decomposition ofR ( ), C ( ), and joint decomposition
of bothR and C ( ).

eters (ρO, ρB, ρA) and their value can be selected by applying
the following adaptive rule at each iteration

ρ(ℓ+1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

τ ρ(ℓ) if ∥Vcur −Zcur∥F > µ∥ρ(ℓ)(Zcur −Zold)∥F
ρ(ℓ)/τ if ∥ρ(ℓ)(Zcur −Zold)∥F > µ∥Vcur −Zcur∥F
ρ(ℓ) otherwise.

In practice, typical choices can be µ = 10, τ = 2, and ρ(0) =
ρ
(0)
o = ρ(0)B = ρ(0)A = 1, while ϵabs and ϵrel can be chosen from

the ranges [10−6; 10−3] and [10−4; 10−2], respectively. For
further details, please refer to [29].
Complexity: For short, we assume N1 = N2 = N . TenSOFO
involves two inner ADMM loops, denoted as (19) and (24).
In loop (19), the computation includes a pseudo-inverse and
two inverse operations of R×R matrices, resulting in a cost of
O(R3) flops. Additionally, the Khatri-Rao products requires
a cost of O(max{M2,N}M2R) flops. Consequently, each
iteration incurs a total cost of O(M4R2N) flops for updating
K(k,i), B(k,i)L , B(k,i)R , and D(k,i). Thus, the computational
complexity of (19) is O(IstopM4R2N). At the end of the
loop (19), TenSOFO also involves the scaling and permutation
step (20) that requires O(M4R2) flops. Loop (24) shares a
similar update rule with (19) but deals withR ∈ RM×M×N of
smaller size, leading to a complexity ofO(JstopM2R2N). To
sum up, the overall computational complexity of TenSOFO is
O(Kstop(IstopM2 + Jstop)M2R2N) flops.

4. EXPERIMENTS
In this section, we evaluate the performance of TenSOFO in
two aspects: (i) its effectiveness for joint INDSCAL decom-
position, and (ii) its application to BSS using SO/FO statistics.
Experiment 1: We first apply TenSOFO to compute joint
INDSCAL decomposition of two symmetric tensors R ∈
RM×M×N and C ∈ RM2×M2×N sharing the same rank R:
R =Rtrue +NR = [[A,A,Σ]] +NR, (Tensor 1)
C = Ctrue +N C = [[A⊙2,A⊙2,K]] +N C. (Tensor 2)

Here, the tensor factors of interest A ∈ RM×R,Σ ∈ RN×R

and K ∈ RN×R are generated as Gaussian matrices with
zero-mean and unit-variance entries. NR and N C represent
random Gaussian noises sharing the same SNR level, i.e.,
∥NR∥F /∥Rtrue∥F = ∥N C∥F /∥Ctrue∥F = 10−

SNR
20 .

To evaluate the estimation accuracy, we measure the metric
RE(A,Aest) =minΠ,Λ ∥A −AestΠΛ∥

F
/∥A∥

F
, (26)

where Aest refers to the estimate, Π and Λ represent the per-
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(b) sr = filter(vr,AR(1, ψr))

Fig. 2: BSS task: M = 5, R = 3, N = 30, T = 1000.

mutation and scaling matrices, respectively (due to the inher-
ent permutation and scaling indeterminacy problem). Fig. 1 il-
lustrates the performance comparison between TenSOFO and
the classical INDSCAL method (i.e., CP-ALS) for each R
and C. The results indicate that the joint decomposition sig-
nificantly improves the estimation accuracy of A as compared
to the individual decomposition approach.
Experiment 2: We then demonstrate the effectiveness of Ten-
SOFO for BSS tasks in comparison with several widely-used
BSS algorithms, namely SOBI [20], JADE [19], SOBIUM [9],
FOOBI [8], and TBSS-LL1 [17].
For this task, we use the data model (1) in which the noise vec-
tor is n(t) ∼ N(0, σ2

nIM) and the mixing matrix A ∈ RM×R is
generated as a Gaussian matrix with zero-mean, unit-variance
entries. We consider two scenarios for the source matrix S =
[s⊺1, s⊺2, . . . , s⊺R]

⊺ ∈ RR×T : (i) sr is the result of convolving
a kernel/filter fr of length Lf ≪ T with a random coefficient
vector gr of length T −Lf + 1 (i.e., sr = fr ∗gr); and (ii) sr is
derived from filtering a non-Gaussian random process vr by a
first-order autoregressive (AR) model with coefficient ψr, de-
noted as sr = filter(vr,AR(1, ψr)). In the first case, gr and
fr are generated as normal and folded-normal random vectors,
respectively. Moreover, we set the filter length Lf = 30. In the
second case, we define the non-Gaussian process for the r-th
source sr using a power of normal Gaussian distribution (i.e.,
vt(i) = ∣yi∣p where yi ∼ N(0,1), p > 1). Here, we set p = 6
and ψr = 0.5 ∀r. The hyperparameters of the compared BSS
algorithms are kept at their default values. SOBI, SOBIUM,
and TenSOFO require a predefined number of time lags, we
set its value to N = 30. To evaluate the estimation accuracy of
the BSS algorithms, we reuse the error metric RE(A,Aest)
in (26). Fig. 2 indicates that TenSOFO outperforms other al-
gorithms, offering better estimation accuracy in both test cases.

5. CONCLUSIONS

In this paper, we addressed the problem of blind source sep-
aration (BSS) using both second and fourth order statistics.
We established a fundamental connection between joint IND-
SCAL decomposition and BSS, which served as the basis
for introducing our novel tensor-based method called Ten-
SOFO. The proposed method is specifically designed for joint
INDSCAL decomposition and, consequently, BSS tasks. The
experimental results indicated the effectiveness of TenSOFO,
showcasing its excellent performance in both tensor decom-
position and blind source separation tasks, particularly when
compared to state-of-the-art algorithms.
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