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ABSTRACT
In this paper, we investigate the problem of convolutive blind
source separation (BSS) via tensor decomposition. A fun-
damental link between convolutive BSS and block-term de-
composition (BTD) is established, forming the basis for our
novel tensor-based convolutive BSS method, namely TCBSS.
Specifically, the proposed method offers a new effective ap-
proach for factorizing tensors under the BTD format where
the loading factors are constrained to be identical. By leverag-
ing second-order statistics of data observations, we construct a
third-order tensor by stacking covariance matrices at different
time lags, and then, apply TCBSS to identify the mixing pro-
cess. Experimental results demonstrate the robust performance
of TCBSS in addressing both BTD and convolutive BSS tasks,
particularly when dealing with electromyography (EMG) sig-
nal decomposition.

Index Terms— Convolutive blind source separation, ten-
sor decomposition, block term decomposition, second-order
statistics, EMG decomposition.

1. INTRODUCTION

In this work, we consider the following convolutive blind
source separation (BSS) model:

xm(t) =
R

∑
r=1

L

∑
ℓ=0

amr(ℓ)sr(t − ℓ), t = 0,1, . . . , (1)

where xm(t) represents the data observed at the m-th sen-
sor (m = 1,2, . . . ,M ); sr(t) is the r-th source signal (r =
1,2, . . . ,R); amr(ℓ), ℓ = 0,1, . . . , L are coefficients of the im-
pulse response from the r-th source to the m-th sensor, and
(L+1) is the maximum filter length. Given a set of data obser-
vations {xm(t)}, it is desirable to identify the mixture process
and recover the underlying source signals. In the literature,
many effective methods have been proposed for BSS and con-
volutive BSS in particular. We refer the readers to [1–3] for
good references.

Tensor decomposition (TD) has become a powerful pro-
cessing tool for analyzing multidimensional data in both batch
and adaptive settings [4–6]. With its capability to factorize
multiway arrays (referred to as tensors) into basic compo-
nents, TD has successfully demonstrated its applications in

This work was supported by the European Pro-Athena program under
grant No. 20-GURE-0012. Ales Holobar was supported by the Slovenian Re-
search and Innovation Agency (Programme No. P2-0041).

various signal processing problems and BSS tasks in particu-
lar [6, 7]. Noteworthy within this strategy are methodologies
that leverage the classical canonical polyadic (CP) decompo-
sition. This CP decomposition forms the basis for various
tensor-based BSS algorithms, including [8–11], among others.
High-order SVD has also been employed for BSS tasks, as
demonstrated in works such as [12–14]. Another approach
that holds promise in the context of tensor-based BSS is the
(Lr, Lr,1)-decomposition or LL1 decomposition [15–19].
The existing tensor-based BSS methods are, however, ei-
ther designed for handling instantaneous BSS tasks rather than
convolutive ones or applicable only to certain classes of source
signals. One potential solution to address the former issue is
to convert convolutive mixtures into instantaneous ones, often
accomplished through frequency domain representations or
transformations. Subsequently, current tensor-based methods
can be used for source separation. However, this introduces a
set of new issues, including complex-valued data, permutation
and scaling indeterminacies, and the consistency of filter co-
efficients across frequencies, to name a few [3]. Hence, there
is a need to readapt current tensor-based BSS algorithms to
tackle them or, alternatively, to delve deeper into exploring
novel methods that can bypass such issues.

In this paper, we adopt the latter strategy by presenting a
new effective tensor-based method aimed at dealing with the
convolutive BSS directly in time domain. In contrast to exist-
ing tensor-based BSS methods, our approach involves exploit-
ing the merits of a special variant of the block term decompo-
sition (BTD) where the loading factors are constrained to be
identical. To elaborate, we establish a fundamental connection
between convolutive BSS and this constrained BTD, forming
the groundwork for our novel method called TCBSS. Specifi-
cally by exploiting second-order statistics, we first construct a
third-order tensor by stacking a set of covariance matrices, and
then, apply TCBSS to identify the mixing process and sources.
Beyond its primary contribution to convolutive BSS, this paper
also enriches the existing tensor literature by introducing an ef-
fective optimization approach for factorizing tensors under the
BTD format.

2. PRELIMINARIES

2.1. Notations and Operations

We adopt a notation convention in which lowercase letters rep-
resent scalars (e.g., x), while boldface lowercase letters refer to



vectors (e.g., x). Matrices and tensors are denoted using bold-
face capital letters (e.g., X) and bold calligraphic letters (e.g.,
X ), respectively. The mode-n matricization of a tensor X is
denoted as [X ](n). The transpose operation is denoted as (⋅)⊺,
the pseudo-inverse as (⋅)#, the Frobenius norm as ∥ ⋅ ∥F , and
the ℓ2 norm as ∥ ⋅ ∥2. The function “blkdiag(⋅)” constructs a
block diagonal matrix or tensor by arranging the inputs along
its diagonal. Here, we present frequently-used mathematical
operations in this paper.

The mode-n product of a tensor X ∈ RI1×I2×⋅⋅⋅×IN and
a matrix U ∈ RJn×In returns a new tensor Y = X ×n U ∈
RI1×⋅⋅⋅×Jn×⋅⋅⋅×IN whose elements are given by
Y(i1, . . . , in−1, jn, in+1, . . . , iN)

=
In

∑
in=1

X (i1, . . . , in−1, in, in+1, . . . , iN)U(jn, in). (2)

If Y = X ×n U then [Y](n) =U[X](n).
The Kronecker product of two matrices A ∈ RM×N and

B ∈ RP×Q is defined as

A⊗B =
⎡⎢⎢⎢⎢⎣

a11B . . . a1NB
⋮ ⋱ ⋮

aM1B . . . aMNB

⎤⎥⎥⎥⎥⎦
. (3)

The bloc-wise Kronecker product of A = [A1, . . . ,AR] and
B = [B1, . . . ,BR] results in

A⊗b B = [A1 ⊗B1, . . . ,AR ⊗BR]. (4)

2.2. Type-2 BTD

The type-2 BTD is a variant of the block term decomposition
(BTD) method [20]. It aims to factorize a third-order tensor
X ∈ RI×J×K into a set of low multilinear-rank components
{X r}Rr=1, which can be expressed as follows

X =
R

∑
r=1

X r =
R

∑
r=1

Gr ×1 Ar ×2 Br. (5)

Here, Gr ∈ RLr×Mr×K represents the core tensor of the r-th
component X r, while the loading factors Ar ∈ RI×Lr and
Br ∈ RJ×Mr are full column rank matrices. Since (5) is trilin-
ear in A = [A1,A2, . . . ,AR], B = [B1,B2, . . . ,BR], and
G = blkdiag(G1,G2, . . . ,GR), its computation follows the
common alternating least-squares (ALS) approach [21]. Also,
the type-2 BTD is essential unique under mild conditions [20].

To support our algorithm development in Section 4, we
present three mode-n matrix representations of X :

[X ](1) =A[[G1 ×2 B1]⊺(1), . . . , [GR ×2 BR]⊺(1)]
⊺

, (6)

[X ](2) = B[[G1 ×1 A1]⊺(2), . . . , [GR ×1 AR]⊺(2)]
⊺

, (7)

[X ](3) = [[G
(l)
1 ](3), . . . , [G

(l)
R ](3)](B⊗b A)

⊺

. (8)

3. LINK BETWEEN CONVOLUTIVE BSS AND
CONSTRAINED TYPE-2 BTD

In this section, we present a fundamental link between convo-
lutive BSS and a constrained type-2 BTD factorization.
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Fig. 1: Constrained Type-2 BTD based Convolutive BSS

As suggested in [3,22], we can reformulate the convolutive
data model (1) into an instantaneous one as follows

x(t) =As(t), (9)
where
s(t) = [s1(t), . . . , s1(t − (L +L′) + 1), . . . ,

sR(t), . . . , sR(t − (L +L′) + 1)]⊺ ∈ RR(L+L′), (10)
x(t) = [x1(t), . . . , x1(t −L′ + 1), . . . ,

xM(t), . . . , xM(t −L′ + 1)]⊺ ∈ RML′ , (11)
with an extension factor for data observations L′ ≥ 1 and the
new mixture A ∈ RML′×R(L+L′) is given by

A =
⎡⎢⎢⎢⎢⎣

A11 . . . A1R

⋮ ⋱ ⋮
AM1 . . . AMR

⎤⎥⎥⎥⎥⎦
with (12)

Amr =
⎡⎢⎢⎢⎢⎣

amr(0) . . . amr(L) . . . 0
⋱ ⋱ ⋱

0 amr(0) . . . amr(L)

⎤⎥⎥⎥⎥⎦
. (13)

For short, we denote Ladd = L +L′.
In many applications, individual source signals are tempo-

rally coherent while maintaining their mutual independence,
such as [22–24]. Specifically, the correlation between the two
sources si and sj (with i ≠ j) follows E{si(t)sj(t − τ)} = 0,
for all τ . In such cases, the correlation matrix corresponding
to (9) is expressed as

Rx(t, τ)
∆= E{x(t)x(t − τ)⊺} =AE{s(t)s(t − τ)⊺}A⊺

=A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

Rs1(t, τ)

Rs2(t, τ)

⋱

RsR(t, τ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A⊺

∆= Ablkdiag({Rsr(t, τ)}Rr=1)A⊺. (14)

For multiple time lags {τi}Ki=1, we obtain
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Rx(t, τ1) =Ablkdiag({Rsr(t, τ1)}Rr=1)A⊺,
⋮

Rx(t, τK) =Ablkdiag({Rsr(t, τK)}Rr=1)A⊺.
(15)

Particularly by stacking {Rx(t, τk)}Kk=1 and {Rs(t, τk)}Kk=1
consecutively within the third mode ofR ∈ RML′×ML′×K and
G ∈ RRLadd×RLadd×K , we derive the following representation

R = G ×1 A ×2 A =
R

∑
r=1

Gsr ×1 Ar ×2 Ar, (16)



where Gsr(∶, ∶, k) =Rsr(t, τk) and Ar = [A⊺1r, . . . ,A⊺Mr]
⊺ is

the r-th block column of A. See Fig. 1 for an illustration.
We can see that (16) represents a variant of the type-2 BTD

in (5), where the loading factors A and B are constrained to
be identical. Interestingly, (16) is also essentially unique under
mild conditions, as highlighted by Proposition 1. In particular,
the estimate Ā of A is unique up to trivial indeterminacies,
i.e., Ā =AΠΛ where Π is a block permutation matrix and Λ
is a square nonsingular block-diagonal matrix.

Proposition 1 (Uniqueness). If ML′ ≥ RLadd, K ≥ 3, and G
is generic,1 then (16) is essentially unique.

This result is a corollary of Theorem 6.1 in [20]. Con-
sequently, by employing the constrained type-2 BTD analy-
sis, we can directly identify the mixing process in convolutive
BSS. In next section, we introduce an effective optimization
framework designed to deal with (16) in an efficient way.

4. OPTIMIZATION FRAMEWORK
The type-2 BTD factorization (16) can be represented by the
following optimization

min
G,A,B

∥R −
R

∑
r=1

Gsr ×1 Ar ×2 Br∥
2

F
s.t. A = B. (17)

where A = [A1, . . . ,AR] and B = [B1, . . . ,BR]. Here, we
can formulate the augmented Lagrangian function for the con-
strained minimization (17) as follows

L(G,A,B,U) = min
G,A,B

∥R −
R

∑
r=1

Gsr ×1 Ar ×2 Br∥
2

F

+ ρ
2
∥B −A +U∥2

F
− ρ
2
∥U∥2

F
, (18)

where U is the “scaled” dual variable and ρ > 0 is a regularized
parameter. To find the stationary point of L(⋅), we propose the
following iteration procedure.

while stopping criteria are not met do

A(l) = argmin
A

∥R −
R

∑
r=1

G(l−1)sr ×1 Ar ×2 B(l−1)r ∥
2

F

+ ρ

2
∥B(l−1) −A +U(l−1)∥

2

F
(19a)

B(l) = argmin
B

∥R −
R

∑
r=1

G(l−1)sr ×1 A(l)r ×2 Br∥
2

F

+ ρ

2
∥B −A(l) +U(l−1)∥

2

F
(19b)

G(l) = argmin
G

∥R −
R

∑
r=1

Gsr ×1 A
(l)
r ×2 B(l)r ∥

2

F
(19c)

U(l) = Z(l−1) +B(l) −A(l) (19d)

αl =
1 +
√
1 + 4α2

l−1

2
(19e)

Z(l) =U(l) + αl−1 − 1
αl

(U(l) −U(l−1)) (19f)
l = l + 1

end

At l = 0, matrices A(0), B(0), U(0), Z(0), and tensor G(0) are
1We call a tensor generic when its elements are drawn from a continuous

probability density function.

initialized at random, while the value of α0 is set to 1.
The proposed procedure (19) relies on the duality theory

for convex optimization. The main objective is to minimize
the augmented Lagrangian function L(⋅) w.r.t. A, B, and
G, respectively, while keeping the dual variable U constant.
It involves three sub-problems (19a), (19b), and (19c) whose
closed-form solutions are provided below. The dual function,
represented as f(U) =minG,A,BL(⋅), needs to be maximized
w.r.t. U. Inspired by the work [25], we introduce two auxil-
iary variables Z(l) and αl to accelerate the iteration procedure.
The inclusion of (19d), (19e), and (19f) results in an acceler-
ated augmented Lagrangian variant which can offer superior
speed and estimation accuracy, as compared with state-of-the-
art methods, please see Fig. 2 for an example.

Due to the space limitation, we omit the detailed deriva-
tions of (19a), (19b), and (19c). Here, we present their closed-
form solutions A(l), B(l), and G(l), as follows

A(l) = (R(1)W
(l)
A

⊺

+ ρ(B(l−1) +U(l−1)))

(W(l)
A W

(l)
A

⊺

+ ρIRLadd)
−1

, (20)

B(l) = (R(2)W
(l)
B

⊺

+ ρ(U(l−1) −A(l)))

(W(l)
B W

(l)
B

⊺

+ ρIRLadd)
−1

, (21)

[[G(l)s1 ](3), . . . , [G
(l)
sR
](3)] =R(3)((B(l) ⊗b A

(l))⊺)#, (22)

where W
(l)
A and W

(l)
B are given by

W
(l)
A = [[G

(l−1)
s1 ×2 B(l−1)1 ]⊺

(1)
, . . . , [G(l−1)sR

×2 B(l−1)R ]⊺
(1)
]
⊺

,

W
(l)
B = [[G

(l−1)
s1 ×1 A(l)1 ]

⊺

(2)
, . . . , [G(l−1)sR

×1 A(l)R ]
⊺

(2)
]
⊺

.

Stopping Criteria: Our procedure stops either upon con-
vergence, or reaching the maximum number of iterations
Istop = 100, or by meeting the following criteria

∥A(l) −B(l)∥
F
≤ εpri, ∥ρ(A(l) −A(l−1))∥F ≤ εdual, (23)

where

εpri = ϵabs
√
MRL′Ladd + ϵrelmax{∥A(l)∥

2
, ∥B(l)∥

2
},

εdual = ϵabs
√
MRL′Ladd + ϵrel∥ρU(l)∥2.

Here, ϵabs > 0 and ϵrel > 0 represent the absolute and relative
tolerance, respectively. In practice, we can set ρ = 1, ϵabs =
10−4 and ϵrel = 10−2 for reasonable performance.

Computational Complexity: At each iteration, the up-
dates for both A(l) in (20) and B(l) in (21) share the same
computational process. This requires O(M2L′

2
LaddRK +

ML′L2
addR

2K + L3
addR

3) flops. For computing G(l) defined
in (22), the complexity is O(M2L′2L2

addRK +M2L′2RL2
add

min(M2L′2,RL2
add)) flops. The computations required for

updating U(l), Z(l), and αl are inexpensive, with respective
complexities of O(ML′RLadd), O(ML′RLadd), and O(1).
As mentioned in Proposition 1, satisfying the uniqueness
condition demands ML′ ≥ RLadd. Accordingly, the overall
complexity of TCBSS is O(M2L′

2
L2

addRmax(K,L2
addR) +

L3
addR

3) flops at each iteration.
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Fig. 2: Convergence rate of type-2 BTD algorithms: K = 100,
and σn = 10−2.

Table 1: Running time of type-2 BTD algorithms

Method ALS ALS+LSH ALS+ELSC TCBSS

Fig. 2(a) 0.22(s) 0.24(s) 0.25(s) 0.17(s)

Fig. 2(b) 0.36(s) 0.39(s) 0.43(s) 0.28(s)

5. SIMULATIONS
We evaluate the performance of TCBSS by (i) analyzing its
convergence rate for type-2 BTD factorization, and (ii) apply-
ing it to the problem of EMG decomposition. Our experiments
are implemented in MATLAB on a computer with an Intel
core i7, 3.00GHz CPU and 16GB of RAM.

Experiment 1: Tensor Decomposition. We first demon-
strate its effectiveness in the context of constrained type-2
BTD factorization. To illustrate this, we generate a third-order
tensor X ∈ RM×M×K as follows
X = X tr + σnN = ∑R

r=1Gr ×1 Ar ×2 Ar + σnN . (24)

Here, the elements of Gr ∈ RL×L×K , N ∈ RM×M×K , and
Ar ∈ RM×Lr are derived from random Gaussian variables with
zero mean and unit variance. The parameter σn > 0 is intro-
duced to control the noise level. To measure the estimation
accuracy, we use the following relative error metric

RE(X tr,X est) = ∥X tr −X est∥F /∥X tr∥F , (25)
where X est is the reconstructed tensor. Fig. 2 and Tab. 1
show the performance of TCBSS as compared with the widely-
used ALS method [21] and its variants: ALS+LSH [26] and
ALS+ELSC [27]. We can see that the proposed algorithm not
only achieves faster convergence but also provides improved
estimation accuracy.

Experiment 2: EMG Decomposition. We apply TCBSS
to the problem of EMG decomposition and compare its per-
formance with other tensor-based BSS algorithms, namely
PARAFAC-SD [11] and LL1-segmentation [18].

Synthetic EMG signals are simulated using the convolutive
model (1), where amr(ℓ) represents the action potential (AP)
of the r-th motor unit (MU) at the m-th sensor. The duration
of the APs is 35 (i.e., L = 34). The source sr(t) = ∑j δ(t −
ψrj) corresponds to the spike train of the r-th MU, featuring
spikes at times ψrj with δ(⋅) being the Dirac delta function. In
particular, the m-th measurement xm is formulated as

xm = ∑R
r=1 ymr = ∑R

r=1 amr ∗ sr, (26)
see Fig. 3 for an illustration. The objective of the EMG decom-
position is to identify the underlying sources {ymr}M,R

m=1,r=1

∗

MU #1 MU #2

{𝒂𝒂𝑚𝑚1}𝑚𝑚=1
3 {𝒂𝒂𝑚𝑚2}𝑚𝑚=1

3

𝑠𝑠1

𝑠𝑠2

…

…

Spike Trains

𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

=

Signals

Fig. 3: Synthetic EMG signals: Convolutive mixture model
with 3 measurements and 2 sources.

Fig. 4: EMG decomposition results (i.e., spike train ( ) and
waveform ( )) related to the first component y11 = a11 ∗ s1:
Ground truth ( ), estimates by PARAFAC-SD ( ), LL1-
segmentation ( ), and the proposed TCBSS ( ).

(spike trains {sr}Rr=1 and MUs {amr}M,R
m=1,r=1) from {xm}Mm=1.

We refer the reader to [28, 29] for further details.
For this task, we generate three measurements (M = 3),

comprising of two sources (R = 2) with an excitation level
set at 5% of the maximum voluntary contraction. The sam-
pling frequency is fs = 2048 Hz. To satisfy the uniqueness
condition ML′ ≥ R(L + L′) in Proposition 1, we set the ex-
tension factor L′ of TCBSS to 2L. Additionally, we set the
number of time lags K to 30. Once obtaining the mixing ma-
trix, the underlying sources are obtained up to an unknown
filter via the ordinary least-squares method. Then, we identify
the timings of activations of each MU, thanks to the form of
spike (impulse) trains. The decomposition results related to
the first EMG source are depicted in Fig. 4. We can see that
TCBSS is capable of reconstructing EMG sources albeit with
small artifacts present. TCBSS also demonstrates improved
performance as compared to PARAFAC-based and LL1-based
methods.

6. CONCLUSIONS

In this paper, we presented a connection between convolutive
blind source separation (BSS) and type-2 block-term decom-
position (BTD). Consequently, we introduced a novel and effi-
cient method called TCBSS to address the constrained type-2
BTD, effectively dealing with convolutive BSS. The results in-
dicated that TCBSS outperformed the “workhorse” alternating
least-squares (ALS) method and its variants for the BTD task
in terms of both convergence rate and estimation accuracy. The
effectiveness of TCBSS for the problem of convolutive BSS
was then illustrated with EMG decomposition.
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