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Abstract

In this paper, we investigate the problem of blind source separation (BSS) through the

lens of tensor decomposition (TD). Two fundamental connections between TD and BSS are

established, forming the basis for two novel tensor-based BSS methods, namely TenSOFO

and TCBSS. The former is designed for a joint individual differences in scaling (INDSCAL)

decomposition, addressing instantaneous (linear) BSS tasks; while the latter efficiently per-

forms a constrained block term decomposition (BTD), aligning with the design of convo-

lutive BSS. Leveraging the benefits of the alternating direction method of multipliers and

the strengths of tensor representations, both TenSOFO and TCBSS prove to be effective in

BSS. Our experimental results demonstrate the effectiveness of these two proposed meth-

ods in addressing both TD and BSS tasks, particularly when compared to state-of-the-art

algorithms.
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1. Introduction

In this work, we consider the following blind source separation (BSS) model:

xm[t] =
R

∑
r=1

ymr[t] =
R

∑
r=1

L

∑
ℓ=0

amr[ℓ]sr[t − ℓ], (1)

where xm[t] represents the data observed at the m-th sensor (m = 1,2, . . . ,M); sr[t] is

the r-th source signal (r = 1,2, . . . ,R); amr[ℓ], ℓ = 0,1, . . . , L are coefficients of the impulse

response from the r-th source to the m-th sensor, and (L+ 1) is the maximum filter length.

Particularly when L = 0, (1) boils down to the problem of instantaneous (linear) BSS. Given

a set of data observations {xm[t]}t≥0, it is desirable to identify the mixture process and

recover the underlying source signals. In the literature, many effective methods have been

proposed for BSS so far. We refer the readers to [1–3] for good references.

Over the last two decades, tensor decomposition (TD) has emerged as a powerful process-

ing tool for analyzing multivariate and high dimensional data in both batch and adaptive

settings [4–6]. With its capability to factorize multiway arrays (referred to as tensors)

into basic components, TD has consistently demonstrated remarkable success in various

signal processing and machine learning applications. Particularly in the context of BSS,

several tensorization techniques have been introduced to transform time-series signal and

data models into tensor representations, such as time-frequency tools [7], Hankelization [8],

Löwnerization [9], and segmentation [10], among others. These techniques pave the way for

the promising integration of tensor decomposition methods in addressing BSS tasks effec-

tively. In this paper, we aim to investigate the problem of BSS through the lens of tensor

decomposition, leveraging its advantages and advances to significantly enhance blind source

separation performance.
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1.1. Related Works

In the literature, several tensor-based methods have been proposed for BSS tasks [2].

Among them, many make the use of the classical canonical polyadic (CP) decomposition,

which allows tensors to be expressed as a sum of rank-1 components [4]. In particular, a con-

nection between this decomposition and joint (simultaneous) diagonalization was established

in [11], which laid the foundation for various CP-based BSS algorithms. Some notable ex-

amples of CP-based BSS methods include FOOBI [12], SOBIUM [13], PARAFAC-SD [14],

and DC-CPD [15]. High-order SVD or Tucker decomposition, which factorize a tensor

into a smaller core tensor and a set of loading matrices, have also been employed for BSS

tasks, as demonstrated in works such as [16–18]. Another tensor approach in BSS is the

block component analysis or block term decomposition (BTD) which unifies the CP and

Tucker decompositions [19]. Tensorization techniques like Hankelization [8], Löwnerization

[9], and segmentation [10] have been developed to enable the use of BTD in BSS, particularly

for source signals with specific characteristics such as exponential or polynomial behavior.

Specifically, the LL1-BTD (BTD with multilinear rank-(L,L,1) terms) plays the central

role in various BSS-related tasks, ensuring exact recovery of components from data obser-

vations. It has already found applications in hyperspectral unmixing [20–22], separation of

biomedical signals [23–25], blind deconvolution [26, 27], and others.

The existing tensor-based BSS methods are, however, either designed for handling in-

stantaneous BSS rather than convolutive ones or applicable only to certain classes of source

signals. One potential solution is to convert convolutive mixtures into instantaneous ones,

often accomplished through frequency domain representations or transformations. However,

this introduces a set of new issues, including complex-valued data, permutation and scal-

ing indeterminacies, and the consistency of filter coefficients across frequencies, to name a

few [3]. Hence, there is a need to readapt current tensor-based BSS algorithms to tackle them

or, alternatively, to delve deeper into exploring novel methods that can bypass such issues.
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In parallel, we know that statistical properties of data play a crucial role for BSS tasks [28].

Many BSS methods have effectively utilized second-order (SO) and/or fourth-order (FO)

statistics for source separation, as demonstrated in [29–32], among others. SO statistics

offer insights into the correlation and linear relationships among observed signals, while FO

statistics can capture the non-Gaussian nature of the sources and higher-order dependencies

among the data observations. Most existing methods, however, either focus solely on one

type of data statistics (e.g., SO or FO) or partially exploit their information. Consequently,

our objective in this paper is to integrate SO and FO statistics with tensor analysis for BSS.

This approach is expected to provide a more comprehensive set of statistical features and

leverage the benefits of tensor representation, leading to enhanced robustness and accuracy

in source separation performance.

1.2. Main Contributions

Following our preliminary study presented in [33, 34], the main contributions of this work

can be summarized as follows. We first contribute to the literature on BSS by introducing a

new tensor method that effectively leverages data statistics, namely TenSOFO (where “Ten”,

“SO”, and “FO” stand for Tensors, Second Order statistics, and Fourth Order statistics,

respectively). The proposed method is based on a novel joint (simultaneous) analysis called

individual differences in scaling (INDSCAL), which is a symmetric variant of CP for third-

order tensors with symmetry in two modes [35]. Particularly, this analysis offers improved

interpretability as compared to the classical CP model for BSS, which uses SO and FO

represented by symmetric matrices (covariance) and tensors (quadricovariance), respectively.

We propose an effective alternating direction method of multipliers (ADMM)-based joint

INDSCAL decomposition of two symmetric third-order tensors. In addition, we establish a

fundamental link between SO-FO based BSS and joint INDSCAL decomposition, allowing

us to effectively apply the proposed INDSCAL method for instantaneous BSS tasks.
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In contrast to the existing BSS methods using LL1-BTD, which primarily employ low-

rank constraints on the underlying source signals, the joint INDSCAL model presents an

alternative approach leveraging nice properties of higher-order statistics (HOS) in data ob-

servations. Specifically, the proposed method offers several appealing features over LL1-BTD

for BSS tasks, including (i) a memory-saving representation and efficient decomposition, (ii)

vanishing of the Gaussian noise terms when using FO statistics, (iii) the ability to handle

source signals without prior information on their rank, and among others. Instantaneous

BSS methods based on LL1-BTD directly construct tensors from data observations (e.g., by

tensorizing signals through Hankelization, segmentation or Löwnerization), which can result

in large tensors. In contrast, TenSOFO employs data statistics to construct two third-order

tensors of small size (refer to Section III for details). Consequently, TenSOFO provides a

more efficient memory-saving tensor representation and decomposition, particularly advan-

tageous for processing long time-series signals like speech and audio sampled at high rates.

Additionally, TenSOFO, along with other HOS-based methods, benefits from the inherent

property that higher-order cumulants of Gaussian random variables are zero, making it less

sensitive to the effect of Gaussian noise. Another advantage of the proposed method over

LL1-BTD is as follows: LL1-BTD based methods often require rank information of source

signals, which may not always be available or is challenging to determine in practice. In

contrast, the proposed method operates effectively without such information, performing

well under statistical independence assumptions. Furthermore, the proposed method dif-

fers from the existing coupled tensor-based BSS method, DC-CPD [15], in several aspects.

DC-CPD is designed to address joint BSS tasks involving multi-set signals. It constructs

third-order tensors from cross-covariance matrices, assuming intra-set independence and

inter-set dependence. Therefore, the symmetry in DC-CPD arises from concatenating these

tensors and their permuted versions (see Section I in Supplementary materials of [15] for

details). In contrast, our method involves the computation of covariance and quadricovari-
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ance of data at pairs of time points, resulting in an intrinsic symmetric structure derived

directly from these covariance matrices and quadricovariance tensors. This intrinsic symme-

try facilitates the formulation of the joint INDSCAL, also known as symmetric CP model.

Additionally, DC-CPD relies solely on SO statistics, whereas TenSOFO incorporates both

SO and FO statistics. This distinction makes our method more comprehensive and effective

in addressing BSS tasks.

Next, we propose the second tensor method aimed at dealing with convolutive BSS

directly in time domain. In contrast to existing tensor-based BSS methods, our approach

involves exploiting the merits of a special variant of the block term decomposition (BTD)

where the loading factors are constrained to be identical. To elaborate, we establish a

connection between convolutive BSS and this constrained BTD, forming the groundwork

for our novel method called TCBSS (which stands for Tensor based Convolutive BSS).

Specifically by exploiting second-order statistics, we first construct a third-order tensor by

stacking a set of covariance matrices, and then, apply TCBSS to identify the mixing process

and sources. A variant of TCBSS, incorporating fourth-order statistics, is also introduced.

By reformulating BSS within the framework of tensor decomposition, several advanta-

geous properties of INDSCAL and BTD can be effectively leveraged for BSS tasks. Specifi-

cally, the identifiability issues inherent in BSS are closely linked to the uniqueness of solutions

derived from these tensor-based approaches. The two proposed tensor models are essentially

unique under mild conditions (i.e., unique up to a scale and a permutation), thus aiding in

addressing identifiability issues in BSS. This is also feasible in cases when the number of

sources exceeds the number of mixtures, as demonstrated by Proposition 2 in Section 3.1.

Additionally, tensor decomposition allows for flexible modeling of the data, enabling the

incorporation of constraints and assumptions tailored to specific BSS tasks. Moreover, the

utilization of tensor models holds promise for enhancing separation performance by captur-

ing higher-order statistical dependencies inherent in the data. This is illustrated by several
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experimental results on both synthetic and real datasets in Section 5.

Beyond its primary contributions to BSS, this paper also enriches the existing tensor

decomposition literature by introducing two effective optimization approaches for factorizing

tensors under the joint INDSCAL and BTD models, outperforming the state-of-the-art

algorithms.

1.3. Paper Organization

The remainder of this paper is structured as follows. In Section 2, we provide a brief

overview of the preliminaries, covering standard notations, operations, tensor decomposi-

tion models, data statistics, and the alternating direction method of multipliers. Section 3

establishes a fundamental link between instantaneous BSS and joint INDSCAL decomposi-

tion, subsequently introducing our first method, TenSOFO. Section 4 introduces the second

method, TCBSS, designed to address convolutive BSS tasks. In Section V, we present exten-

sive experiments to demonstrate the effectiveness of these two proposed method and Section

VI concludes the paper.

2. Preliminaries

2.1. Notations and Operations

In this paper, we use the following notations. Lowercase letters represent scalars (e.g.,

x), while boldface letters indicate vectors (e.g., x). Matrices and tensors are denoted using

boldface capital letters (e.g., X) and bold calligraphic letters (e.g., X ), respectively. The

(i1, i2, . . . , iN)-th element of a tensorX is denoted asX (i1, i2, . . . , iN), (X )i1i2...iN , or xi1i2...iN .

The mode-n matricization of a tensor X is denoted as [X ](n). The transpose operation is

represented as (⋅)⊺, the pseudo-inverse as (⋅)#, and the Frobenius norm as ∥ ⋅ ∥F . The mode-

n product of a tensor X and a matrix U is denoted as X ×n U. The concatenation of

tensors X and Y along the last mode is represented as X ⊞Y . Symbols ○, ⊙, and ÷× are
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used to represent the outer, Khatri-Rao, and Hadamard products, respectively. Symbols ⊗

and ⊠ denote the Kronecker and block-wise Kronecker products. The function “blkdiag”

constructs a block diagonal matrix or tensor by arranging the inputs along its diagonal. The

function “length” returns the number of entries in a vector, matrix, or tensor. The function

“mat” reshapes a tensor X of size I × J ×K ×L into a matrix X of size IJ ×KL such that

X((i − 1)I + j, (k − 1)I + l) = X (i, j, k, l). In the following, we present some frequently-used

mathematical operations considered in this paper.

The mode-n product of a tensor X ∈ RI1×I2×⋅⋅⋅×IN and a matrix U ∈ RJn×In returns a new

tensor Y = X ×n U ∈ RI1×⋅⋅⋅×In−1×Jn×In+1×⋅⋅⋅×IN whose elements are given by

Y(i1, . . . , in−1, jn, in+1, . . . , iN)

=
In

∑
in=1

X (i1, . . . , in−1, in, in+1, . . . , iN)U(jn, in). (2)

If Y = X ×n U, then [Y](n) =U[X ](n) ∀n.

The concatenation of two tensors X ∈ RI1×⋅⋅⋅×IN−1×IN and Y ∈ RI1×⋅⋅⋅×IN−1×JN along the last

mode yields a new tensor Z = X ⊞Y ∈ RI1×⋅⋅⋅×IN−1×(IN+JN ) whose elements are defined as

Z(i1, . . . , in−1, k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

X (i1, . . . , in−1, k) if k ≤ IN ,

Y(i1, . . . , in−1, k) if k > IN .

(3)

The Hadamard product (aka elementwise product) of two matrices A ∈ RM×N and B ∈

RM×N is defined as

A ÷×B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11b11 . . . a1Nb1N

⋮ ⋱ ⋮

aM1bM1 . . . aMNbMN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

The Kronecker product of two matrices A ∈ RM×N and B ∈ RP×Q results in

A⊗B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11B . . . a1NB

⋮ ⋱ ⋮

aM1B . . . aMNB

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)
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The Khatri-Rao product (aka column-wise Kronecker product) of A = [a1,a2, . . . ,aR]

and B = [b1,b2, . . . ,bR] yields

A⊙B = [a1 ⊗ b1,a2 ⊗ b2, . . . ,aR ⊗ bR]. (6)

When B =A, we denote (6) as A⊙2 =A⊙A for short.

The block-wise Kronecker product of A = [A1,A2, . . . ,AR] and B = [B1,B2, . . . ,BR] is

denoted as

A ⊠B = [A1 ⊗B1,A2 ⊗B2, . . . ,AR ⊗BR]. (7)

2.2. Tensor Decomposition

We provide a brief overview of two tensor formats: INDSCAL and type-2 BTD, which

are utilized in our work.

2.2.1. INDSCAL

The INdividual Differences in SCALing (INDSCAL) represents a variant of CP/PARAFAC

decomposition that enables the factorization of symmetric tensors [4, 35]. Under the IND-

SCAL model, a third-order tensor X of size I × I ×K with elements satisfying xijk = xjik for

all i, j, k can be decomposed into two factors A ∈ RI×R and C ∈ RK×R (R being the tensor

rank) as follows

X
∆
= [[A,A,C]] =

R

∑
r=1

ar ○ ar ○ cr, (8)

where ar and cr are the r-th columns of A and C, respectively. Its computation typically

follows the same iterative procedure to computing the classical CP decomposition (i.e., CP-

ALS) [4]. In CP-ALS, the two “A” matrices are treated as separate factors, denoted as AL

and AR (for left and right, respectively), and they are updated independently without an

explicit constraint enforcing their equality. Despite starting with different initial estimates,

the inherent symmetry of the data together with the uniqueness of CP decomposition even-

tually lead the two “A” matrices to converge, up to a scaling factor. Being a special case of
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CP, the uniqueness of INDSCAL is also guaranteed under mild conditions [36].

2.2.2. Type-2 BTD

The type-2 BTD is a variant of the block term decomposition (BTD) [37]. It aims to

factorize a third-order tensor X ∈ RI×J×K into a set of low multilinear-rank components

{X r}
R
r=1 as follows

X =
R

∑
r=1

X r =
R

∑
r=1

Gr ×1 Ar ×2 Br. (9)

Here, Gr ∈ RLr×Mr×K represents the core tensor of the r-th component X r, while the loading

factors Ar ∈ RI×Lr and Br ∈ RJ×Mr are full column rank matrices. Since (9) is trilinear in A =

[A1,A2, . . . ,AR], B = [B1,B2, . . . ,BR], and G = blkdiag(G1,G2, . . . ,GR), its computation

follows the common alternating least-squares (ALS) approach [38]. Also, the type-2 BTD

is essential unique under mild conditions [37]. To support our algorithm development, we

present three mode-n matrix representations of X :

[X ]
(1)
=A[[G1 ×2 B1]

⊺

(1)
, . . . , [GR ×2 BR]

⊺

(1)
]
⊺
, (10)

[X ]
(2)
= B[[G1 ×1 A1]

⊺

(2)
, . . . , [GR ×1 AR]

⊺

(2)
]
⊺
, (11)

[X ]
(3)
= [[G1](3), [G2](3), . . . , [GR](3)

](B ⊠A)
⊺
. (12)

2.3. Data Statistics

Consider a data vector u[t] ∈ RI of zero mean. We can analyze its second-order (SO)

and fourth-order (FO) statistics using its covariance matrix Ru ∈ RI×I and quadricovariance
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tensor Cu ∈ RI×I×I×I , respectively. These statistics are defined as follows:1

Ru[t, τ] = E{u[t]u[t − τ]⊺}, (13)

(Cu[t,{τ}])
ijkl
= Cum{ui[t], uj[t − τ1], uk[t − τ2], ul[t − τ3]}, (14)

for the time lags τ and τ ≡ {τ1, τ2, τ3}, where ui[t] is the i-th entry of u[t] and the fourth-

order cumulant “Cum(⋅)” is given by

Cum{xi, xj, xk, xl} = E{xixjxkxl} −E{xixj}E{xkxl}

−E{xixk}E{xjxl} −E{xixl}E{xjxk}. (15)

2.4. Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers (ADMM) is an effective primal-dual op-

timization framework designed to deal with convex constrained problems of the following

form [39]

min
x,y

f(x) + g(y) subject to z(x,y) = c, (16)

where the objective function is separable in x and y, and z(x,y) = c represents constraints

on parameters of interest. The augmented Lagrangian corresponding to (16) is given by

L(x,y,µ) = f(x) + g(y) +
ρ

2
∥c − z(x,y)∥

2

F
+µ⊺(c − z(x,y)), (17)

where ρ > 0 is a regularization parameter and µ is the dual variable. ADMM relies on the

duality theory for convex optimization, where the objective is to minimize the augmented

Lagrangian w.r.t. x, y and a fixed µ. Conversely, the dual function h(µ) =minx,yL(x,y,µ)

should be maximized w.r.t. µ. Consequently, ADMM performs an alternation between

minimizing L(⋅) w.r.t. x and y and employing gradient ascent to maximize h(µ).

1In this work, we focus on tensor decomposition with real-valued data (source signals and mixtures).
The definitions of Ru and Cu can be derived following (13) and (14), respectively. In a very general way,
it is essential to consider the conjugate complex elements when dealing with complex data at various time
lags. Our proposed methods, presented in the following sections, can be readily adapted to address complex-
valued scenarios. These extensions can be achieved by substituting the transpose (⋅)⊺ with the conjugate
(Hermitian) transpose (⋅)H , with the exception of certain reshaping and unfolding operators such as (63)
and (64).
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𝑀𝑀 Observations
Covariance

Quadricovariance

…

Stacking

…

…

Mixing

𝑅𝑅 Sources

Joint INDSCALStatistics

Figure 1: TenSOFO – A Joint INDSCAL Decomposition based Instantaneous BSS. TenSOFO com-
prises three main steps, including (i) extracting second-order (SO) and fourth-order (FO) statistics
from observations to obtain two sets of covariance matrices {Rx[t, τn]}N1

n=1 and quadricovariance ma-

trices {Cx[t,{τn}]}N2

n=1; (ii) forming two third-order tensors R and C, by stacking {Rx[t, τn]}N1

n=1 and

{Rx[t, τn]}N1

n=1, respectively; and (iii) performing a joint INDSCAL decomposition of R and C to derive
the mixing matrix A.

3. Instantaneous BSS: Joint INDSCAL Decomposition based Method

In this section, we present a link between joint INDSCAL decomposition and instanta-

neous BSS. Subsequently, we introduce a novel tensor method for BSS named TenSOFO

which effectively leverages SO and FO statistics. See Fig. 1 for an illustration.

3.1. Link between Instantaneous BSS and Joint INDSCAL Decomposition

The convolutive BSS model (1) can be transformed into an instantaneous BSS model

when the filter length is reduced to one (i.e., L = 0). In this case, we can recast (1) into the

following linear model

x[t] =As[t], (18)
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where x[t] = [x1[t], x2[t], . . . , xM[t]]
⊺
∈ RM represents the data observation vector, s[t] =

[s1[t], s2[t], . . . , sR[t]]
⊺
∈ RR is the source vector, andA ∈ RM×R is the mixing matrix defined

as

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11[0] . . . a1R[0]

⋮ ⋱ ⋮

aM1[0] . . . aMR[0]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19)

In many applications, the underlying sources are stationary, non-Gaussian and mutually

statistically independent, while being individually correlated for different lags, such as [30,

40, 41]. In such cases, the computation of second-order (SO) statistics of x[t] leads to the

following relation

Rx[t, τ] =AE{s[t]s[t − τ]⊺}A⊺ =ARs[t, τ]A
⊺, (20)

Rs[t, τ] = diag{σ
2
1[τ], σ

2
2[τ], . . . , σ

2
R[τ]}, (21)

where σ2
r[τ] = E{sr[t]sr[t − τ]}. While the computation of fourth-order (FO) statistics of

x[t] results in

(Cx[t,{τ}])
ijkl
= ∑

r1r2r3r4

(Cs[t,{τ}])
r1r2r3r4

A(i, r1)

A(j, r2)A(k, r3)A(l, r4), (22)

for all index values. Upon transforming (22) into matrix form, the resulting expression is as

follows

Cx[t,{τ}] = (A⊗A)C̃s[t,{τ}](A⊗A)
⊺
, (23)

where Cx[t,{τ}] = mat(Cx[t,{τ}]) ∈ RM2×M2
and C̃s[t,{τ}] = mat(Cs[t,{τ}]) ∈ RR2×R2

.

When the underlying sources are statistically independent, the matrix C̃s[t,{τ}] contains

at least R4 −R zeros. Thus, the expression (23) boils down to a simpler one

Cx[t,{τ}] = (A⊙A)Cs[t,{τ}](A⊙A)
⊺
, (24)

Cs[t,{τ}] = diag{κ1[{τ}], κ2[{τ}], . . . , κR[{τ}]}, (25)
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where κr[{τ}] = Cum{sr[t], sr[t − τ1], sr[t − τ2], sr[t − τ3]}. To sum up, we obtain

Rx[t, τ] =ARs[t, τ]A
⊺ and Cx[t,{τ}] =A⊙2Cs[t,{τ}]A

⊺
⊙2, (26)

where A⊙2 =A⊙A.

In this work, we construct two tensors R ∈ RM×M×N1 and C ∈ RM2×M2×N2 from the set of

N1 matrices {Rx[t, τn]}
N1

n=1
and N2 matrices {Cx[t,τn]}

N2

n=1
as follows

R =Rx[t, τ1] ⊞Rx[t, τ2] ⋅ ⋅ ⋅ ⊞Rx[t, τN1], (27)

C =Cx[t,{τ1}] ⊞Cx[t,{τ2}] ⋅ ⋅ ⋅ ⊞Cx[t,{τN2}], (28)

i.e., R(∶, ∶, n1) = Rx[t, τn1] and C(∶, ∶, n2) = Cx[t,{τn2}] for 1 ≤ n1 ≤ N1 and 1 ≤ n2 ≤ N2.

Here, each element of R and C can be expressed as

R(i, j, n1) =
R

∑
r=1

A(i, r)A(j, r)σ2
r[τn1], (29)

C(k, l, n2) =
R

∑
r=1

A⊙2(k, r)A⊙2(l, r)κr[{τn2}]. (30)

Accordingly, we can represent R and C by

R =
R

∑
r=1

A(∶, r) ○A(∶, r) ○Σ(∶, r), (31)

C =
R

∑
r=1

A⊙2(∶, r) ○A⊙2(∶, r) ○K(∶, r), (32)

where two matrices Σ ∈ RN1×R and K ∈ RN2×R are given by

Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
1[τ1] σ2

2[τ1] . . . σ2
R[τ1]

σ2
1[τ2] σ2

2[τ2] . . . σ2
R[τ2]

⋮ ⋮ ⋮ ⋮

σ2
1[τN1] σ2

2[τN1] . . . σ2
R[τN1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (33)

K =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

κ1[{τ1}] κ2[{τ1}] . . . κR[{τ1}]

κ1[{τ2}] κ2[{τ2}] . . . κ2R[{τ2}]

⋮ ⋮ ⋮ ⋮

κ1[{τN2}] κ2[{τN2}] . . . κR[{τN2}]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (34)
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In other words, they admit the following INDSCAL factorization (8)

R = [[A,A,Σ]] and C = [[A⊙2,A⊙2,K]]. (35)

Interestingly, under mild (and easy-to-check) conditions, the joint (coupled) INDSCAL de-

composition (35) is essentially unique, as highlighted in Propositions 1 and 2.

Proposition 1 (General case). Let N = min(N1,N2). If either R < M or M ≤ R ≤

min(N,2M − 2) or max(M,N1,N2) ≤ R ≤ (2M +N − 2)/2, then (35) is essentially unique.

Proposition 2 (Underdetermined case). Let N =max(N1,N2). When

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R ≤
M2 −M

2
if 2 ≤M ≤ R ≤ N

R ≤
N + 3M − 1 −

√
(N −M)2 + 2N + 6M − 3

2
if 2 ≤ N ≤M ≤ R

R ≤
2M + 2N + 1 −

√
8N + 8M + 1

2
if 2 ≤M ≤M ≤ R

, (36)

then (35) is essentially unique.

The conditions of Proposition 1 follow from Kruskal’s condition, while those of Proposi-

tion 2 are corollaries derived from Propositions 1.1, 1.2 and 1.3 in [36]. Propositions 1 and

2 hold when the elements of the loading factors in the joint tensor decomposition randomly

drawn from continuous distributions. As a result, through the joint INDSCAL decomposi-

tion of bothR and C in (35), we directly estimate the mixing matrix A. In next subsection,

we present an efficient optimization framework to simultaneously decompose R and C.

3.2. Optimization Framework

The joint INDSCAL decomposition of R and C in (35) can be obtained by solving the

following constrained minimization

min f(B,K) + g(A,Σ) subject to B =A⊙2, (37)

where f(B,K) = ∥C − [[B,B,K]]∥
2

F
and g(A,Σ) = ∥R − [[A,A,Σ]]∥

2

F
. Here, (37) can be

expressed in the ADMM form, and thus, we can construct the corresponding augmented

15



Algorithm 1: TenSOFO

Input: R ∈ RM×M×N1 and C ∈ RM2×M2×N2

Output: Loading factors A,Σ, and K.
Initialization:

l = 1, U(0) = 0M2×R, any A(0) ∈ RM×R

while stopping criteria are not met do

{B(l),K(l)} = argmin
B,K

{f(B,K) + ρO
2
∥B −A(l−1)⊙2 +U(l−1)∥2

F
} (P1.1)

{A(l),Σ(l)} = argmin
A,Σ

{g(A,Σ) + ρO
2
∥B(l) −A⊙2 +U(l−1)∥

2

F
} (P1.2)

U(l) =U(l−1) +B(l) −A(l)⊙2 (P1.3)

l = l + 1
end

Lagrangian function with a parameter ρO as follows

LO(B,K,A,Σ,Z) = f(B,K) + g(A,Σ) + ⟨Z,B −A⊙2⟩ +
ρO
2
∥B −A⊙2∥

2

F
, (38)

where Z ∈ RM2×R is the dual variable. Generally, the regularization parameter ρO is used

as the step size in the dual update [39]. Denote by U = Z/ρO the scaled version of Z, we

reformulate (38) as follows

LO(B,K,A,Σ,U) = f(B,K) + g(A,Σ) +
ρO
2
∥B −A⊙2 +U∥

2

F
−
ρO
2
∥U∥

2

F
. (39)

Accordingly, at each iteration l, the dual update is simply computed as U(l) = U(l−1) +

B(l) − A
(l)
⊙2, and it does not involve the use of ρO. In particular, our proposed ADMM

solver is outlined in Algorithm 1. In the following, we detail the optimization approach for

minimizing (P1.1) and (P1.2).

3.2.1. Updates of B(l) and K(l)

Minimization (P1.1) is equivalent to the following constrained optimization

argmin
BL,BR,K

∥C − [[BL,BR,K]]∥
2

F
+
ρO
2
∥BL −A

(l−1)
⊙2 +U(l−1)∥

2

F

subject to BL = BR, (40)

16



where the two “B” matrices in f(B,K) are considered as separate loading factors, denoted

as BL and BR for the left and right, respectively. The corresponding augmented Lagrangian

function is expressed as follows

LB(BL,BR,K,D) = ∥C − [[BL,BR,K]]∥
2

F
+
ρO
2
∥BL −A

(l−1)
⊙2 +U(l−1)∥

2

F

+
ρB
2
∥BL −BR +D∥

2

F
−
ρB
2
∥D∥

2

F
. (41)

Here, ρB > 0 is a regularization parameter, and D ∈ RM2×R denotes the (scaled) dual variable.

To find the optimal solution of (41), the optimization process involves an iterative loop, with

the i-th iteration step as follows:

K(l,i) = [C]
(3)
(B
(l,i−1)
L ⊙B

(l,i−1)
R )([(B

(l,i−1)
L )

⊺
B
(l,i−1)
L ]

÷× [(B
(l,i−1)
R )

⊺
B
(l,i−1)
R ])

#

, (42a)

B
(l,i)
L = ([C]

(1)
P
(l,i−1)
R + ρO(A

(l−1)
⊙2 −U(l−1))

+ ρB(B
(l,i−1)
R −D(l,i−1)))((P

(l,i−1)
R )

⊺
P
(l,i−1)
R + (ρO + ρB)IR)

−1

, (42b)

B
(l,i)
R = ([C]

(2)
P
(l,i−1)
L + ρB(B

(l,i−1)
L −D(l,i−1)))

((P
(l,i−1)
L )

⊺
P
(l,i−1)
L + ρBIR)

−1

, (42c)

D(l,i) =D(l,i−1) +B
(l,i)
L −B

(l,i)
R , (42d)

where P
(l,i−1)
L =K(l,i) ⊙B

(l,i−1)
L and P

(l,i)
R = K(l,i) ⊙ B

(l,i−1)
R . At the initial step (i = 0), we

set K(l,0) = K(l−1) and B
(l,0)
L = B

(l,0)
R = B(l−1). The iterative procedure (42) continues until

convergence or until stopping criteria are met after Istop iterations. Then, we align the two

“B” matrices as

Λ
(l)
B = argmin

ΛB

∥B
(l,Istop)
L −B

(l,Istop)
R ΛB∥F , (43)

where ΛB is a diagonal matrix. At the end, we take K(l) =K(l,Istop) and B(l) = 0.5(B
(l,Istop)
L +

B
(l,Istop)
R Λ

(l)
B ).

2

2In the initial stage, the iterative procedure (42) may require a large number of iterations to converge or
may not converge at all. In such cases, the two matrices BL and BR might not be identical or closely aligned
each other. The step (43) is essential to compute their average and determine the value of the matrix B(l).
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3.2.2. Updates of A(l) and Σ(l)

We recast (P1.2) into the following ADMM form

argmin
AL,AR,Σ

∥R − [[AL,AR,Σ]]∥
2

F
+
ρO
2
∥B(l) −A⊙2 +U

(l−1)∥
2

F

subject to AL =AR. (44)

In a way similar to (42), we employ an iterative procedure to update A(l) and Σ(l).

Starting at j = 0, we initialize Σ(l,0) = Σ(l−1), and obtain A
(l,0)
L and A

(l,0)
R from A

(l,0)
⊙2 which

is computed as follows

A
(l,0)
⊙2 = ([R]

⊺

(3)
Σ(l,0) + ρO(B

(l) +U(l−1)))((Σ(l,0))
⊺
Σ(l,0) + ρOI)

−1

. (45)

Specifically, we know that A
(l,0)
⊙2 =A

(l,0)
L ⊙A

(l,0)
R leads to

A
(l,0)
⊙2 (∶, r) = vec{A

(l,0)
L (∶, r)A

(l,0)
R (∶, r)⊺} with 1 ≤ r ≤ R. (46)

Therefore, we can obtain the (normalized) r-th column of A
(l,0)
L and A

(l,0)
R from the most

dominant left and right singular vectors of reshape{A
(l,0)
⊙2 (∶, r), [M,M]}, respectively.

For short, we denote F(l) = B(l)+U(l−1),Q
(l,j−1)
L =Σ(l,j)⊙A

(l,j−1)
L ,Q

(l,j−1)
R =Σ(l,j)⊙A

(l,j−1)
R ,

G
(l,j−1)
L = (IR⊙A

(l,j−1)
L )⊗IM ,G

(l,j−1)
R = (IR⊙A

(l,j−1)
R )⊗IM , T

(l,j−1)
L = reshape{G

(l,j−1)
L vec{F(l)},[M,R]},

T
(l,j−1)
R = reshape{G

(l,j−1)
R vec{F(l)}, [M,R]}, and read

Σ(l,j) = [R]
(3)
(A
(l,j−1)
L ⊙A

(l,j−1)
R )([(A

(l,j−1)
L )

⊺
A
(l,j−1)
L ]

÷× [(A
(l,j−1)
R )

⊺
A
(l,j−1)
R ])

#

, (47a)

A
(l,j)
L = ([R]

(1)
Q
(l,j−1)
R + ρOT

(l,j−1)
R + ρA(A

(l,j−1)
R −E(l,j−1)))

(H
(l,j−1)
R + ρAIR)

−1

, (47b)

A
(l,j)
R = ([R]

(2)
Q
(l,j−1)
L + ρOT

(l,j−1)
L + ρA(A

(l,j−1)
L −E(l,j−1)))

(H
(l,j−1)
L + ρAIR)

−1

, (47c)

E(l,j) = E(l,j−1) +A
(l,j)
L −A

(l,j)
R . (47d)
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where ρA and E play the same role as ρB and D in (41), respectively, and

H
(l,j−1)
L = (Q

(l,j−1)
L )

⊺
Q
(l,j−1)
L + ρO(G

(l,j−1)
L )

⊺
G
(l,j−1)
L , (48)

H
(l,j−1)
R = (Q

(l,j−1)
R )

⊺
Q
(l,j−1)
R + ρO(G

(l,j−1)
R )

⊺
G
(l,j−1)
R . (49)

Once (47) meets the stopping criteria, we estimate Λ
(l)
A using a way similar to (43), and

then, set Σ(l) =Σ(l,Jstop) and A(l) = 0.5(A
(l,Jstop)
L +A

(l,Jstop)
R Λ

(l)
A ).

3.3. Stopping Criteria and Parameter Selection

Our method consists of an outer loop, and two inner loops (42) and (47). We set their

maximum number of iterations to predefined values: Lstop = 100, Istop = 10, and Jstop = 10,

respectively. Following the guidelines in [39], we adopt the following stopping criteria, which

rely on the primal and dual residuals

∥Vcur −Zcur∥F ≤ εpri, ∥ρ(Zcur −Zold)∥F ≤ εdual, (50)

where “cur” and “old” represent the current and old estimates, respectively, and εpri =

ϵrelmax{∥Vcur∥2, ∥Zcur∥2} + ϵabs
√
length(Vcur) and εdual = ϵrel∥ρScur∥2 +ϵabs

√
length(Scur).

Here, ϵabs > 0 and ϵrel > 0 represent the absolute and relative tolerance, respectively. The

primal variables are denoted by V and Z, where V includes (B,BL,AL), and Z includes

(A⊙2,BR,AR). The dual variables (U,D,E) are represented by S, while ρ represents the

regularization parameters (ρO, ρB, ρA) and their value can be selected by applying the following

adaptive rule at each iteration

ρ(ℓ+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ ρ(ℓ) if ∥Vcur −Zcur∥F > µ∥ρ
(ℓ)(Zcur −Zold)∥F ,

ρ(ℓ)/κ if ∥ρ(ℓ)(Zcur −Zold)∥F > µ∥Vcur −Zcur∥F ,

ρ(ℓ) otherwise.

(51)

In practice, typical choices can be µ = 10, κ = 2, and ρ(0) = ρ
(0)
O = ρ

(0)
B = ρ

(0)
A = 1, while ϵabs

and ϵrel can be chosen from the ranges [10−6; 10−3] and [10−4; 10−2], respectively. For further

details, please refer to [39].
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3.4. Performance Analysis

3.4.1. Computational Complexity

For short, we assume N1 = N2 = N . TenSOFO involves two inner ADMM loops, denoted

as (42) and (47). In loop (42), the computation includes a pseudo-inverse and two inverse

operations of R ×R matrices, resulting in a cost of O(R3) flops. Additionally, the Khatri-

Rao products requires a cost of O(max{M2,N}M2R) flops. Consequently, each iteration

incurs a total cost of O(M4R2N) flops for updating K(l,i), B
(l,i)
L , B

(l,i)
R , and D(l,i). Thus,

the computational complexity of (42) is O(IstopM4R2N) flops. At the end of the loop (42),

TenSOFO also involves the scaling step that requires O(M2R) flops. Loop (47) shares a

similar update rule with (42) but deals with R ∈ RM×M×N of smaller size, leading to a

complexity of O(JstopM2R2N) flops. To sum up, the overall computational complexity of

TenSOFO is O(Lstop (IstopM2 + Jstop)M2R2N) flops.

3.4.2. Convergence Analysis

The convergence behavior of TenSOFO is summarized in the following theorem.

Theorem 1. Assume that covariance matrices and quadricovariance tensors of data observa-

tions are bounded in Frobenius norm. If ρO > 1 and ρA, ρB > 0, the sequence {B(l),K(l),A(l),Σ(l),U(l)}

generated by TenSOFO in Algorithm 1 converges to a stationary point of LO(⋅) when l goes

to infinity.

Proof. See Appendix A.

4. Convolutive BSS: Type-2 BTD based Method

In this section, we begin by establishing a connection between convolutive BSS and a

constrained type-2 block term decomposition (BTD) factorization. Subsequently, we intro-

duce an efficient method called TCBSS, designed for dealing with this specific BTD, and,

by extension, convolutive BSS tasks.
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4.1. Link between Convolutive BSS and Type-2 BTD

As suggested in [3, 40], we can reformulate the convolutive data model (1) into an

instantaneous one as follows

x[t] =As[t], (52)

where x[t] = [x1[t], . . . , x1[t − L′ + 1], . . . , xM[t], . . . , xM[t − L′ + 1]]
⊺
∈ RML′ and s[t] =

[s1[t], . . . , s1[t − (L + L′) + 1], . . . , sR[t], . . . , sR[t − (L + L′) + 1]]
⊺
∈ RR(L+L′) with an ex-

tension factor for data observations L′ ≥ 1, and the new mixture A ∈ RML′×R(L+L′) is given

by

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 . . . A1R

⋮ ⋱ ⋮

AM1 . . . AMR

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with Amr =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

amr[0] . . . amr[L] . . . 0
⋱ ⋱ ⋱

0 amr[0] . . . amr[L]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (53)

For short, we denote Ladd = L +L′.

We assume that individual source signals are temporally coherent while maintaining

their mutual independence. Specifically, the correlation between the two sources si and sj

(with i ≠ j) follows E{si[t]sj[t − τ]} = 0 for all τ . In such cases, the correlation matrix

corresponding to (52) is expressed as

Rx[t, τ] = E{x[t]x[t − τ]⊺} =Ablkdiag({Rsr
[t, τ]}

R

r=1
)A⊺. (54)

For multiple time lags {τi}Ni=1, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rx[t, τ1] =Ablkdiag({Rsr
[t, τ1]}

R

r=1
)A⊺,

Rx[t, τ2] =Ablkdiag({Rsr
[t, τ2]}

R

r=1
)A⊺,

⋮

Rx[t, τN] =Ablkdiag({Rsr
[t, τN]}

R

r=1
)A⊺.

(55)

Particularly by stacking {Rx[t, τi]}
N

i=1
and {Rs[t, τi]}

N

i=1
consecutively within the third mode

21



1 2

...
...

...

...

 Nt ,xR

1A RA

A

...
...

...

 Nt ,
2s

R
 Nt ,
1s

R

 Nt
R

,sR

 1,txR
2A

...

1A

A

2A RA

Figure 2: TCBSS – Constrained Type-2 BTD based Convolutive BSS. By extracting second-order (SO)
statistics of observations and source signals, we obtain sets of covariance matrices {Rx[t, τn]}Nn=1 and

{Rsr
[t, τn]}N,R

n,r=1. These matrices are then modeled within a constrained type-2 block term decomposi-
tion framework, enforcing two tensor factors to be identical. By performing the BTD decomposition of R,
we derive the mixing matrix A.

of R ∈ RML′×ML′×K and G ∈ RRLadd×RLadd×N , we derive the following representation

R = G ×1 A ×2 A =
R

∑
r=1

Gsr
×1 Ar ×2 Ar, (56)

where Ar = [A
⊺
1r,A

⊺
2r, . . . ,A

⊺
Mr]

⊺
is the r-th block column of A and Gsr

(∶, ∶, i) = Rsr
(t, τi).

See Fig. 2 for an illustration. We can see that (56) represents a variant of the type-2 BTD

in (9), where the two loading factors are constrained to be identical. Interestingly, (56) is also

essentially unique under mild conditions [37], as highlighted by Proposition 3. Particularly,

the estimate Â of A is unique up to trivial indeterminacies, i.e., Â = AΠΛ where Π is a

block permutation matrix and Λ is a square nonsingular block-diagonal matrix.

Proposition 3. If ML′ ≥ RLadd, N ≥ 3, and G is generic,3 then (56) is essentially unique.

This result is a corollary of Theorem 6.1 in [37]. By employing the constrained type-

2 BTD analysis, we can directly identify the mixing process in convolutive BSS. In next

subsection, we introduce an effective optimization framework designed to deal with (56)

efficiently.

3We call a tensor generic when its elements are drawn from a continuous probability density function.
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Algorithm 2: TCBSS

Input: {Rx[t, τi]}
N

i=1
Output: Loading factor A and core tensor G
Initialization:

• set l = 1, α(0) = 1, U(0) = 0ML′×RLadd
, and Z(0) = 0ML′×RLadd

• generate random matrices B(0) ∈ RML′×RLadd and G(0)sr
∈ RLadd×Ladd×N

while stopping criteria are not met do

A(l) = argmin
A

{∥R −
R

∑
r=1
G(l−1)sr

×1 Ar ×2 B
(l−1)
r ∥

2

F

+ ρ
2
∥B(l−1) −A +U(l−1)∥

2

F
} (P2.1)

B(l) = argmin
B
{∥R −

R

∑
r=1
G(l−1)sr

×1 A(l)r ×2 Br∥
2

F

+ ρ
2
∥B −A(l) +U(l−1)∥

2

F
} (P2.2)

G(l) = argmin
G
∥R −

R

∑
r=1
Gsr
×1 A(l)r ×2 B

(l)
r ∥

2

F
(P2.3)

U(l) = Z(l−1) +B(l) −A(l) (P2.4)

α(l) =
1 +
√

1 + 4(α(l−1))2

2
(P2.5)

Z(l) =U(l) + α
(l−1) − 1
α(l)

(U(l) −U(l−1)) (P2.6)

l = l + 1
end

4.2. Optimization Framework

The type-2 BTD factorization (56) can be represented by

min
G,A,B

∥R −
R

∑
r=1

Gsr
×1 Ar ×2 Br∥

2

F
subject to A = B, (58)

where A = [A1,A2, . . . ,AR] and B = [B1,B2, . . . ,BR]. Here, we can formulate the aug-

mented Lagrangian function for the minimization (58) as follows

L(G,A,B,U) = min
G,A,B

∥R −
R

∑
r=1

Gsr
×1 Ar ×2 Br∥

2

F
+
ρ

2
∥B −A +U∥

2

F
−
ρ

2
∥U∥

2

F
, (59)

where U is the “scaled” dual variable and ρ > 0 is a regularization parameter. In this work,

we propose Algorithm 2 to find the stationary point of L(⋅). As the three sub-problems

(P2.1), (P2.2) and (P2.3) are quadratic, their closed-form solutions A(l), B(l), and G(l) at
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the l-th iteration are determined as

A(l) = ([R]
(1)
(W

(l)
A )

⊺
+ ρ(B(l−1) +U(l−1)))(W

(l)
A (W

(l)
A )

⊺
+ ρIRLadd

)
−1

, (60)

B(l) = ([R]
(2)
(W

(l)
B )

⊺
+ ρ(U(l−1) −A(l)))(W

(l)
B (W

(l)
B )

⊺
+ ρIRLadd

)
−1

, (61)

[[G
(l)
s1
]
(3)
, [G(l)s2 ](3), . . . , [G

(l)
sR
]
(3)
] = [R]

(3)
((B(l) ⊠A(l))

⊺
)
#

, (62)

where W
(l)
A and W

(l)
B are given by

W
(l)
A = [[G

(l−1)
s1
×2 B

(l−1)
1 ]

⊺

(1)
, . . . , [G(l−1)sR

×2 B
(l−1)
R ]

⊺

(1)
]
⊺

, (63)

W
(l)
B = [[G

(l−1)
s1
×1 A

(l)
1 ]
⊺

(2)
, . . . , [G(l−1)sR

×1 A
(l)
R ]
⊺

(2)
]
⊺

. (64)

Inspired by the work [42], we introduce two auxiliary variables Z(l) and αl to accelerate the

iteration procedure. The inclusion of (P2.4), (P2.5), and (P2.6) results in an accelerated

augmented Lagrangian variant which can offer superior speed and estimation accuracy, as

compared with state-of-the-art methods, please see Fig. 8 for an example.

4.3. Stopping Criteria and Parameter Selection

Our procedure stops upon convergence, reaching the maximum number of iterations

Istop = 100, or meeting the following criteria

∥A(l) −B(l)∥
F
≤ εpri and ∥ρ(A

(l)
−A(l−1))∥

F
≤ εdual, (65)

where εpri = ϵrelmax{∥A(l)∥2, ∥B
(l)
∥2}+ϵabs

√
length(A(l)) and εdual = ϵrel∥ρU

(l)
∥2 +ϵabs

√
length(A(l)).

Here, ϵabs > 0 and ϵrel > 0 represent the absolute and relative tolerance, respectively. In prac-

tice, we can set ρ = 1, ϵabs = 10−4 and ϵrel = 10−2 for reasonable performance. To speed up

the convergence rate, an adaptive parameter selection for ρ can be employed, as described

in (51).
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4.4. Performance Analysis

4.4.1. Computational Complexity

At each iteration, the updates for both A(l) in (60) and B(l) in (61) share the same

computational process. This requires O(M2L′2LaddRK + ML′L2
addR

2K + L3
addR

3) flops.

For computing G(l) defined in (62), the complexity is O(M2L′2L2
add RK + M2L′2RL2

add

min(M2L′2,RL2
add)) flops. The computations required for updating U(l), Z(l), and αl

are relatively inexpensive, with respective complexities of O(ML′RLadd), O(ML′RLadd),

and O(1). As mentioned in Proposition 3, satisfying the uniqueness condition demands

ML′ ≥ RLadd. Accordingly, the overall complexity of TCBSS isO(M2L′2 L2
addRmax(K,L2

addR)+

L3
addR

3) flops at each iteration.

4.4.2. Convergence Analysis

The convergence behavior of TCBSS is summarized in the following theorem.

Theorem 2. Assume that covariance matrices of data observations are bounded in Frobenius

norm. If ρ > 1, the sequence {G(l),A(l),B(l),U(l)} generated by TCBSS in Algorithm 2

converges to a stationary point of LO(⋅) when l goes to infinity.

Proof. Proof of Theorem 2 can be obtained by applying the same mathematical framework

as presented in Sec. 3.4.2 for analyzing the convergence behavior of TenSOFO.

4.5. Extension

In this subsection, we introduce a variant of TCBSS that integrates both SO and FO

statistics.

We begin by computing the FO statistic of x[t] in (52) as follows

Cx[t,{τ}] = (A⊙A)blkdiag ({Csr[t,{τ}]}
R

r=1
)(A⊙A)

⊺
. (66)
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By incorporating multiple time lags {τi}
N2
i=1, we derive a set of FO matrices {Cx[t,{τn}]}

N2
n=1.

These matrices are then stacked into a third-order tensor C in the following manner

C =Cx[t,{τ1}] ⊞Cx[t,{τ2}] ⋅ ⋅ ⋅ ⊞Cx[t,{τN2}]. (67)

Similar to the tensor R in (56), C also admits the type-2 BTD factorization

C = Z ×1 A⊙2 ×2 A⊙2 =
R

∑
r=1

Zsr ×1 (Ar ⊙Ar) ×2 (Ar ⊙Ar), (68)

where Z = blkdiag(Zs1
,Zs2

, . . . ,ZsR
) with Zsr

(∶, ∶, n) = Csr
[t,{τn}], and Ar is the r-th

block column of A. Accordingly, we can represent the convolutive BSS problem in the lens

of a joint (coupled) type-2 BTD decomposition

R = G ×1 A ×2 A and C = Z ×1 A⊙2 ×2 A⊙2, (69)

where A⊙2 =A⊙A, and thus, formulate the following ADMM optimization

min
G,A,Z,B

{∥R −G ×1 A ×2 A∥
2

F
+ ∥C −Z ×1 D ×2 D∥

2

F
}

subject to D =A⊙2. (70)

In this work, we can apply the same optimization framework of TenSOFO in Algorithm 1

to solve (70). Particularly at the l-th iteration, we update parameters of interest as follows

{Z
(l),D(l)} = argmin

Z,B
{∥C −Z ×1 D ×2 D∥

2

F
+
γ

2
∥D −A

(l−1)
⊙2 +Q(l−1)∥

2

F
}, (71)

{G
(l),A(l)} = argmin

G,A
{∥R −G ×1 A ×2 A∥

2

F
+
γ

2
∥D(l) −A⊙2 +Q

(l−1)∥
2

F
}, (72)

Q(l) =Q(l−1) +D(l) −A
(l)
⊙2, (73)

where Q is the (scaled) dual variable and γ is a regularization parameter. Sub-problems (71)

and (72) can be effectively addressed by incorporating a simple regularization term ∥ ⋅ ∥2F

into the original version of TCBSS presented in Algorithm 2. For example, in the case of

sub-problem (71), the closed-form solution of Z keeps the same form as G in (62) during

each iteration. Meanwhile, the solution for D is adjusted from (60) and takes the following
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form

D
(l,i)
L = ([C]

(1)
(W

(l)
L )

⊺
+ ρ(D

(l,i−1)
R +P(l,i−1)) + γ(A

(l−1)
⊙2 −Q(l−1)))

(W
(l)
L (W

(l)
L )

⊺
+ (ρ + γ)IRLadd

)
−1

. (74)

Here, the matrices D
(l,i)
L , D

(l,i−1)
R , W

(l,i)
L , and W

(l,i)
R play the same role of A(l), B(l−1), W

(l)
A ,

and W
(l)
B in Algorithm 2.

5. Numerical Experiments

5.1. Performance Assessment for TenSOFO

We evaluate the performance of TenSOFO in two aspects: (i) its effectiveness for joint

INDSCAL decomposition, and (ii) its application to address BSS using SO and FO statistics.

5.1.1. INDSCAL Decomposition

We apply TenSOFO to compute joint INDSCAL decomposition of two symmetric tensors

R ∈ RM×M×N and C ∈ RM2×M2×N sharing the same rank R:

R =Rtrue +NR = [[A,A,Σ]] +NR, (Tensor 1)

C = Ctrue +N C = [[A⊙2,A⊙2,K]] +N C. (Tensor 2)

Here, the tensor factors of interest A ∈ RM×R,Σ ∈ RN×R and K ∈ RN×R are generated as

Gaussian matrices with zero-mean and unit-variance entries. NR andN C represent random

Gaussian noises sharing the same SNR level, i.e., ∥NR∥F /∥Rtrue∥F = ∥N C∥F /∥Ctrue∥F = 10
−SNR

20 .

To evaluate the estimation accuracy, we measure the following relative error (RE) metric

RE(A,Aest) =min
Π,Λ
∥A −AestΠΛ∥

F
/∥A∥

F
, (75)

where Aest refers to the estimate, Π and Λ represent the permutation and scaling matrices,

respectively.

In this experiment, we set the values ofM and N to 5 and 100, respectively. We consider

two cases of the tensor rank R: one with R = 3 (less thanM) and another with R = 7 (greater
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Figure 3: INDSCAL decomposition: data dimension M = 5, number of tensor slices N = 100, individual
decomposition of R ( ), C ( ), and joint decomposition of both R and C ( ).

than M). The performance of TenSOFO is conducted across varying SNR levels within the

range [0,50] dB. Fig. 3 illustrates the performance comparison between TenSOFO and the

classical INDSCAL method (i.e., CP-ALS) for each R and C. The experimental results

indicate that TenSOFO performs effectively in both cases, with better performance at the

same SNR level when R < M . Moreover, the joint decomposition significantly improves

the accuracy of estimating A as compared to the individual decomposition approach. The

improved performance of TenSOFO in estimating A is primarily attributed to its joint

decomposition approach. Since tensors R and C both contain information about A, their

integration simulates the beneficial effect of regularization and data augmentation for bothR

and C. Consequently, results obtained through joint INDSCAL decomposition consistently

outperform those from individual decompositions of R and C. Furthermore, the proposed

ADMM optimization also contributes to improved convergence rate and estimation accuracy

as compared to the standard ALS approach.

5.1.2. Instantaneous BSS

We then demonstrate the effectiveness of TenSOFO for instantaneous BSS tasks in

comparison with several widely-used BSS algorithms, namely SOBI [30], JADE [29], SO-
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Figure 4: Instantaneous BSS tasks with sr = fr ∗gr: The number of sensors M = 5, data samples T = 10000,
and time lags N = 5.

BIUM [13], FOOBI [12], and TBSS-LL1 (using segmentation) [10]. Since SOBI, JADE, and

TBSS-LL1 are not optimally designed for handling underdetermined BSS tasks, we abstain

from conducting a performance comparison among them in such cases. In the following,

we present two scenarios where TenSOFO demonstrates advantages over the compared BSS

algorithms.

In particular, we investigate the following BSS model

RM ∋ x[t] =As[t] + n[t], t = 0,1, . . . , T − 1, (76)

where the noise vector is n[t] ∼ N (0, σ2
nIM) and the mixing matrix A ∈ RM×R is generated

as a Gaussian matrix with zero-mean and unit-variance entries. We explore two cases for the

source matrix S = [s⊺1, s
⊺
2, . . . , s

⊺
R]
⊺ ∈ RR×T : (i) each source signal sr results from convoluting

a kernel/filter fr of length Lf ≪ T with a random coefficient vector gr of length T −Lf + 1

(i.e., sr = fr ∗ gr); and (ii) each source signal sr is derived from filtering a non-Gaussian

random process vr by a first-order autoregressive (AR) model with coefficient ψr, denoted

as sr = filter(vr,AR(1, ψr)). In the first case, fr and gr are generated as normal (Gaussian)

and folded-normal random vectors, respectively. The filter length Lf is set to 30. In the

second case, we define the non-Gaussian process for the r-th source sr using a power of
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Figure 5: Instantaneous BSS tasks with sr = filter(vr, AR(1, ψr)) with a non-Gaussian process vr, the
number of sensors M = 5, data samples T = 10000, and time lags N = 5.

normal Gaussian distribution (i.e., vt(i) = ∣yi∣p where yi ∼ N (0,1), p > 1). Here, we set the

value of p to 6, and we arrange the set of coefficients {ψr}
R
r=1 to be evenly distributed within

the range [0.1,0.9].4 The hyperparameters of the compared BSS algorithms are kept at

their default values. SOBI, SOBIUM, and TenSOFO require a predefined number of time

lags, we set its value to N = 5. To evaluate the estimation accuracy of the BSS algorithms,

we reuse the error metric RE(A,Aest) in (75).

In Fig. 4, the performance of BSS algorithms is illustrated for the case sr = fr ∗ gr. In

the overdetermined BSS task (R < M), the experimental results in Fig. 4(a) indicate that

BSS algorithms utilizing second-order statistics, including SOBI, SOBIUM, and TenSOFO,

effectively reconstruct the mixing matrix A. The accuracy of their estimation improves with

higher SNR. Notably, TenSOFO demonstrates slightly better estimation accuracy than SOBI

and SOBIUM. Conversely, two fourth-order (FO)-based BSS algorithms (JADE and FOOBI)

and tensor-based algorithm TBSS-LL1 exhibit worse performance. Fig. 4(b) illustrates the

performance of TenSOFO, SOBIUM and FOOBI for underdetermined BSS. We can see

that TenSOFO and SOBIUM succeed, while FOOBI fails in this task, consistent with the

4In MATLAB, we employ the command “linspace(0.1,0.9,R)” to generate a sequence of R values for
the set {ψr}Rr=1 (e.g., if R = 3, then ψ1 = 0.1, ψ2 = 0.5, and ψ3 = 0.9).
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previous overdetermined BSS task.

In Fig. 5, the performance of BSS algorithms is illustrated for the second case where

sr = filter(vr, AR(1, ψr)). The experimental results in Fig. 5 (a) indicate that when R <M ,

TenSOFO outperforms other methods, providing better estimation accuracy when compared

to the second-best FOOBI at high SNR levels. JADE and TBSS-LL1 become less effective,

whereas SOBI and SOBIUM offer moderate performance in this context. When R > M ,

both FOOBI and TenSOFO perform well in underdetermined BSS, although their estimation

accuracy is lower than when dealing with R < M . The BSS algorithm using only SO

statistics, SOBIUM, is less effective than FOOBI and TenSOFO in this case. In summary, the

results presented in both Figs. 4 and 5 demonstrate that the proposed algorithm, TenSOFO,

can leverage both SO and FO statistics to enhance the BSS performance in scenarios where

algorithms using only SO or FO statistics may fail short.

5.1.3. Fetal Electrocardiogram Extraction via Instantaneous BSS

In this experiment, we employ TenSOFO to extract the fetal electrocardiogram (fetal

ECG) from cutaneous potential recordings acquired from the mother’s skin. This separation

is crucial for analyzing the health and condition of the fetus [43]. The ECG dataset used

in our investigation contains five abdominal and three thoracic recordings.5 These signals

were recorded using eight skin electrodes placed on various regions of a pregnant woman’s

body over a duration of 10 seconds, with a sampling frequency of 250 Hz. Fig. 6 illustrates

the five abdominal recordings used in this study.

As indicated in [44], ECG signals can be formulated using the following linear model

x[t] =As[t] + n[t], t = 0,1, . . . , T − 1, (77)

where x[t] = [x1[t], . . . , xM[t]]⊺ represents observations, s[t] = [s1[t], . . . , sR(t)]⊺ denotes

the underlying sources, A ∈ RM×R represents the propagation from R sources to M elec-

5Access the ECG recordings at: https://ftp.esat.kuleuven.be/pub/SISTA/data/biomedical/
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Figure 6: Real ECG recordings obtained from the maternal abdominal region.

trodes, and n[t] is the noise. Consequently, the separation of fetal heartbeats from maternal

heartbeats in the ECG recordings can be seen as an instantaneous BSS task [44].

As the ground truth is not available and the effectiveness of the Lowner technique has

been demonstrated in [9] for this task, we follow its experimental setup and compare our

separation results against it. Specifically, we use 05 recordings, each contains 500 data

samples, corresponding to electrodes located on the mother’s abdominal region. These ECG

recordings are normalized to unit norm. The Lowner-based method requires no preprocessing

and we keep their algorithmic parameters by default. For TenSOFO, we set the number of

time lags N to 3. The experimental results are depicted in Fig. 7. It is worth noting that,

the fetal heart rate consistently appears higher than the mother’s heart rate. Both methods

successfully separate fetal heartbeats from maternal heartbeats, with our method yielding

similar results to the Lowner technique.

5.2. Performance Assessment for TCBSS

We assess the performance of TCBSS by (i) analyzing its convergence rate for type-2

BTD factorization and (ii) applying it to the problem of EMG decomposition, serving as an
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Figure 7: ECG source separation using TenSOFO ( ) and Lowner-based method ( ): maternal heart-
beats (above) and fetal heartbeats (below).

illustrative example of convolutive BSS.

5.2.1. Type-2 BTD Factorization

We demonstrate its effectiveness in the context of type-2 BTD factorization. To illustrate

this, we generate a third-order tensor X ∈ RM×M×K as follows

X = X tr + σnN =
R

∑
r=1

Gr ×1 Ar ×2 Ar + σnN . (78)

Here, the elements of Gr ∈ RL×L×K , N ∈ RM×M×K , and Ar ∈ RM×L are derived from random

Gaussian variables with zero mean and unit variance. The parameter σn > 0 is introduced

to control the noise level. To measure the estimation accuracy, we use the following error

metrics

ER(X tr,X est) = ∥X tr −X est∥F
/∥X tr∥F , (79)

RE(Atr,Aest) =min
Π,Λ
∥Atr −AestΠΛ∥

F
/∥Atr∥F , (80)

where X est, Aest are the reconstructed tensor and loading factor, Π is a block permutation

matrix, and Λ is a square nonsingular block-diagonal matrix.

In this investigation, we consider two cases: a small tensor with M = 10,K = 100,R =
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Table 1: Running time of type-2 BTD algorithms.

Setup
Method

ALS ALS+LSH ALS+ELSC TCBSS

M = 10,K = 100,R = 2,
L = 2 and σn = 10−2

0.22(s) 0.24(s) 0.25(s) 0.17(s)

M = 50,K = 100,R = 5,
L = 4 and σn = 10−2

0.36(s) 0.39(s) 0.43(s) 0.28(s)
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(a) M = 10,K = 100,R = 2, L = 2 and σn = 10−2
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Figure 8: Convergence rate of type-2 BTD algorithms w.r.t. ER(X tr,X est).
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Figure 9: Convergence rate of type-2 BTD algorithms w.r.t. RE(Atr,Aest).
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Figure 10: Effect of the noise level σn on the performance of type-2 BTD algorithms: M = 10,K = 100,R = 2,
and L = 2.

2, L = 2 and a larger one with M = 50,K = 100,R = 5, L = 4. The noise level σn is selected

from the range [10−4,1]. The performance of TCBSS is compared with the widely-used ALS

method [38] and its variants, namely ALS+LSH [45] and ALS+ELSC [46], as depicted in

Figs. 8, 9 and 10. While their running times are reported in Tab. 1. The results indicate

that the proposed algorithm not only achieves faster convergence but also provides improved

estimation accuracy in both setups.

5.2.2. EMG Decomposition via Convolutive BSS

We apply TCBSS to the problem of EMG decomposition and compare its performance

with other tensor-based BSS algorithms, namely PARAFAC-SD [14] and TBSS-LL1 [10].

Synthetic EMG signals are simulated using the convolutive BSS model (1), where amr[ℓ]

represents the action potential (AP) of the r-th motor unit (MU) at the m-th sensor. The

duration of the APs is 35 (i.e., L = 34). The source sr[t] = ∑j δ[t − ψrj] corresponds to the

spike train of the r-th MU, featuring spikes at times ψrj, with δ[⋅] representing the Dirac

delta function. Specifically, the m-th measurement xm is formulated as

RT ∋ xm =
R

∑
r=1

ymr + nm =
R

∑
r=1

amr ∗ sr + nm, (81)
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Figure 11: Synthetic EMG signals (without noise): Convolutive mixture model with M measurements and
R sources.

where nm is Gaussian noise. See Fig. 11 for an illustration. The objective of the EMG

decomposition is to identify the underlying sources {ymr}
M,R
m=1,r=1 (i.e., spike trains {sr}Rr=1

and MUs {amr}
M,R
m=1,r=1) from {xm}

M
m=1. For further details, we refer the reader to [47].

In this task, three EMG measurements (M = 3) are comprised of two sources (R = 2)

with an excitation level set at 5% of the maximum voluntary contraction. The sampling

frequency is fs = 2048 Hz. Each measurement contains a sequence of data samples with a

total length of T = 10000 samples, corresponding to an approximate duration of 5 seconds.

Four SNR levels are considered, including 0 dB, 10 dB, 20 dB and ∞ dB (without noise).

The total number of spikes from the two sources is 106. To satisfy the uniqueness condition

ML′ ≥ R(L + L′), we set the extension factor L′ of TCBSS to 2L. Additionally, we set the

number of time lagsK to 30. As R <M , once obtaining the mixing matrixA, the underlying

sources are then determined up to an unknown filter using the ordinary least-squares (OLS)

estimation method (i.e., ŝ = A#x). Subsequently, we identify the timings of activations of

each MU, thanks to the form of spike (impulse) trains. Detected spikes exhibiting magnitude

ten times lower than that of the spike with the highest magnitude are identified as artifact
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Figure 12: EMG decompositon: Illustration of a 1-second segment of decomposition results (i.e., spike
train () and waveform ( )) related to the first component y11 = a11 ∗ s1 in the noise-free case: Ground
truth ( ), estimates by PARAFAC-SD ( ), TBSS-LL1 ( ), and the proposed TCBSS ( ).

and will be excluded from the final detection result.

Table 2: EMG spike train detection performance.

Method PARAFAC-SD TBSS-LL1 TCBSS

SNR

Metric
SEN FDR SEN FDR SEN FDR

0 dB 87.74% 65.68% 85.85% 67.5% 86.79% 10.07%

10 dB 95.82% 49.50% 94.43% 50.98% 89.62% 9.52%

20 dB 100% 45.44% 100% 44.21% 99.06% 4.55%

∞ dB 100% 43.01% 100% 36.32% 100% 0%

For performance evaluation, we employ sensitivity (SEN) and false discovery rate (FDR)

as key metrics in this task, which are defined as follows:

SEN =
TP

TP + FN
and FDR =

FP

FP +TP
. (82)

Here, true positive (TP) represents the number of correctly identified spikes, false negative

(FN) denotes the number of spikes left unidentified, and false positive (FP) refers to the

number of incorrectly identified spikes. The algorithm’s performance is considered better
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when the value of sensitivity (SEN) is higher and the value of false discovery rate (FDR) is

lower.

The decomposition results are shown in Fig. 12 and Tab. 2. At SNR = ∞ dB (without

noise), TCBSS successfully recovers the underlying EMG sources and two spike trains are

detected correctly without errors (i.e., SEN = 100%) and no additional impulses (spikes)

are introduced (i.e., FDR = 0%). While PARAFAC-SD and TBSS-LL1 correctly identify

the underlying spike trains, their false discovery rate (FDR) is reasonably high due to the

presence of several other impulses in the recovered sources, as illustrated in Fig. 12 (blue and

green lines). The performance of all algorithms degrades when SNR decreases. However,

TCBSS remains effective in this task, with reasonable values for both SEN and FDR, much

better than that of PARAFAC-SD and TBSS-LL1.

5.2.3. Separation of Convolutive Speech Mixtures

Our main objective is to demonstrate the use of TCBSS for separating sound signals in a

reverberant/convolutive environment. We use a publicly available dataset that contains 18

real sound sources, sampled at a rate of 16 KHz over a time range from 24 to 30 seconds.6

The dataset includes various sources, including speeches from both male and female speakers

as well as musical sounds like piano, guitar, trumpet, and others.

In this work, our experiment involves three sound sources (male speech, female speech,

and piano) recorded by three microphones, as illustrated in Fig. 13. These sounds are

then mixed in a virtual room using real-world measured room impulse responses (RIRs)

to simulate a realistic convolutive environment. The mixing process is facilitated by the

function“roommix.m”, which can be accessed at “https://sound.media.mit.edu/ica-bench/”.

We compute a set of 20 covariance matrices {Rx[t, τn]}20n=1 to construct the third-order tensor

R, as in (56). Subsequently, the mixing matrix Â is estimated by TCBSS, and the least-

square estimate of the source vector is given by ŝ = Â
#
x. Due to the inherent ambiguity of

6Access the speech dataset at: http://dimitri.nion.free.fr/bss/BSS.html
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block-term decomposition, the recovered sources are identified up to a filter. For comparison

purpose, we resolve this ambiguity by determining the block permutation matrixΠ and block

diagonal matrix Λ through optimization, specifically by solving argminΠ,Λ ∥Â − AΠΛ∥2F

where A incorporates measured RIRs.7 We then choose three sources among recovered ones

based on their correlations, selecting those with the smallest correlation coefficients. The

experimental results are illustrated in Fig. 14. Despite the fact that the recovered sources

are not a perfect match to the ground truth (due to the filter ambiguity), it is evident that

the three sources are well separated.

6. Conclusions

In this paper, we addressed the problem of blind source separation (BSS) through the

lens of tensor decomposition. We established two fundamental connections between BSS and

tensor models, which served as the basis for introducing two novel tensor-based methods:

TenSOFO and TBCSS. The former is specifically designed for joint INDSCAL decomposi-

tion, addressing instantaneous BSS tasks, while the latter is an efficient constrained type-2

block term decomposition with two factors constrained to be identical, aligning its design

with convolution BSS. Our experimental results indicated the effectiveness of both Ten-

SOFO and TCBSS, showcasing their remarkable performance in both tensor decomposition

and BSS tasks, particularly when compared to state-of-the-art algorithms. Notably, the

proposed algorithm, TCBSS, demonstrated its capability in reconstructing EMG sources

and exhibited improved performance as compared to other tensor-based methods.

Appendix A. Proof of Theorem 1

Our convergence analysis of TenSOFO consists of three main stages: (i) demonstrat-

ing that the Lagrangian LO(B(l),K(l),A(l),Σ(l),U(l)) strictly decreases with each itera-

7The solver is available at: http://dimitri.nion.free.fr/Codes/matlab/tools/pack solve scale.zip

39



0 2 4 6 8 10 12 14 16

10
4

-0.5

0

0.5

0 2 4 6 8 10 12 14 16

10
4

-0.5

0

0.5

M
ag

n
it

u
d

e

0 2 4 6 8 10 12 14 16

Data Sample 10
4

-0.5

0

0.5

(a) Three sound sources: female speech (above), male speech (milde), and piano (below)
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(b) Data observations at three microphones in 10 seconds

Figure 13: Speech signals used in this study.

tion of ADMM, while providing an upper bound on the difference between Lagrangians

computed at consecutive iterations; (ii) establishing the boundedness of both the sequence

{B(l),K(l),A(l),Σ(l),U(l)} and its corresponding Lagrangian LO(B(l),K(l),A(l), Σ(l),U(l));

and (iii) indicating that the limit point of the sequence generated by TenSOFO serves as a
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Figure 14: Recovered sources within the first 5 seconds: ground truth ( ) and estimated source ( ).
Due the inherent ambiguity of BTD, the recovered source signals are not perfectly matched to the original
ones.

stationary point of (37).

We begin with stage (i) by establishing Lemma 1.

Lemma 1 (Sufficient Descent). At each iteration l, let {B(l),K(l),A(l),Σ(l),U(l)} denote

the sequence of variables generated by TenSOFO and L
(l)
O = LO(B

(l),K(l), A(l),Σ(l),U(l)).

If ρO > 1 and ρA, ρB > 0, there always exists a set of positive numbers {c1, c2, c3, c4} such that:

L
(l+1)
O −L

(l)
O ≤ − c1∥B

(l+1) −B(l)∥
2

F
− c2∥K

(l+1) −K(l)∥
2

F

− c3∥A
(l+1) −A(l)∥

2

F
− c4∥Σ

(l+1) −Σ(l)∥
2

F
. (A.1)

Proof. We begin with proof of Lemma 1 by examining the difference in the Lagrangian LO(⋅)

when A,Σ and U are constant. Recall that, B(l) and K(l) are derived from the iterative

procedure (42). Therefore, we first establish Proposition 4 to demonstrate the convergence

of (42).

Proposition 4. Let {B
(l,i)
L ,B

(l,i)
R ,K(l,i)}

∞

i=1
denote the sequence generated by the iterative
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procedure (42) in the main text. If we denote M(l,i) as one of these variables, the minimizer

M(l,i+1) of the Lagrangian LB(⋅) at the (i + 1)-th iteration satisfies:

LB(M
(l,i+1), ⋅) −LB(M

(l,i), ⋅) ≤ −dm∥M
(l,i+1) −M(l,i)∥

2

F
, (A.2)

where dm is a positive number.

Proof. Recall that K(l,i+1) defined in (42a) is indeed the minimizer of the Lagrangian LB(⋅)

when BL,BR, and D are fixed, i.e.,

K(l,i+1) = argmin
K
[LB(K, ⋅) = ∥C − [[B

(l,i)
L ,B

(l,i)
R ,K]]∥

2

F
+ const]. (A.3)

Minimizing (A.3) is equivalent to solving the following least-squares problem

K(l,i+1) = argmin
K
[h(K) = ∥[C]

(3)
−K(B

(l,i)
R ⊙B

(l,i)
L )

⊺
∥
2

F
]. (A.4)

In particular, the least-squares function h(K) in (A.4) is strongly convex w.r.t. the matrix

K as its Hessian matrix (B
(l,i)
R ⊙B

(l,i)
L )

⊺
(B
(l,i)
R ⊙B

(l,i)
L ) is positive definite, and thus,

h(K(l,i+1)) ≤ h(K(l,i)) −
1

2
∥K(l,i+1) −K(l,i)∥

2

F
, (A.5)

In other words, we have

LB(K
(l,i+1), ⋅) −LB(K

(l,i), ⋅) ≤ −
1

2
∥K(l,i+1) −K(l,i)∥

2

F
. (A.6)

Next, we examine the matrix B
(l,i+1)
L which is particularly derived from

B
(l,i+1)
L = argmin

BL

[LB(BL, ⋅) = ∥C − [[BL,B
(l,i)
R ,K(l,i+1)]]∥

2

F

+
ρO
2
∥BL −A

(l−1)
⊙2 +U(l−1)∥

2

F
+
ρB
2
∥BL −B

(l,i)
R +D(l,i)∥

2

F
+ const]

= argmin
BL

[LB(BL, ⋅) = ∥[C](1) −BL(K
(l,i+1) ⊙B

(l,i)
R )

⊺
∥
2

F

+
ρO
2
∥BL −A

(l−1)
⊙2 +U(l−1)∥

2

F
+
ρB
2
∥BL −B

(l,i)
R +D(l,i)∥

2

F
+ const]. (A.7)

All three terms of the right hand side (RHS) of (A.7) are in the least-squares form. Thus, the

objective function (A.7) are strongly convex, characterized by the following positive definite
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Hessian matrix

∇
2LB(BL, ⋅) = (ρO + ρB)I + (K

(l,i+1) ⊙B
(l,i)
R )

⊺
(K(l,i+1) ⊙B

(l,i)
R ) ≻ 0. (A.8)

Accordingly, we derive

LB(B
(l,i+1)
L , ⋅) −LB(B

(l,i)
L , ⋅) ≤ −

d1i
2
∥B
(l,i+1)
L −B

(l,i)
L ∥

2

F
, (A.9)

with d1i = ρ0 + ρB + λmin(K(l,i+1) ⊙B
(l,i)
R ) where λmin(N) denotes the smallest singular value

of matrix N.

The matrix B
(l,i+1)
R is the minimizer of the following optimization

B
(l,i+1)
R = argmin

BR

[LB(BR, ⋅) = ∥C − [[B
(l,i+1)
L ,BR,K

(l,i+1)]]∥
2

F

+
ρB
2
∥B
(l,i+1)
L −BR +D

(l,i)∥
2

F
+ const]

= argmin
BR

[LB(BR, ⋅) = ∥[C](2) −BR(K
(l,i+1) ⊙B

(l,i+1)
L )

⊺
∥
2

F

+
ρB
2
∥B
(l,i+1)
L −BR +D

(l,i)∥
2

F
+ const]. (A.10)

Similar to (A.7), the objective function (A.10) is strongly convex with respect to BR. Con-

sequently, we have:

LB(B
(l,i+1)
R , ⋅) −LB(B

(l,i)
R , ⋅) ≤ −

d2i
2
∥B
(l,i+1)
L −B

(l,i)
L ∥

2

F
, (A.11)

with d2i = ρB + λmin(K(l,i+1) ⊙B
(l,i+1)
L ). It ends the proof.

Thanks to Proposition 4, we observe that the set of the objective values of LB(⋅) at solu-

tions is monotonically decreasing and bounded. Thanks to monotone convergence theorem,

we can conclude that the cluster {B
(l,i)
L ,B

(l,i)
R ,K(l,i)} converges to a limit point as i tends to

infinity. This convergence implies that the solution {B(l),K(l)} of problem (P1.1) generated

by the iterative procedure (42) converge to a stationary point of LB(⋅) as its gradients with

respect to both matrices are zero, according to our optimization framework. In addition, the

Lagrangian LO(B,K, ⋅) in (38) comprises three convex terms with respect to B and K, in-

cluding a function involving the Frobenius inner product ⟨Z,B −A⊙2⟩ and two least-squares
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functions f(B,K) and ρO
2 ∥B−A⊙2∥

2
F . Therefore, LO(B,K, ⋅) is a multi-convex function and

using the same arguments above (e.g., as for (A.7)) results in

LO(B
(l+1),K(l+1), ⋅) −LO(B

(l),K(l), ⋅)

≤ −
c1
2
∥B(l+1) −B(l)∥

2

F
−
c2
2
∥K(l+1) −K(l)∥

2

F
, (A.12)

where c1 and c2 are any positive numbers satisfying ∇2LO(B, ⋅) ⪰ c1I and ∇2LO(K, ⋅) ⪰ c2I.

Similarly, employing the same approach as in the proof of Proposition 4 and arguments

above, we also obtain

LO(A
(l+1),Σ(l+1), ⋅) −LO(A

(l),Σ(l), ⋅)

≤ −
c3
2
∥A(l+1) −A(l)∥

2

F
−
c4
2
∥Σ(l+1) −Σ(l)∥

2

F
, (A.13)

where c3 and c4 are positive numbers. The result in Lemma 1 follows the combination of

two inequalities (A.12) and (A.13). It ends the proof.

Proposition 5 (Boundedness). The sequence {B(l),K(l),A(l),Σ(l),U(l)} generated by Ten-

SOFO and the Lagrangian LO(B(l),K(l),A(l),Σ(l),U(l)) are bounded.

Proof. Thanks to Lemma 1, we obtain L
(l)
O ≤ L

(0)
O ∀l, i.e., the Lagrangian LO(⋅) has an upper

bound LO. Next, we consider the the lower bound for L
(l)
O .

Employing the dual variable update U(l) in (P1.3), we can recast the formulation of LO(⋅)

in (39) into the following form

L
(l)
O = ∥C − [[B

(l),B(l),K(l)]]∥
2

F
+ ∥R − [[A(l),A(l),Σ(l)]]∥

2

F

+
ρO − 1

2
∥B(l) −A

(l)
⊙2∥

2

F
. (A.14)

When ρO > 1, the RHS of (A.14) is guaranteed to be positive, indicating that the La-

grangian LO(⋅) is bounded below by zero. The boundedness of Lagrangian suggests that

all (positive) terms within (A.14) are also bounded. Consequently, we can infer that the

sequence {B(l),A(l)} is bounded due to the boundedness of ∥B(l) −A
(l)
⊙2∥

2
F . Expressing the

first term of (A.14) as ∥[C](3) −K(l)(B(l) ⊙ B(l))⊺∥
2

F
, combined with the boundedness of
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C, ensures that {K(l)} is bounded. Following the same arguments above, we also conclude

{Σ(l)} is bounded. The boundedness of the scaled dual variable {U(l)} stems from the

boundedness of the third term, ⟨ρOU(l),B(l) − A
(l)
⊙2⟩, in the original version (38) of LO(⋅)

(note that Z = ρOU).

Now, iterating the inequality (A.1) in Lemma 1 for l = 0,1, . . . , L results in

L
(0)
O −L

(L+1)
O ≥ c1

L

∑
l=0

∥B(l+1) −B(l)∥
2

F
+ c2

L

∑
l=0

∥K(l+1) −K(l)∥
2

F

+ c3
L

∑
l=0

∥A(l+1) −A(l)∥
2

F
+ c4

L

∑
l=0

∥Σ(l+1) −Σ(l)∥
2

F
. (A.15)

Due to the Lagrangian LO(⋅) is decreasing and bounded, we get

∞

∑
l=0

∥B(l+1) −B(l)∥
2

F
<∞,

∞

∑
l=0

∥K(l+1) −K(l)∥
2

F
<∞, (A.16)

∞

∑
l=0

∥A(l+1) −A(l)∥
2

F
<∞,

∞

∑
l=0

∥Σ(l+1) −Σ(l)∥
2

F
<∞, (A.17)

as L goes to infinity. In other words, we conclude

∥B(l+1) −B(l)∥
2

F
→ 0, ∥K(l+1) −K(l)∥

2

F
→ 0, (A.18)

∥A(l+1) −A(l)∥
2

F
→ 0, ∥Σ(l+1) −Σ(l)∥

2

F
→ 0. (A.19)

Proposition 6. Let (B⋆,K⋆,A⋆,Σ⋆,U⋆) be a saddle point of LO(⋅) and define

V (l) = ρO∥U
(l) −U⋆∥

2

F
+ ρO∥A

(l)
⊙2 −A

⋆
⊙2∥

2

F
. (A.20)

Then V (l) is a Lyapunov function for TenSOFO, i.e.,

V (l+1) − V (l) ≤ −ρO∥U
(l+1) −U(l)∥

2

F
− ρO∥A

(l+1)
⊙2 −A

(l)
⊙2∥

2
F . (A.21)

Proof. Its proof follows the same mathematical framework used in the convergence analysis

of the standard ADMM method, as detailed in [39, Appendix A].

Proposition 6 also demonstrates the boundedness of the the sequence of the (scaled)

dual variable {U(l)}. Subsequently, we utilize the same arguments as in (A.15)-(A.19) to
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establish

∞

∑
l=0

ρ0∥U
(l+1) −U(l)∥

2

F
< V (0) <∞ (A.22)

∥U(l+1) −U(l)∥
2

F
→ 0 as l →∞. (A.23)

To sum up, the sequence {B(l),K(l),A(l),Σ(l),U(l)} generated by TenSOFO converges to a

limit point (B∞,K∞,A∞,Σ∞,U∞) as l goes to infinity, and

LO(B
∞,K∞,A∞,Σ∞,U∞) = lim

l→∞
LO(B

(l),K(l),A(ℓ),Σ(l),U(l)). (A.24)

In the final step, we examine the gradient of LO(⋅) at the limit point (B∞,K∞,A∞,Σ∞,U∞).

In short, we denote Z ∶= (B,K,A,Σ,U) and Z∞ ∶= (B∞,K∞, A∞,Σ∞,U∞). First, we

observe that partial derivatives of LO(⋅) w.r.t. each variable is Lipschitz continuous (as

multi-block convex functions are locally Lipschitz). Accordingly, we obtain

∣LO(Z
(l)
) −LO(Z

(l+1)
) − tr[(Z(l) −Z(l+1))

⊺
∇LO(Z

(l+1)
)]∣ ≤ L̃∥Z(l) −Z(l+1)∥

2

F
, (A.25)

where L̃ represents the maximum Lipschitz constant of all partial derivatives of LO(⋅). We

then have

tr[(Z(l) −Z(l+1))
⊺
∇LO(Z

(l+1)
)] ≤ L̃∥Z(l) −Z(l+1)∥

2

F
+L

(l)
O −L

(l+1)
O , (A.26)

thanks to the triangle inequality. Hence, summing (A.26) for l = 0,1, . . . ,∞ results in

∞

∑
l=0

tr[(Z(l) −Z(l+1))
⊺
∇LO(Z

(l+1)
)] <∞, (A.27)

It implies that

lim
l→∞

tr[(Z(l) −Z(l+1))
⊺
∇LO(Z

(l+1)
)] = 0. (A.28)

Inspired by our companion work on CP decomposition in [48], we can apply the proof by

contradiction to indicate that Z(∞) is a stationary point of L
(∞)

O

∆
= liml→∞LO(⋅). Specifically,

assume that Z(∞) is not a stationary point of L
(l)
O when l →∞. In such a case, there exist

Z and ε > 0 satisfying

tr[(Z −Z(∞))
⊺
∇L

(∞)

O (Z
(∞)
)] < −ε < 0. (A.29)
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Thanks to the triangle inequality, we have

∥(Z −Z
(l+1))

⊺
∇LO(Z

(l+1)
) − (Z −Z

(∞))
⊺
∇L

(∞)

O (Z
(∞)
)∥

2

F

≤ ∥∇LO(Z
(l+1)
) −∇L

(∞)

O (Z
(∞)
)∥

2

F
∥Z −Z

(l+1)
∥
2

F

+ ∥∇L
(∞)

O (Z
(∞)
)∥

2

F
∥Z

(∞)
−Z

(l+1)
∥
2

F
(A.30)

We observe that when l → ∞, the RHS of (A.30) tends to zero due to Z(l+1) → Z(∞) and

∇LO(Z
(l+1)
)→ ∇L

(∞)

O (Z
(∞)
). From (A.29), we derive

tr[(Z −Z(l+1))
⊺
∇LO(Z

(l+1)
)] ≤ −ε < 0. (A.31)

As mentioned above, partial derivatives of LO(⋅) are Lipschitz and we know that Z(l+1) =

argminZ LO(Z) at the (l+1)-th iteration. Due to Lipschitz continuity, we can further obtain

tr[
(Z
(l)
−Z

(l+1))
⊺

∥Z −Z
(l+1)
∥F
∇LO(Z

(l+1)
)] ≤ inf tr[

(Z −Z
(l+1))

⊺

∥Z −Z
(l+1)
∥F
∇LO(Z

(l+1)
)]

+ c∥Z(l) −Z(l+1)∥
2

F
, (A.32)

where c is a positive number, thanks to [49, Proposition 9]. Let l go to infinity, (A.32)

becomes

lim
l→∞

tr[(Z(l) −Z(l+1))
⊺
∇LO(Z

(l+1)
)] ≤ −ε < 0, (A.33)

because of ∥Z(l)−Z(l+1)∥
2

F
→ 0 as l →∞. Here, (A.33) is a contradiction in (A.28). Therefore,

Z
(∞) must be a stationary point of L

(∞)

O . It ends the proof.
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[32] L. Albera, A. Ferréol, P. Chevalier, and P. Comon, “ICAR: a tool for blind source separation using

fourth-order statistics only,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3633–3643, 2005.

[33] L. T. Thanh, K. Abed-Meraim, P. Ravier, O. Buttelli, and A. Holobar, “Joint INDSCAL decomposition

meets blind source separation,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2024.

[34] ——, “Tensorial convolutive blind source separation,” in Proc. IEEE Int. Conf. Acoust. Speech Signal

Process., 2024.

[35] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimensional scaling via an

N-way generalization of “Eckart-Young” decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319,

1970.

[36] I. Domanov and L. D. Lathauwer, “Generic uniqueness conditions for the canonical polyadic decompo-

sition and INDSCAL,” SIAM J. Matrix Anal. Appl., vol. 36, no. 4, pp. 1567–1589, 2015.

[37] L. De Lathauwer, “Decompositions of a higher-order tensor in block terms – Part II: Definitions and

uniqueness,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 1033–1066, 2008.

[38] L. De Lathauwer and D. Nion, “Decompositions of a higher-order tensor in block terms – Part III:

Alternating least squares algorithms,” SIAM J. Matrix Anal. Appl., vol. 30, pp. 1067–1083, 2008.

[39] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical

learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3,

no. 1, pp. 1–122, 2011.

[40] H. Bousbia-Salah, A. Belouchrani, and K. Abed-Meraim, “Jacobi-like algorithm for blind signal sepa-

ration of convolutive mixtures,” Electr. Lett., vol. 37, no. 16, p. 1, 2001.

[41] K. Abed-Meraim, Y. Xiang, J. H. Manton, and Y. Hua, “Blind source-separation using second-order

cyclostationary statistics,” IEEE Trans. Signal Process., vol. 49, no. 4, pp. 694–701, 2001.

[42] M. Kang, M. Kang, and M. Jung, “Inexact accelerated augmented Lagrangian methods,” Comput.

Optim. Appl., vol. 62, pp. 373–404, 2015.

[43] R. Sameni and G. D. Clifford, “A review of fetal ECG signal processing; issues and promising direc-

tions,” Open Pacing Electrophysiol Ther J., vol. 3, p. 4, 2010.

[44] L. De Lathauwer, B. De Moor, and J. Vandewalle, “Fetal electrocardiogram extraction by blind source

50



subspace separation,” IEEE Trans. Biomed. Eng., vol. 47, no. 5, pp. 567–572, 2000.

[45] M. Rajih, P. Comon, and R. A. Harshman, “Enhanced line search: A novel method to accelerate

PARAFAC,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 1128–1147, 2008.

[46] D. Nion and L. De Lathauwer, “An enhanced line search scheme for complex-valued tensor decompo-

sitions. application in DS-CDMA,” Signal Process., vol. 88, no. 3, pp. 749–755, 2008.

[47] D. Farina and A. Holobar, “Characterization of human motor units from surface EMG decomposition,”

Proc. IEEE, vol. 104, no. 2, pp. 353–373, 2016.

[48] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “Robust tensor tracking with missing

data and outliers: Novel adaptive CP decomposition and convergence analysis,” IEEE Trans. Signal

Process., vol. 70, pp. 4305 – 4320, 2022.

[49] H. Lyu, C. Strohmeier, and D. Needell, “Online nonnegative CP-dictionary learning for Markovian

data,” J. Mach. Learn. Res., no. 23, pp. 1–50, 2022.

51


