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Abstract

Objective: Epilepsy is one of the most common brain disorders. For epilepsy diagnosis or
treatment, the neurologist needs to observe epileptic spikes from electroencephalography (EEG)
data. Since multi-channel EEG records can be naturally represented by multi-way tensors, it is of
interest to see whether tensor decomposition is able to analyze EEG epileptic spikes.

Approach: In this report, we first proposed the problem of simultaneous multilinear low-rank
approximation of tensors (SMLRAT) and proved that SMLRAT can obtain local optimum solutions
by using two well-known tensor decomposition algorithms (HOSVD and Tucker-ALS). Second, we
presented a new system for automatic epileptic spike detection based on SMLRAT.

Main results: We compared the proposed tensor analysis method with other common tensor
methods in analyzing EEG signal and compared the proposed feature extraction method with Phan’s
method. Experimental results indicated that our proposed method is able to detect epileptic spikes
with good performance.

Significance: To suitably deal with EEG spikes, we developed a local solution for nonnegative
SMLRAT. For practical implementation, we proposed the generalized SMLRAT algorithm to effec-
tively solve the SMLRAT and nonnegative SMLRAT problems. An efficient EEG feature extraction
framework was proposed, based on estimating the “eigenspikes” from the nonnegative generalized
SMLRAT algorithm.

Index Terms

Electroencephalography (EEG), epileptic spikes, multilinear low-rank approximation, tensor
decomposition, nonegative Tucker decomposition, feature extraction, feature selection.
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Simultaneous Tensor Decomposition
for EEG Epileptic Spike Detection

I. Introduction

Epilepsy is one of the most common brain disorders. In electroencephalography (EEG) records
of the brain, epilepsy biomarkers are seizures and epileptiforms (e.g. spikes, sharp waves and
spike-wave complexes), which are resulted from abnormal and excessive electrical discharges
of nerve cells. According to estimates [1] in 2010, epilepsy affects about 50 million people
worldwide in which nearly 40 million people live in developing countries.

For epilepsy diagnosis and treatment, one often needs to observe epileptic seizures or
epileptiforms in order to help identify the type of epilepsy and the affected area of the brain.
Since epileptic spikes are interictal (i.e. they occur in between seizures) while seizures occur
sparsely in time, one normally obtains EEG records which contain various spikes. To better
detect (locate) the epileptic spikes in long EEG records or to reduce false-alarm detection
(which is often the case due to the fact that various other non-epileptic spikes also co-exist
in EEG), automatic detection of spikes by software programs/systems is advantageous over
visual reading by neurologists, and thus has been a subject of engineering and science studies
(e.g. algorithms of signal processing in electrical engineering and of machine learning in
computer science) for several decades [2]–[6].

For epileptic spike detection, most studies have focused on analysis of single-channel EEG
signals, each of which is obtained from an EEG electrode. Especially, recent efforts are seen in
developing multi-stage detection systems that take into account of various types of information
(i.e. electrical, physiological and morphological) of the spikes [7]–[9]. However, each EEG
record simultaneously collects signals from multiple electrodes, resulting in a multi-channel
EEG signal. Since epilepsy is often caused by an affected area in the brain, several electrodes
may be able to pick up the resulting epilepsy biomarkers around the same time at which the
single-channel EEG signals are spatially correlated across the channels. Therefore, analysis
of multi-channel EEG signals may enhance the detection of epileptic spikes. Currently, there
exists only one study on spike detection that deals with multi-channel EEG signals [10].

Multi-channel EEG signals can be naturally represented by matrices which are two-way
tensors (when considering time and channel domains), or multi-way tensors (when considering
more than two domains, e.g. of time, frequency, space, trial, condition, subject and group).
Many studies have used tensor decomposition for EEG signals in general and for epileptic
seizures in particular [11]–[19]. To the best of our knowledge, there exists no study applying
tensor decomposition to analyze EEG epileptic spikes. Therefore, the aim of our study is to
seek for a new method of tensor decomposition which is able to analyze EEG epileptic spikes
and hence facilitate automatic spike detection.

In many analysis and classification systems, low-rank matrix approximation (LRAM) and
its multi-way extension – low-rank tensor approximation (LRAT) – play important role for
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dimensionality reduction, feature extraction and feature selection [20]. In this report, we are
interested in dealing with a sequence of matrices and tensors and, hence, the problems of
simultaneous LRA of multiple matrices (SLRAM) and tensors (SLRAT), as well as their
applications in classification. We now review simultaneous LRA approaches in general (i.e.
not limited to EEG applications), while noting that the literature for LRA of a single matrix
or tensor, and their applications can be found in recent reviews [21], [22].

The common idea in dimensionality reduction is to seek a linear or multilinear subspace
embedded in a high-dimensional manifold which represents the dataset of interest. Then
depending on the applications at hand, different approaches can be taken. For SLRAM, the
resulting two-dimensional subspace methods include: two-dimensional singular value decom-
position (2dSVD) [23], [24], two-dimensional principal component analysis (2dPCA) [25],
[26], population value decomposition (PVD) [27], generalized low-rank approximation of
matrices (GLRAM) [28]–[32], two-dimensional linear discriminant analysis (2dLDA) [33],
and simultaneous component analysis (SCA) [34], [35]. These methods can be categorized
in two main approaches: non-iterative-based and iterative-based algorithms. The former [23]–
[27], [29] provides sub-optimal solutions, but is simple and efficient in practice. The latter [28],
[30]–[32], [35] can yield optimal solutions, but follows procedures that are time-consuming.

For SLRAT, the resulting higher dimensional subspace methods include: manifold regu-
larization nonnegative Tucker decomposition (MR-NTD) [36], concurrent subspaces analysis
(CSA) [37], multilinear discriminant analysis (MLDA) [38], multilinear PCA (MPCA) in-
cluding unconstrained MPCA [39], nonnegative MPCA [40] and sparse MPCA [41].

In view of the above literature, the work in this report has two main contributions. It is
noted that a preliminary study has been preliminarily presented in a conference [42]. The
first contribution of this report is the proposal of a new method for SLRAT, generalizing
SLRAM from matrices to tensors. In particular, we introduce simultaneous multilinear LRAT
(SMLRAT) in which different tensors with identical dimensions are factorized so that (i)
all tensors share common factor matrices and (ii) each tensor has it own core-tensor. By a
theoretical analysis, we then show that SMLRAT can obtain local optimum solutions by using
two well-known tensor decomposition algorithms: higher-order singular value decomposition
(HOSVD) and higher-order orthogonal iteration (HOOI); the latter is also called Tucker
alternating least-squares (Tucker-ALS). We further develop a local solution for nonnegative
SMLRAT since our analysis aims to EEG signals for which the nonnegativity constraint plays
an important role [43]. Finally, inspired by the feature extraction algorithm proposed by Phan
and Cichocki in [44] decomposing a compound tensor formed by concatenating a set of data
tensors, we propose a practical algorithm, namely generalized SMLRAT (GSMLRAT), to
effectively solve the SMLRAT and nonnegative SMLRAT problems. We note here that the
above reviewed SLRAT methods are considered as special cases of our proposed SLMRAT,
and will be later analyzed in Section VI. Also, a similar approach to [44] can be found
in [45], [46], which is based on the linear system with a CP decomposition constrained
solution (LS-CPD) framework for data classification.

The second contribution of the report is the successful application of tensor decomposition
to detection of EEG epileptic spikes, particularly proposing an SMLRAT-based system, thanks
to the proposed SMLRAT method. We first propose an efficient EEG feature extraction
framework, based on estimating the “eigenspikes” derived from nonnegative GSMLRAT. We
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then apply the Fisher score as the feature selection method for selecting significant features.
These selected features were then fed into widely used “shallow” classifiers to evaluate their
separability between epileptic and non-epileptic spikes.

The report is organized as follows. In Section II, a brief review of tensors and related
operators, as well as the multilinear LRAT problem will be presented. In Section III, we
present the SLRAM problem, and hence propose the SMLRAT problem that extends SLRAM
from matrices to general tensors and nonnegative tensors. Section IV describes a new tensor-
based epileptic spike detection system and Section V shows experimental results.

II. Preliminaries

A. Tensor Notations and Definitions

Follow notations defined in [47], we use lowercase letters (e.g. a), boldface lowercase letters
(e.g. a), boldface capital letters (e.g. A) and bold calligraphic letters (e.g. A) to denote scalars,
vectors, matrices and tensors respectively. Moreover, we summarize here some useful tensor
operators, to be used later.

The mode-k unfolding of a tensor A is a matrix in vector space RIk�pI1...Ik�1Ik�1...Inq,
where Ik is the integer number presenting the dimension of the k-th vector space generating
the tensor, denoted as Apkq, whose elements are defined by

Apkqpik, i1 . . . ik�1ik�1 . . . inq � Api1, i2, . . . , inq,

where i1i2 . . . in is a multi-index, which combines multiple indices i1, i2, . . . , in together in a
single index used regularly in vectorization/matricization for tensors [21], given by

i1i2 . . . in � i1 � pi2 � 1qI1 � pi3 � 1qI1I2 � � � � � pin � 1qI1I2 . . . IN .

The k-mode product of A with a matrix U P Rrk�Ik , written as A�k U, yields a new tensor
B P RI1�����Ik�1�rk�Ik�1����In such that its k-mode unfolding is given by Bpkq � UApkq. Useful
properties for the k-mode product follow:

A�k U �l V � A�l V �k U for k � l,

A�k U �k V � A�k pVUq.

The inner product of two n-way tensors A,B P RI1�I2����In is defined by

xA,By �
I1̧

i1�1

. . .
Iņ

in�1

Api1, i2, . . . , inqBpi1, i2, . . . , inq.

The Frobenius norm of a tensor A P RI1�I2����In is defined by the inner product of A with
itself

}A}F �
a
xA,Ay.

The concatenation of AP RI1�I2����In and a tensor B P RI1�I2����In�1 yields a new tensor
C � A`B P RI1�����In�1�pIn�1q such that

Cpi1, . . . , inq �
"

Api1, . . . , in�1, inq, if in ¤ In,

Bpi1, . . . , in�1q, if in � In � 1.
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Remark that, a pn-1q-way tensor D P RI1�I2����In�1 can be represented by a n-way tensor
E P RI1�I2����In�1�1, so the operator can be used for concatenating the two n-way tensors.

For operators on a matrix A P RI1�I2 , AT and A# denote the transpose and the pseudo-
inverse of A respectively. The Kronecker product of A with a matrix B P RJ1�J2 , denoted
by A b B, yields a matrix C P RI1J1�I2J2 defined by

C � A b B �

�
��a1,1B . . . a1,I2B

... . . . ...
aI1,1B . . . aI1,I2B

�
�� .

B. Multilinear Low-Rank Tensor Approximation

Multilinear LRAT (MLRAT) can be considered as a generalization of LRAM for ten-
sors [21]. In particular, MLRAT of a tensor X requires the following optimization problem:

arg min
�X

fMLRAT � }X � rX }2
F ,

s.t. rX � G �1 U1 �2 U2 � � � �n Un,

rankpUkq ¤ rk, k � 1, 2, . . . , n,

(1)

where G is called the core tensor of X , tUku
n
k�1 are called factors of X , and a set of trkunk�1

is the desired low multilinear rank. Next, we present the connection of MLRAT with several
types of tensor decomposition.

1) CP decomposition:
This type of decomposition can be considered as constrained MLRAT, where the core tensor
is constrained to be diagonal and the factors have the same rank. Specifically, fMLRAT can be
expressed according to CP decomposition as

arg min
�X

fCP � }X � rX }2
F ,

s.t. rX �
ŗ

i�1

λiU1p:, iq � � � � � Unp:, iq,

rankpUkq � r, k � 1, 2, . . . , n,

(2)

where “�” presents the outer product, the factors Uk P RIk�r are full column-rank and tλiu
r
i�1

are diagonal entries of the core tensor G. In order to solve fCP in (2), the “workhorse”
algorithm is based on alternating least squares (ALS) [47], [48].

2) Tucker Decomposition:
This type of decomposition is more flexible than CP decomposition, where the core-tensor
are not required to be diagonal while the factors are orthogonal matrices, i.e,

arg min
�X

fTucker � }X � rX }2
F

s.t. rX � G �1 U1 �2 U2 � � � �n Un,

UT
k Uk � Irk , k � 1, 2, . . . , n,

(3)

where Irk P Rrk�rk denotes the identity matrix. As a result, solution of fTucker in (3) is not
unique in general, but the subspaces spanned by tUku

n
k�1 are physically unique [47, Section
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IV]. Two well-known algorithms for solving fTucker are HOSVD and Tucker-ALS. Depending
on applications, both HOSVD and Tucker-ALS can provide good approximation. Moreover,
in many practical implementations, HOSVD is used as a starting point (i.e. initialization) to
further accelerate the convergence of Tucker-ALS [49].

3) Nonnegative Tensor Decomposition:
This type of decomposition is considered as a generalization of nonnegative matrix factor-
ization for tensors, where the nonnegativity constraint is imposed on the factors and/or the
core tensor [43]. Specifically, nonnegative tensor decomposition (NTD) can be seen as a
nonnegative fMLRAT as

arg min
�X

fNTD � }X � rX }2
F ,

s.t. rX � G �1 U1 �2 U2 � � � �n Un,

G © 0,Uk © 0, k � 1, 2, . . . , n,

(4)

where the notation © means that all entries of the matrix/tensor are nonnegative.

III. Generalized Simultaneous Multilinear Low-Rank Approx-
imation of Tensors

In this section, we first present connection between the SLRAM and three-way tensor de-
composition methods (i.e. HOSVD and Tucker-ALS). Motivated by such connection, we then
propose a generalized approach for SLRAT, where the tensors are general or constrained to
be nonnegative.

A. SLRAM and Tensor Decomposition

SLRAM problem [28]: Given a set of N matrices X1, . . . ,XN P RI1�I2 , find two orthog-
onal matrices U1 P RI1�r1 and U2 P RI2�r2 and N matrices F1, . . . ,FN P Rr1�r2 such that
U1FiU

T
2 , i � 1, . . . , N , yield good approximates of Xi.

Solving SLRAM is equivalent to finding the solution of

arg min
tFiuNi�1,U1,U2

fSLRAM �
Ņ

i�1

}Xi � U1FiU
T
2 }

2

s.t. UT
1 U1 � Ir1 , and UT

2 U2 � Ir2 .

(5)

Let us define a three-way tensor X P RI�J�N concatenating inputs such that each slide
X:,:,i of X is the input matrix Xi. Then tensor X can be expressed as X � X1`X2 � � �`XN .

It is well-known that Tucker-ALS provides the local optimal solution [47], [49] of (3), while
SLRAM was shown to be a special case of Tucker-ALS [50, Theorem 4.1]. Accordingly, we
have the following proposition, showing the connection between SLRAM and Tucker-ALS,
and hence providing good iterative-based approximation for SLRAM.

Proposition 1 ([50, Theorem 4.1]). If U1 and U2 are the factors obtained from decomposing
a three-way tensor X P RI�J�N using Tucker-ALS, and let Fi � UT

1 XiU2, then U1, U2 and
F1, . . . ,FN form a (local) optimal solution of fSLRAM in (5).
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Algorithm 1: GSMLRAT: Generalized Simultaneous Multilinear LRA of Tensors

Input: N n-way tensors tXiu
N
i�1,Xi P RI1�I2�����In , multilinear rank tr1, r2, . . . , rnu.

Output: common factors tUku
n
k�1, core tensors tGiu

N
i�1.

1 function
2 Initialization:
3 Contruct a concatenated pn� 1q-way tensor X � X1 `X2 � � �`XN ;
4 Compute covariance matrices trRpkqu

n
k�1 over modes of tensors asrRpkq �

°N
i�1 XipkqXi

T
pkq ;

5 tU
p0q
k unk�1 are initilized by selecting the first eigenvectors of rRpkq and

U
p0q
n�1 � IN ;

6 Tucker decomposition (HOSVD, Tucker-ALS, NTD):
7 G, tUku

n�1
k�1 � decomposepX , tU

p0q
k un�1

k�1q;
8 Obtain core tensors: Gi � Gp:, :, . . . , iq

It is also well-known that HOSVD gives a sub-optimal solution of (3) [47], [49]. Ac-
cordingly, we have the following connection between SLRAM and HOSVD, providing good
non-iterative-based approximation for SLRAM.

Proposition 2 ([24, Section IV]). If U1 and U2 are the factors obtained from decomposing
a three-way tensor X using HOSVD, and let Fi � UT

1 XiU2, then U1, U2 and tFiu
N
i�1 form

a sub-optimal solution of fSLRAM in (5).

B. Generalized Simultaneous Multilinear LRAT

Inspired by results in Section III-A, we first state the following simultaneous multilinear
low-rank tensor approximation (SMLRAT) problem.

SMLRAT problem: Given a set of N n-way tensors tXiu
N
i�1,Xi P RI1�I2����In , find n

common factors tUku
n
k�1,Uk P RIk�rk and N core tensors tGiu

N
i�1,Gi P Rr1�r2����rn such

that Gi �1 U1 �2 U2 � � � �n Un, i � 1, . . . , N , yield good approximates of Xi.

The problem can be considered as a generalization of SLRAM for multi-way tensors and
formulated as follows:

arg min
t�XiuNi�1

fSMLRAT �
Ņ

i�1

}Xi � rXi}
2
F

s.t. rXi � Gi �1 U1 �2 U2 � � � �n Un.

(6)

To solve (6), we propose the following theorem which provides (local) optimal solution.

Theorem 1. A local optimum solution of the SMLRAT problem is given by

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n , (7)

with Uk, k � 1, 2, . . . , n, including the principal rk eigenvectors of the covariance matrix
Rk defined by

Rk �
Ņ

i�1

Xipkq
rUk
rUT

kXi
T
pkq, (8)
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where rUk is given by

rUk �
�
Un b � � � b Uk�1 b Uk�1 � � � b U1

�
. (9)

Proof Sketch: We first show that minimizing the objective function fSMLRAT in (6) corre-
sponds to maximizing the following objective function

f 1SMLRAT

�
tUku

n
k�1

�
�

Ņ

i�1

}Xi �1 UT
1 � � � �n UT

n }
2
F .

After that, we exploit that maximizing f 1SMLRAT is equivalent to

arg max
UjPRIj�rj

trace UT
k RkUk

s.t. UT
k Uk � Irk .

(10)

As a result, the solution of maximizing fSMLRAT is obtained from the rk principal eigenvectors
of Rk. Finally, given n orthogonal matrices tUku

n
k�1,Uk P RIk�rk , if tensors tGiu

N
i�1 are

determined by

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n ,

then tGiu
N
i�1 are optimal tensors for fSMLRAT. The detailed proof is deferred to the supple-

mentary materials because of space limit.

Let X P RI1�����In�N be the tensor formed by concatenating N multi-way tensors X1, . . . ,XN ;
that is, X � X1 `X2 � � �`XN .

Inspired by Theorem 1, a practical solution for the problem of fSMLRAT in (6) can be
achieved, using the Tucker-ALS algorithm, given by the following proposition.

Proposition 3. If tUku
n
k�1 are the factors obtained from decomposing the pn�1q-way tensor

X P RI1�����In�N using Tucker-ALS, and core tensors Gi are defined by

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n , (11)

then tUku
n
k�1 and tGiu

N
i�1 can be a (local) optimal solution of fSMLRAT in (6).

This result gives a connection between Theorem 1 and the well-known Tucker-ALS al-
gorithm for Tucker decomposition, thus allowing us to exploit known characteristics of this
algorithm to enhance performance and/or reduce computational complexity of implementa-
tion [51]–[53].

Therefore, we can also obtain an alternative solution of SMLRAT using the HOSVD
algorithm, as given by the following proposition.

Proposition 4. If tUku
n
k�1 are factors obtained from decomposing the pn � 1q-way tensor

X P RI1�����In�N using HOSVD, and

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n ,

then tUku
n
k�1 and tGiu

N
i�1 can be a sub-optimal solution of fSMLRAT in (6).
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Fig. 1: Proposed epileptic spike detection system.

To deal with nonnegative tensors, we can propose the nonnegative SMLRAT as

arg min
t�XiuNi�1

fNSMLRAT �
Ņ

i�1

}Xi � rXi}
2
F

s.t. rXi � Gi �1 U1 �2 U2 � � � �n Un.

tUku
n
k�1 ¥ 0.

(12)

Similarly, we can obtain a practical solution for the NSMLRAT problem using NTD.

Proposition 5. If G, tUku
n
k�1 are core tensor and factors obtained from performing NTD on

the pn� 1q-way tensor X P RI1�����In�N , and Gi � Gp:, :, . . . , iq, then tUku
n
k�1 and tGiu

N
i�1

can be a local solution of fNSMLRAT in (12).

Based on Theorem 1, Propositions 3, 4 and 5, we propose Algorithm 1, namely Generalized
SMLRAT (GSMLRAT). Depending on kinds of constraints being considered (e.g. orthogo-
nality, sparsity or nonnegativity), we can apply the corresponding tensor decomposition (e.g.
HOSVD, Tucker-ALS and NTD) to obtain the desired solution.

IV. Proposed Epileptic Spike Detection System

In this section, we introduce a novel epileptic spike detection system based on the proposed
SLRMAT method. This system, illustrated in Figure 1, is composed of four stages: data
transformation, EEG feature extraction, feature selection and classification.

In the data representation stage, three-way EEG tensors (time, wavelet-scale and channel)
are calculated by applying the continuous wavelet transform on multi-channel EEG segments
simultaneously. Then, magnitude of the resulting wavelet coefficients is used to construct
nonnegative EEG tensors. In EEG feature extraction, we propose to estimate the so-called
“eigenspikes”. We also propose to use HOSVD for determining the multilinear rank for the
three-way EEG tensors. In feature selection stage, we propose to apply Fisher score for
feature selection, being able to select EEG features significant for the purpose of epileptic
spike detection. In the classification stage, we only use well-known “shallow” classifiers are
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applied, as opposed to recent classifiers based on “deep” learning. Now, we will focus on our
contributions to the second and the third stages.

A. Feature Extraction

Consider N three-way EEG tensors, Xi P RI1�I2�I3
� (whose dimensions I1, I2 and I3

correspond to time, wavelet-scale and channel), in which N1 tensors represent EEG segment
containing epileptic spikes, denoted as tX ep

i uN1
i�1, and N2 tensors represent EEG segment

containing non-epileptic spikes, tX nep
j uN2

j�1.

For feature extraction, our idea is first to estimate a feature space, Fep, which spans the
class of EEG epileptic spikes, and then to project both types of spikes onto the resulting
space to derive discriminant features.

In such a case, the objective function can be expressed as

fEEG �
N1̧

i�1

}X ep
i � Gep

i �1 A �2 B �3 C}2, (13)

over nonnegative projection matrices A,B,C and N1 core tensors tGep
i u

N1
i�1.

Inspired by the proposed SMLRAT method and a method proposed by Phan and Cichocki
in [44], we minimize fEEG by concatenating all three-way epileptic tensors tX ep

i uN1
i�1 into a

single four-way tensor rX ep P RI1�I2�I3�N1
� , and then perform NTD of rX ep, as given by

rX ep � X ep
1 `X ep

2 � � �`X ep
N1

NTD
� G �1 A �2 B �3 C �4 D, (14)

to obtain the factors A P RI1�r1
� , B P RI2�r2

� , C P RI3�r3
� and D P RN1�N1

� , which respectively
span the spaces of parameters representing the domains of time, wavelet-scale, channel and
epileptic spikes. Columns of D are considered as eigenspikes, the span of which forms the
feature space F ep of epileptic spikes.

Therefore, given any three-way tensor X of some EEG data, its k-mode unfolding can be
expressed by a linear combination of eigenspikes as

Xpkqloomoon
input data

� Dloomoon
basic vectors

GpkqpC b B b AqTloooooooooomoooooooooon
coefficients

, (15)

where Gpkq is the k-mode unfolding of the core tensor G. The core G and the factor D now
carry part of information of the EEG data which resides in F ep, i.e.

F ep � G �4 D. (16)

To investigate multi-domain features of EEG epileptic spikes, we can choose different basis
functions. For examples, we can define an eigenspike time-basis Ftime, by multiplying A with
F ep to obtain F ep

time � G �1 A �4 D, to yield the principal axes of variations of an epileptic
spike across channel and wavelet-scale modes. Similarly, we can derive the channel-basis and
scale-basis of the eigenspike space, i.e, F ep

scale � G �2 B �4 D and F ep
channel � G �3 C �4 D.
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Given a training set of M tensors X train
m , m � 1, 2 . . . ,M , of EEG data (including both

epileptic and non-epileptic spikes), we form a discriminant feature vector f train
m as follows:

F train
m � G train

m �4 D � X train
m �1 A# �2 B# �3 C#,

f train
m � vecpF train

m q. (17)

Similarly, for any tensor X test in the testing set of EEG data, its features can be extracted by
projecting the tensor onto F ep, i.e.

F test � X test �1 A# �2 B# �3 C#,

f test � vecpF testq. (18)

Remark: Our formulation of the concatenated tensor in (14) differs from [44] in which we
do not integrate the complete set of training tensors of both epileptic and non-epileptic spikes,
but use only tensors of epileptic spikes to compute the factors and hence the feature space.
It stems from the following observations. EEG signals are composed of several components,
including epileptic spikes (which are abnormal brain activity), EEG background (which in-
cludes normal brain activities) and artifacts (which are non-brain activities, e.g. eye or muscle
movements). Since epileptic spikes are abnormal activity, they can be considered independent
from the other activities. Hence, we assume that the other activities do not belong to the
feature space of epileptic spikes. Moreover, it is difficult to describe non-epileptic activities
present in the EEG data because we do not have knowledge of all these activities. Furthermore,
the number of non-epileptic activities are very huge in EEG datasets, the concatenation of
a complete set of training tensors results in a very big four-way tensor (e.g. more than 109

entries). This leads to two issues: (i) decomposition of the four-way tensor is difficult and
the resulting factors are not guaranteed to be optimal; (ii) the imbalance problem which has
emerged as one of the challenges in data science [54] (e.g. the ratio of epileptic spike class to
non-epileptic class is 1:260 in our EEG dataset). Therefore, we aim to capture a feature space
that covers only epileptic spikes. Our method is related to the one-class classification (OCC)
which aims to find a decision boundary around a specific class of interest, namely “positive”
class, in machine learning [55], [56]. Accordingly, data of no interest form the “negative”
class. The OCC problem may be harder than the conventional classification with data from
two or multiple classes. Since the “negative” data samples (i.e. belonging to the negative class)
in such a case are limited (i.e. activities of non-interest such as collected non-epileptic spikes
can not cover the whole feature space for the negative class in our case), so only one side of
the decision boundary can be estimated definitively by using the collected data. Our method
is, thus, consistent with one of three learning frameworks of OCC, as categorized in [55],
[56]: learning with only positive examples, learning with positive examples and some amount
of poorly distributed negative examples, and learning with positive and unlabeled data. On the
contrary, Phan-Cichocki’s method [44] was proposed to solve the problem of binary/multi-
class classification, concatenating all training tensors derived from multiple classes.

B. Feature Selection

The aim of feature selection is to find a subset of input features, such that it can span
the space of data of interest. An EEG dataset usually include different components: brain
activities of interest such as epileptic spikes, and activities without interest such as artifacts
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and noise. In addition, tensor decomposition may result in a huge number of the features;
for example, NTD would give r � r1r2r3 features. As a consequence, the expected outputs
(e.g. detected epileptic spikes) may not be determined by a complete set of the resulting
features, but depends only on a subset of relevant features. In this stage, we use Fisher
score [57] for each feature to assess the effectiveness of the classification. Assume that we
have extracted n features from NTD, i.e. F � tf1, f2, . . . , fnu. Denote N1 and N2 the numbers
of epileptic spikes and non-epileptic spikes, respectively. Let µi,c and σi,c be the mean and
standard deviation of the i-th feature for class Ωc, c P t1, 2u, µi and σi be the mean and the
standard deviation of the i-th feature in the whole training dataset, mc and Σc be the mean
and covariance matrix of class Ωc.

The objective is to find a linear combination wT f such that the best separation can be
achieved. In particular, the Fisher discriminant ratio is determined by maximizing the ratio
of between-class variation and within-class variation, that is

fFisherpwq �
σ2

between

σ2
within

�
rwpµ1 � µ2qs

2

wT pΣ1 � Σ2qw
. (19)

The Fisher score of each feature fi can then be defined as the maximum separation wpiq, that
is,

γpfiq
∆
� wpiq �

N1pµi,1 � µiq
2 �N2pµi,2 � µiq

2

N1σ2
i,1 �N2σ2

i,2

. (20)

We select l significant features with top Fisher scores:

FFisher � tfp1q, fp2q, . . . , fplq|fpiq P F, i � 1, 2, . . . , lu.

C. Number of Components

In tensor decomposition, determining rank of a tensor (or number of components) is an
important issue, and it is also an NP-hard problem. In the literature, several popular methods
for this task was surveyed in [58], such as DIFFIT, CORCONDIA and ARD.

To determine the number of components when decomposing an EEG tensor, we apply
the truncated HOSVD algorithm, which can provide a reasonable solution for the best rank-
pr1, r2, . . . , rnq tensor approximation [49]. This selection is motivated by an observation that
the “meaningful” components of each factor is often related to the underlying signal of
interest (e.g. EEG spikes) and thus may be different the true rank of the data tensor. For our
three-way EEG tensor, the numbers of components (r1, r2, r3) in the factors (U1,U2,U3) can
be estimated from their corresponding modes (Xp1q,Xp2q,Xp3q) using the truncated SVD, as
follows:

Xpkq � UI�rk
k Λrk�rk

k Vrk�JK
k , k � 1, 2, 3. (21)

In the above SVDs, each number of components (e.g. r1) in each tensor mode of the EEG
tensor can be obtained by selecting r1 principal singular values of the mode such that the
total variance is maximized, i.e.

VARr1 �

°r1
i�1 λi°I
j�1 λj

100%. (22)
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V. Experimental Results and Discussions

A. EEG Dataset and EEG Tensor Construction

The EEG data used in this study were recorded by using the international standard 10-20

system with 19 channels and the sampling rate of 256 Hz. The measurements were carried
out on 17 patients (including 11 males and 6 females) who were clinically diagnosed to have
epilepsy, with durations varying from 5 to 28 minutes. Details of the dataset are given in
Table I. Figure 2 illustrates some epileptic spikes from this dataset. Epileptic spikes were
manually identified by a neurologist from Vietnam National Children’s Hospital.

In order to obtain EEG signals within the desired frequency band and restrain artifacts and
noise as well as “negligible” spikes, as shown in Figure 2, the following pre-processing was
implemented [9]. We first used a digital Butterworth low-pass filter with the cutoff frequency
70 Hz, a notch filter with the cutoff frequency of 50 Hz associated with a bandwidth of 2 Hz,
and a high-pass filter with the cutoff frequency of 0.5 Hz. After that, we removed “negligible”
spikes by using a threshold criteria and three training perceptron to obtain “possible” spikes.
The remaining set of possible spikes now included spikes which are either real epileptic or
“non-epileptic”. These non-epileptic spikes often cause misdiagnosis; they are not related
to epilepsy but may be easily diagnosed as epileptic spikes. Non epileptic spikes are large
positive or negative voltage transients that can be confused as epileptic spikes by regular
algorithms. The goal of a spike detection algorithm is to separate these two types of spikes.

From the EEG dataset, we extracted 1442 epileptic spikes and more than 375429 non-
epileptic spikes. Then, we constructed the corresponding tensors of the 19-channel EEG 56-
point segments containing these spikes, with dimensions of time, wavelet-scale and channel,
as follows. Denote Ω1 and Ω2 the classes of epileptic and non-epileptic tensors, respectively.

TABLE I: EEG Dataset

Pat. Gen. Age Dur. Spike

1 M 4 19m21s 8/15145
2 M 6 22m25s 635/20484
3 M 9 11m24s 6/14975
4 M 9 11m24s 16/30751
5 M 11 16m16s 351/25916
6 M 12 17m49s 22/44387
7 M 15 22m0s 2/2036
8 M 16 22m58s 11/29351
9 M 20 27m13s 1/3742

10 M 21 23m57s 8/2371
11 M 72 15m26s 2/1565
12 F 10 17m7s 3/53302
13 F 13 18m53s 5/69583
14 F 16 20m14s 8/6217
15 F 20 14m32s 324/11219
16 F 22 17m 56s 28/23215
17 F 28 5m31s 12/21170

Pat. = Patient, Gen. = Gender (M=Male, F= Female), Dur. = Duration, Spike = Number of epileptic spikes /
Number of non-epileptic spikes.
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Fig. 2: Some epileptic spikes (circle markers) and non-epileptic spikes (star markers) derived
from three typical patients in our filtered EEG data.

Now, for each spike, an EEG data sample is first presented by a segment of 56 points around
the location of a spike. After that, the continuous wavelet transform was used to obtain
the time-frequency representation of the multi-channel EEG segments simultaneously. We
enlarged the number of wavelet scales in the dominant range r4-8s to the size of 20, instead
of 5 as used in [9]. As a result, we obtain 19 wavelet coefficient matrices of size 56 � 20

presenting EEG spectral features. Finally, we concatenate the 19 coefficient matrices into a
tensor X P R56�20�19 with three modes of time, wavelet-scale and channel.

B. Performance Metrics

In the evaluation task of the EEG epileptic spike detection problem, three statistical metrics
including Sensitivity (SEN, aka Recall), Specificity (SPE) and Accuracy (ACC) are widely
used to evaluate performance of detection systems, see [9], [18], [59]–[62] for examples.
Furthermore, boxplot, receiver operator characteristic (ROC) and its area under the ROC
curve (AUC) are also used to illustrate the performance of the systems. When we assess
the effectiveness of the system on the EEG dataset using cross validation methods, we may
obtain different values of these metrics across different tests/patients. Inspired of results on
evaluating the average performance of EEG interictal spike detection algorithms [63], the
overall performance with respect to the metric ρ (e.g. SEN) of our system can be averaged
in the following ways:

1) Arithmetic mean: ρAM �
1

T

Ţ

i�1

ρi,
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2) Time-weighted average: ρTWA �
1°T

k�1Dk

Ţ

i�1

ρiDi,

3) Total accuracy: ρTA �
1°T

k�1Nk

Ţ

i�1

ρiNi

4) Time/event-weighting: ρTEW �
1°T

k�1
Dk

Nk

Ţ

i�1

ρi
Di

Ni

,

where T is the number of patients and the i-th patient has a recording duration Di and Ni

desired events (e.g. epileptic spikes).

C. Experiment Setups and Results

Our experiments are conducted to study the three stages, by: (i) performing feature extrac-
tion by estimating the eigenspikes and the corresponding features for the EEG data samples,
(ii) performing feature selection to obtain the significant features for classification task, and
(iii) performing classification by comparing the testing features with the training features
using well-known classifiers. The EEG dataset is split into two groups, including a training
set and a testing set using leave-one-out cross-validation (LOO-CV) method. In particular,
the LOO-CV method is a well-known cross validation method for evaluating the performance
of the classifiers. In each test case, the classification model is fitted by using a training data
composed of 16 patients and then is tested by a remaining patient. The evaluation is repeated
until the last patient is done.

1) Feature Extraction:
The first task is to determine the multilinear rank (r1, r2, r3) of EEG tensors. The spectra
and total variances of three covariance matrices for epileptic tensor modes are illustrated in
Figure 3. If we choose to have a significance level of 99%, which approximately corresponds
to the sum of variances of the first 15 components in Figure 3(a), then we can have a good
approximation for the time mode A by

A �
15̧

i�1

λiuiv
T
i ,

where λi is the i-th eigenvalue associated with the right and left singular-vector, ui and vi,
of A. In the same way, we also obtained 10 and 19 components for the frequency and spatial
domains respectively, as shown in Figures 3(b) and 3(c).

By performing NTD of the training four-way epileptic tensor rX ep P R56�20�19�M
� , with

M is the number of training three-way tensors, we obtained common factors A P R56�15
� ,

B P R20�10
� , C P R19�19

� . Similarly, we also obtain factors of time, scale and channel for the
non-epileptic spike class. Comparison of the features between class Ω1 and Ω2 are shown in
Figures 4 and 5, revealing some difference between the factors of epileptic tensors and non-
epileptic tensors. In particular, considering first the factor A, components of epileptic spikes
were most localized in time; e.g. components #1, #2 and #3 were associated with the 30-th,
28-th and 3-th time sample, respectively. Meanwhile, the components of non-epileptic spikes
seem to be spread, except from components #9, #11 and #12. Next, the factor B is shown
in Figure 5. Since the behaviors of epileptic spikes and non-epileptic spikes are different,
the resulting subspace of parameter representing wavelet-scale for class C1 may not span
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Fig. 3: Eigen-spectra of three modes of the epileptic tensor. For each mode, the first row
(in blue) corresponds to the set of eigenvalues, the second row (in red) corresponds to their
spectral variance.
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Fig. 4: Common time factor A P R56�15
� derived from NTD.

non-epileptic spikes. Figure 6 shows common factor C P R19�19
� of epileptic tensors obtained

from NTD, showing that the factor of epileptic spikes was well localized in space, i.e. to
specific regions on the head. As a result, it may lead to the ability of learning localized parts
of epileptic spikes from the channel mode.
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Fig. 5: Common scale factor B P R20�10
� derived from NTD. The x-axis denotes the number

of components (column vectors), while the y-axis presents 20 wavelet scales in the range of
r4-8s.

Fig. 6: Common channel factor C P R19�19
� of the epileptic tensor derived from NTD.

Next, we investigated the advantages of NTD over other types of tensor decomposition,
e.g. unconstrained Tucker decomposition and nonnegative CP decomposition (NCP), for
EEG epileptic spike analysis. The multilinear rank tensor used for this task is rr1, r2, r3s �

r15, 15, 15s. It is due to the fact that CP decomposition requires the same number of rank-1
tensors (i.e. the number of components in the CP model), i.e. r1 � r2 � r3. The results are
shown in Figure 7. As we can see that, the two nonnegative types of tensor decomposition,
including NTD and NCP, yielded sparse basis vectors in A and B, but the original Tucker
decomposition (TD) did not. However, the factor B obtained from NCP did not provide a
good sparse representation for the wavelet scale mode.
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Fig. 7: A comparison of obtained loading factors between using three different tensor
decompositions (NTD, TD, NCP) of the epileptic tensor. The x-axis denotes the number
of components (column vectors), while the y-axis presents 56 time samples.

2) Feature Selection:
To assess the effectiveness of the proposed feature selection stage for detecting EEG epileptic
spikes, the extracted features are fed into the support vector machine (SVM) classifier. For
illustration, we use the simplest SVM kernel, namely the linear kernel. In addition, we also
use p-value [64] to provide the strength of ranked features derived by the Fisher score. A
p-value in a statistical hypothesis test is that value of p, with 0 ¤ p ¤ 1, such that given a
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Fig. 9: Top 10 selected features of two typical epileptic spikes and two non-epileptic spikes.
Behavior of features derived from epileptic spikes are similar, unlike non-epileptic spikes.

significance level α, if α ¡ p the test rejects the null hypothesis, H0, otherwise the test does
not reject H0. By convention, α is commonly set to 0.05 [64]. The experimental results are
shown in Figures 8, 9, and 10.

It can be seen from Figure 8 that more than 600 significant features with largest Fisher
scores had p-values smaller than 0.05, corresponding to 45% of the original 1425 features.
Specifically, among the features there were the top 500 features having p-value close to 0,
meaning that we can reject the null hypothesis H0 completely. As a result, these 500 features
have stronger discrimination power than others. Furthermore, these features are significant
different to that of non-epileptic class Ω2, as illustrated in Figure 9. As a result, these selected
features were efficient in detecting epileptic spikes. Performance of the SVM model using the
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Fig. 10: Classification performance vs. number of selected features

first 500 significant features are shown in Figure 10. As we can see, the classifier achieved
the top SEN at approximately 0.9 and overall ACC around 0.92 when using the first 200

features, while the corresponding values of the area under ROC curves (AUC) were always
higher than 0.9, thus ranked as excellent result of classification1.

3) Classification:
To investigate how effective concatenation of input tensors is at detecting epileptic spikes, we
compare the proposed method against Phan-Cichocki method in [44]. Second, we use other
tensor-based approaches which were successfully applied to detect brain activities of interest
in EEG signals as comparative methods, including Tucker-based [15], [18], CP-based [14],
[16], NCP-based [65].

In order to evaluate the separability of the extracted features, we applied three well-known
and widely used classification models in the platform WEKA [66] to classify EEG epileptic
spikes out of non-epileptic spikes, including k-nearest neighbors (KNN), naive Bayes (NB),
decision tree (DT) and SVM. Parameters of the classifiers were set by default. In particular, the
distance metric used in the KNN was the Euclidean distance and the size of the neighborhood
was automatically obtained by setting the cross-validation option. For NB, we selected the
Gaussian distribution as predictor distribution to compute the posterior probability for the two
classes and then made decision for the class with higher probability. For DT, the standard
CART algorithm was selected as the predictor selection technique, the tree depth equaled the
size of training set and each node in the training tree had 10 observations. Meanwhile, we
used the linear SVM kernel, similar to the previous task. Note that, we report here results
of the SVM model trained with our features across 17 patients using the LOOCV method.
For space reasons, the detailed results of other classifiers are reported in the supplementary
materials.

It can easily observe that feature extraction is key for EEG epileptic spike detection, and
our approach outperforms the baselines on all evaluation metrics. First, the NTD-SVM model

1Performance ranking based on AUC: r0.9–1s is excellent, r0.8–0.9s is good, r0.7–0.8s is fair, r0.6–0.7s is poor, r0.5–0.6s

is fail.
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Fig. 11: Detection performance of SVM when using our features against different tensor-based
approaches (CP, NCP, TD and NTD).

yielded strong results in term of all measurements (SEN, SPE, ACC and AUC) (see Tab II).
Table II presents a quantitative statistic of EEG epileptic spike detection performance of
our NTD-SVM model using the (LOOCV) method. Accordingly, the percentage of correctly
detected epileptic spikes (i.e. SEN) varied from patient to patient. In particular, the highest
SEN achieved 100% in the cases of patients with a few of epileptic spikes (e.g. the 3-rd,
7-th and 9-th patient), while the worst case with SEN of 0.5 was from the 11-th patient. The
NTD-SVM model achieved over 80% SEN in 10 out of 17 patients. In spire of the variation,
the average metrics for SEN were still good, e.g. the arithmetic mean SENAM � 0.8044,
SENTA � 0.8516, and �SEN � 0.8299 � 0.0297. While the metrics with respect to the non-
epileptic class, including SPE and ACC were all high with small standard deviations (i.e.
ρ̄ ¥ 0.9 and S.D. � 0.04). The key metric AUC to measure of separability of the classifier
was also excellent, i.e. NTD-SVM obtained over 90% AUC in 14 out of 17 patients and the
mean �AUC � 0.9323 � 0.0076 on average. These results indicate that the features extracted
by our method are able to use to detect epileptic spikes with good performance.

Second, our detection system outperforms the three other tensor-based approaches, in-
cluding CP, NCP and unconstrained TD decompositions (see Fig 11 and 13(a)). Fig 11
illustrates a number of boxplots to demonstrate the performance improvement of our system
over others. Each boxplot for a specific metric (e.g. SEN) plots the distribution of evaluation
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TABLE II: Detection performance of the NTD-SVM model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 7 1 13546 1599 0.8750 0.8944 0.8944 0.9435

2 635 20484 525 110 18639 1845 0.8268 0.9099 0.9074 0.9267

3 6 14975 6 0 13314 1661 1.0000 0.8891 0.8891 0.9488

4 16 30751 15 1 29587 1164 0.9375 0.9621 0.9617 0.9370

5 351 25916 329 22 23088 2828 0.9373 0.8909 0.8915 0.9633

6 22 44387 16 6 40967 3420 0.7273 0.9230 0.9229 0.9191

7 2 2036 2 0 1791 245 1.0000 0.8797 0.8789 0.9536

8 11 29351 9 2 26437 2914 0.8182 0.9007 0.9007 0.8822

9 1 3742 1 0 3447 259 1.0000 0.9212 0.9212 0.9546

10 8 2371 5 3 2327 44 0.6250 0.9814 0.9802 0.9036

11 2 1565 1 1 1407 158 0.5000 0.8990 0.8985 0.9476

12 3 53302 2 1 48318 4984 0.6667 0.9065 0.9065 0.9098

13 5 69583 4 1 66534 3049 0.8000 0.9562 0.9562 0.9736

14 8 6217 5 3 5691 526 0.6250 0.9154 0.9150 0.9406

15 324 11219 271 53 9401 1818 0.8364 0.8380 0.8379 0.8976

16 28 35495 21 7 19563 3652 0.7500 0.8427 0.8426 0.8720

17 12 21170 9 3 19262 1908 0.7500 0.9099 0.9098 0.9212

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.

SEN : 0.8044 � 0.1468 0.8044 0.8516 0.8042 0.8593 0.8299 � 0.0297
SPE : 0.9071 � 0.0371 0.9071 0.9145 0.9066 0.9137 0.9105 � 0.0042

ACC : 0.9067 � 0.0369 0.9067 0.9142 0.9062 0.9118 0.9097 � 0.0039

AUC : 0.9291 � 0.0287 0.9291 0.9291 0.9272 0.9436 0.9323 � 0.0076

performance across 17 patients in our EEG dataset. A box is based on the five number
summary, including the “minimum”, first quartile (Q1), second quartile, third quartile (Q3)
and the “maximum”. For instance, across the 17 patients, the highest median SEN achieved
0.8182 from the NTD-SVM model, while the value was low (i.e. ¤ 0.5) when using other
tensor decompositions. In addition, the interquartile range (i.e. IQR � Q3�Q1) measuring
the variability of the NTD-SVM were lower than that of TD-SVM, CP-SVM and NCP-SVM
for each evaluation metric. The results were also verified by Fig 13(a) that shows ROC curves
to illustrate overall performance of the four models. The ROC curve is drawn by ploting the
true positive rate (TPR equivalent to SEN) and false positive rate that can be computed as
1 � SPE. As a result, the ROC curve allows us to derive a cost/benefit analysis for making
decision. We can easily observe from the two figures that the NTD-based feature extraction
provided a better classification accuracy than the CP decomposition (i.e. unconstrained CP and
NCP decomposition) and unconstrained Tucker decomposition base approach in this work.
According to the Tab III, the average AUC of the CP-based and NCP-based models were
always lower than 0.9. That means there were less than 90% chance that the models will
be able to distinguish between epileptic spikes and non-epileptic spikes. The worst result
was from the NCP-NB model which had much less discrimination capacity to detect EEG
epileptic spikes, i.e. AUC � 0.574 � 0.25. The results of TD-based models were similar to
that of CP-based models. Although TD-SVM might provide a good performance in term of
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TABLE III: Detection performance comparison between using difference machine learning
models

Method SEN SPE ACC AUC �SEN �SPE �ACC �AUC

CP-KNN 0.106 � 0.132 0.966 � 0.027 0.963 � 0.028 0.690 � 0.124 0.126 � 0.107 0.966 � 0.003 0.966 � 0.004 0.682 � 0.012

CP-NB 0.546 � 0.275 0.710 � 0.138 0.709 � 0.137 0.662 � 0.216 0.627 � 0.085 0.709 � 0.003 0.713 � 0.020 0.693 � 0.050

CP-DT 0.826 � 0.246 0.829 � 0.046 0.829 � 0.045 0.857 � 0.112 0.831 � 0.057 0.829 � 0.008 0.826 � 0.005 0.856 � 0.001

CP-SVM 0.311 � 0.270 0.950 � 0.034 0.948 � 0.035 0.742 � 0.155 0.341 � 0.142 0.952 � 0.005 0.952 � 0.005 0.728 � 0.008

NCP-KNN 0.162 � 0.194 0.955 � 0.031 0.951 � 0.030 0.733 � 0.150 0.189 � 0.118 0.956 � 0.005 0.952 � 0.003 0.726 � 0.011

NCP-NB 0.366� 0.358 0.742 � 0.147 0.741 � 0.148 0.574� 0.250 0.472 � 0.111 0.736 � 0.011 0.733 � 0.012 0.587� 0.023

NCP-DT 0.871 � 0.149 0.835 � 0.052 0.834 � 0.051 0.888 � 0.049 0.850 � 0.042 0.834 � 0.004 0.834 � 0.004 0.892 � 0.007

NCP-SVM 0.288 � 0.255 0.941 � 0.040 0.939 � 0.040 0.734 � 0.188 0.324 � 0.203 0.941 � 0.007 0.940 � 0.006 0.695 � 0.074

TD-KNN 0.098� 0.135 0.984 � 0.030 0.980 � 0.031 0.524� 0.229 0.081 � 0.029 0.985 � 0.003 0.983 � 0.005 0.476� 0.090

TD-NB 0.333 � 0.286 0.856 � 0.160 0.857 � 0.161 0.702 � 0.243 0.278 � 0.062 0.865 � 0.008 0.872 � 0.024 0.667 � 0.062

TD-DT 0.240 � 0.207 0.897 � 0.042 0.894 � 0.043 0.612 � 0.171 0.211 � 0.077 0.898 � 0.004 0.900 � 0.007 0.621 � 0.014

TD-SVM 0.490 � 0.281 0.929 � 0.034 0.927 � 0.035 0.836� 0.113 0.470 � 0.115 0.903 � 0.062 0.903 � 0.063 0.811� 0.048

NTD-KNN 0.404 � 0.274 0.957 � 0.023 0.956 � 0.030 0.855 � 0.079 0.402 � 0.213 0.958 � 0.001 0.958 � 0.005 0.856 � 0.002

NTD-NB 0.560 � 0.313 0.850 � 0.087 0.851 � 0.087 0.794 � 0.141 0.539 � 0.212 0.851 � 0.008 0.854 � 0.005 0.756 � 0.070

NTD-DT 0.826 � 0.247 0.877 � 0.061 0.877 � 0.060 0.914 � 0.041 0.847 � 0.015 0.879 � 0.003 0.877 � 0.001 0.911 � 0.006

NTD-SVM 0.804� 0.147 0.907� 0.037 0.907� 0.037 0.929� 0.029 0.830� 0.030 0.910� 0.004 0.910� 0.004 0.932� 0.008

Results expressed as Mean � S.D.

AUC (i.e. 0.836� 0.113), the resulting SEN was not good enough, around 0.5. Hence, a half
of the total number of epileptic spikes were detected incorrectly and labeled as non-epileptic
activities. Meanwhile, the NTD-based models yielded a 10% to 30% better performance than
that of other tensor decompositions. The two best overall accuracy belonged to the NTD-based
models, including NTD-SVM and NTD-DT (i.e. AUC � 0.929 � 0.029 and 0.914 � 0.041

respectively, while SEN ¥ 0.8 in both cases). Furthermore, the NTD-based models also
detected non-epileptic spikes successfully, which more than 95% activities of non-interest
were rejected correctly by the NTD-KNN model. The percentage was 90% when using the
NTD-SVM model. The experiments shows that the NTD-based feature extraction can provide
good features to enhance the separation between epileptic spikes and non-epileptic spikes.

Third, our NTD-SVM outperforms three widely used classifiers (i.e. KNN, NB and DT)
in the classification task. The performance comparison between using difference machine
learning models is shown statistically in the Tab III and Fig 12. The Tab III shows the overall
performance of 16 models in term of all evaluation metrics. We can see that SVM-based
models performed better than others both in cases using features extracted from different
tensor decompositions. As mentioned above, the two average area under ROC curves of
NTD-SVM are AUC � 0.929 � 0.029 and �AUC � 0.932 � 0.008 in term of arithmetic
mean and overall mean respectively. The values were higher than that of NTD-KNN (e.g.�AUC � 0.856 � 0.002), NTD-NB (e.g. �AUC � 0.756 � 0.070) and NTD-DT (e.g. �AUC �

0.911� 0.006). The number of correctly detected epileptic spikes of NTD-SVM (i.e. �SEN �

0.830�0.003) was also higher than that of KNN and NB (i.e. 0.402�0.213 and 0.539�0.212).
Moreover, the results were verified by boxplots across 17 epileptic patients, as shown in
Fig 12. Results from TD-based feature extraction also indicated that the SVM model took
more advance of tensor decompositions than the three classifiers. The �AUC of TD-SVM was
0.836 � 0.113 compared to 0.524 � 0.229, 0.702 � 0.243 and 0.612 � 0.171 of TD-KNN,
TD-NB and TD-DT respectively. In spire of that, the average SEN of the four models using
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Fig. 12: Detection performance of four classifiers using our features

TABLE IV: Concatenation of input tensors, with SVM, KNN, NB and DT using first 500

significant features.

Our method Phan-Cichocki method

Metric SVM NB KNN DT SVM NB KNN DT

SEN 0.830� 0.030 0.402 � 0.274 0.539 � 0.213 0.847� 0.015 0.379� 0.047 0.346� 0.060 0.092� 0.036 0.217� 0.022

SPE 0.911 � 0.004 0.958� 0.001 0.851 � 0.010 0.878 � 0.004 0.931 � 0.013 0.779 � 0.012 0.954 � 0.008 0.866 � 0.006

ACC 0.910 � 0.004 0.958� 0.005 0.857 � 0.006 0.877 � 0.003 0.927 � 0.012 0.783 � 0.006 0.951 � 0.006 0.865 � 0.003

AUC 0.932� 0.008 0.856 � 0.002 0.756 � 0.070 0.911� 0.006 0.817 � 0.011 0.590 � 0.082 0.622 � 0.028 0.521 � 0.003

the features were not good enough. Specifically, neither one of the TD-based models could
detect more than 50% of total epileptic spikes in our EEG dataset (i.e. SEN   0.5, see the
second column of Tab III). In the cases of using features extracted from two types of CP
decompositions, the detection performances were bad, except the DT classifier. However, the
resulting AUC of the DT classifier (i.e.   0.9) were not good enough compared to that of
the NTD-SVM which four evaluation metrics for AUC of NTD were all higher 0.9.

The concatenation of training input tensors is key for EEG epileptic spike detection.
Accordingly, our method provided a better performance than Phan-Cichocki method in EEG
epileptic spike detection problem. Tab IV and Fig 13(b) present a performance comparison of
epileptic spike detection between using our method and Phan-Cichocki method. We note
that, according to Phan-Cichocki method, the complete set of training tensors was used
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(b) Concatenation of input tensors

Fig. 13: Performance comparison in terms of averaged ROC.

to concatenate a single four-way tensor whose the tensor decomposition was decomposed.
However, the number of non-epileptic spikes is very huge in our EEG dataset (i.e. more than
375000 spikes). Therefore, taking NTD decomposition of the resulting four-way tensor rXtrain

may be difficult, while the decomposed factors were not guaranteed to be optimal, because of
the very big tensor (i.e. the number of entries in rXtrain is more than 7.109 for each testing case
using LOOCV). This could be a weakness of Phan-Cichocki method in this work. For the
ease of implementation as well as avoiding the imbalanced problem, we applied the random
under-sampling technique for the non-epileptic spike class to balance two class distributions,
which is a widely used technique to handle imbalance dataset [54]. As a result, around 6000
non-spikes were selected to form the training four-way tensor in our experimental setup.
The results showed that evaluation metrics measuring the four classifiers using our method
were higher than that of Phan-Cichocki method. Specifically, the our method obtained the best
classification accuracy, i.e. �AUC of 0.932�0.008, achieved the highest �ACC � 0.910�0.004

and the highest �SEN � 0.830� 0.030. The separability of our features was also validated by
applying the three widely used classifiers KNN, NB and DT, as provided above. In contrast
to our method, both classifiers using features extracted by Phan-Cichocki method did not
work well. In all test cases, the average �SEN across 17 patients of four classifiers were low,
(i.e. �SEN   0.4). That means more than 60% epileptic spikes in our EEG dataset could not
be detected by these classifiers. While our NTD-SVM and NTD-DT models provided much
better performance in term of SEN in which they detected more than 80% the number of
epileptic spike correctly. The metrics with respect to non-epileptic class (i.e. SPE and ACC)
of both four classifiers were also reasonable, e.g. the overall SPE of SVM and KNN were
0.931 � 0.013 and 0.954 � 0.008 respectively. However, three of four classifiers resulted in
a poor AUC on average (i.e. 0.5 ¤ �AUC ¤ 0.6) which indicates that these models failed
to detect EEG epileptic spikes, except the SVM classifier. However, the AUC of SVM was
lower 11% than that of our method. We refer the reader to upplementary materials for further
detailed results of the four classifiers using features extracted by Phan-Cichocki method.
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VI. Connection to Related Works

In this section, we discuss our proposed method in relation to some previous techniques. In
particular, we first examine its connection to simultaneous component analysis (SCA) [34],
[35]. Next, an equivalence between concurrent subspace analysis (CSA) [37] and the proposed
GSMLRAT are presented. Finally, two kinds of multilinear PCA, including MPCA [67] and
nonnegative MPCA [40], are considered as further versions of GSMLRAT.

A. Connection to SCA

Simultaneous component analysis (SCA) can be considered as a special case of SMLRAT
as well as SLRAM for two dimensional data [34], in which the objective function fSCA

requires the following optimization:

arg min fSCA �
Ņ

i�1

}Xi � TiP
T
i }

2
F ,

where Xi P RI�J is the underlying input matrices, Ti P RI�ri is component-score matrix and
Pi P RJ�ri is the loading matrix. Note that, data used SCA often relates to a common mode
that is the same for all data matrices. The common mode can be either the object mode (i.e.
common row mode, T1 � T2 � . . .TN � T) or the variable mode (i.e. common column
mode, P1 � P2 � . . .PN � P).

Clearly, the objective function fSCA is equivalent to that of SLRAM in (5), where the two
modes are with either the common object mode Ti � U1 and Pi � U2Fi or the common
variable mode Ti � U1Fi and Pi � U2. The two representations resulted in the two well-
known models, namely SUM-PCA [68] and SCA-P [69] respectively. Recently, Stegeman
discussed the relationship between the SCA and Tucker-ALS in [35], as an evidence of
Proposition 3. In particular, the function fSCA can be reformulated as an extended version of
SCA-P, that is,

arg min fSCA-T3 �
Ņ

i�1

��Xi � Ai

�¸
r�1

cirGi



BT
��2
F
,

over three factors A P RI�r1 , B P RJ�r2 , C P RN�r3 and a core tensor G P Rr1�r2�r3 .
The objective function fSCA-T3 is identical to that of Tucker model for three-way tensors
in [47]. Specifically, Ai contain component scores of r1 components, B contains contains
loadings of J variables on r2 components, meanwhile C contains weights for N matrices Xi

on r3 components. As a result, the solution of minimizing fSCA-T3 can be obtained by using
alternative least square (ALS) method, which is analogous to ALS algorithm for Tucker
decomposition.

B. Connection to CSA

Concurrent subspaces analysis (CSA) for higher way tensor objects was proposed by Xu
et al. in [37]. The CSA model can be considered a further version of SMLRAT. In particular,
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it was formulated by an optimization via the optimal reconstruction criterion as follows:

arg min
tUku

n
k�1

fCSA �
Ņ

i�1

}Xi �X re
i }

2
F ,

s.t. X re
i � Xi �1 U1U

T
1 � � � �n UnU

T
n ,

where Xi P RI1�I2����In is the underlying n-way tensor, the reconstructed tensor X re
i of Xi is

derived via projection matrices tUku
n
k�1,Uk P Rrk�Ik .

As claimed in Proposition 3, for any estimation of common projection matrices tUku
n
k�1,

the set of optimal core tensors tGiu
N
i�1 is given by

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n .

Replacing core tensors Gi in the objective function fSMLRAT in (6) by the optimal one, we
obtain the objective function fCSA for CSA, that is,

arg min
tX̃iuNi�1

fSMLRAT �
Ņ

i�1

}Xi � rXi}
2
F

where the low multilinear rank tensor approximation rXi is imposed by

rXi �

�
Xi �1 UT

1 � � � �n UT
n



�1 U1 � � � �n Un

� Xi �1 U1U
T
1 � � � �n UnU

T
n � X re

i ,

because of the k-mode production’s property as mentioned in Section II. In addition, Xu et
al. produced an iterative algorithm for solving fCSA in which each iterative step was inspired
by the Tucker-ALS (HOOI) algorithm for pn � 1q-way tensors. Hence, CSA can be viewed
as a further version of SMLRAT.

C. Connection to MPCA

Multilinear principal component analysis (MPCA) is considered as a generalization of PCA
for high way tensors [67]. In particular, MPCA minimizes the similar reconstruction error
function to SMLRAT, as follows

arg min
tUku

n
k�1

fMPCA �
Ņ

i�1

}X̄i � Gi �1 U1 � � � �n Un}
2
F ,

where the underlying tensors Xi are centered by mean of the data samples as X̄i � Xi� X̄ ,

with the sample mean is defined by X̄ � 1
N

°N
i�1 Xi. In other words, SMLRAT on centered

data is equivalent to MPCA. As a result, the unconstrained MPCA can be obtained from
the GSMLRAT algorithm by adding above centering step while Tucker-ALS was used as the
iteration step, as introduced by Lu et al. in [39].

Nonnegative MPCA (NMPCA) proposed by Panagakis et al. in [40] is also considered as a
constrained version of SMLRAT. Specifically, nonnegative MPCA aims to define nonnegative
projection matrices (i.e. Uk P Rrk�Ik) in order to retain the nonnegativity property of the input
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tensors. Clearly, the objective function fNMPCA to be maximized in the nonnegative MPCA
problem is similar to fMPCA in MPCA as well as fSMLRAT in SMLRAT, that is,

fNMPCA �
1

2
trace

�
UT

k

� Ņ

i�1

Xipkq
rUk
rUT

kXi
T
pkq

�
Uk




where Xi is underlying tensor, tUku
n
k�1 are imposed to be nonnegative, rUk is defined in

Eq. (9). The reformulation can be directly obtained from the Theorem 1. The solution for
maximizing fNMPCA was developed by exploiting the structure of the Grassmann manifold and
computed iteratively by a local optimization procedure in a similar manner to the ALS method.
Furthermore, the algorithm is equivalent to the sequential NTD using low-rank approximation
based NMF (lraSNTD) in [70]. Hence, nonnegative MPCA can be viewed a constrained
version of nonnegative SMLRAT which the algorithm for nonnegative MPCA can be derived
from the GSMLRAT algorithm by using lraSNTD in the decomposition stage.

VII. Conclusions

In this report, we have proposed a generalized algorithm, abbreviated as GSMLRAT, for
solving the problem of simultaneous multilinear low-rank approximation of tensors. The
equivalence between GSMLRAT and subspace analysis methods such as GSLRAM, CSA,
SCA and MPCA have been presented in terms of mathematical models.

Inspired by the advantages of GSMLRAT and NTD, we proposed a new approach to detect
epileptic spikes in EEG data. We first derived a new feature space that can span EEG epileptic
spikes from sparse loading factors of NTD. A new discriminant set of features was learned
from NTD which can distinguish between epileptic spike class and non-epileptic spike class
with high accuracy. In order to reduce feature dimensionality as well as to achieve the best
separability between these classes, we have applied the Fisher score in EEG feature selection.
The numerical experiments have indicated that EEG multi-way analysis using NTD allows us
to extract multi-domain features of epileptic spikes and provide high classification accuracy
only with well-known classifiers such as KNN, NB, DT and SVM.

Appendix

A. Proof of Theorem 1

We can divide the proof into three steps, as follows.

a) Step 1: We show that minimizing the objective function fSMLRAT corresponds to
maximizing the following objective function:

f 1SMLRAT

�
tUku

n
k�1

�
�

Ņ

i�1

}Xi �1 UT
1 � � � �n UT

n }
2
F .
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By using the Frobenius norm property, the objective function fSMLRAT can be written as

fSMLRAT
∆
�

Ņ

i�1

}Xi � rXi}
2
F �

Ņ

i�1

}Xi}
2
F � } rXi}

2
F � 2

@
Xi, rXi

D
paq
�

Ņ

i�1

}Xi}
2
F � }Gi}

2
F � 2

@
Xi,Gi �1 U1 � � � �n Un

D

�
Ņ

i�1

}Xi}
2
F � }Gi}

2
F � 2

@
Xi �1 UT

1 � � � �n UT
n ,Gi

D
,

where (a) follows due to the fact that Ui, i � 1, � � � , n, are orthogonal matrices. Assuming
that Gi and Gj are independent for all i � j. The problem of minimizing fSMLRAT is thus
equivalently decomposed into N smaller least-square problems as

arg min
Gi

}Gi}
2
F � 2

@
Xi �1 UT

1 � � � �n UT
n ,Gi

D
(I1)

for i � 1, 2, . . . , N. As a consequence, (I1) is equivalent to

arg max
tUku

n
k�1

f 1SMLRAT, (I2)

where

f 1SMLRAT �
Ņ

i�1

}Gi}
2
F �

Ņ

i�1

}Xi �1 UT
1 � � � � �n UT

n }
2
F .

b) Step 2: We show that, given n orthogonal matrices tUku
n
k�1,Uk P RIk�rk , if tensors

tGiu
N
i�1 are determined by

Gi � Xi �1 UT
1 �2 UT

2 � � � �n UT
n ,

then tGiu
N
i�1 are optimal tensors for fSMLRAT. Due to (I1), the proof of this step can be found

in [49, Theorem 4.1].

c) Step 3: Now we show how to obtain an optimal set of factor matrices tUku
n
k�1. From

(I2), we observe that

f 1SMLRAT �
Ņ

i�1

}Xi �1 UT
1 �2 UT

2 � � � � �n UT
n }

2
F �

Ņ

i�1

}UT
k Xipkq

rUk}
2
F

�
Ņ

i�1

tracetUT
j pXipkq

rUk
rUT

k Xi
T
pkqqUku

� tracetUT
k p

Ņ

i�1

Xipkq
rUk
rUT

k Xi
T
pkqqUku � tracetUT

k RkUku,

where rUk � pUn b � � � b Uk�1 b Uk�1 � � � b U1q.

Therefore, maximizing f 1SMLRAT is equivalent to

arg max
UjPRIj�rj

trace UT
k RkUk

s.t. UT
k Uk � Irk .

(I3)

As a result, the solution of maximizing fSMLRAT is obtained from the rk principal eigen-
vectors of Rk [71].
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B. Proof of Proposition 3

The Tucker-ALS algorithm can provide an iterative procedure to yield optimal factors of
tensor X [49], as follows. For each iteration step, given for example a factor Uk, one acquires
the first rk singular vectors of the k-mode unfolding matrix Ykpkq of tensor Yk as

Uk � svdpYkpkq, rkq,

where Yk is given by

Yk � X �1 UT
1 � � � �k�1 UT

k�1 �k�1 UT
k�1 � � � �n�1 UT

n�1.

Note that, in this analysis, the last factor Un�1 is full column-rank with rn�1 � N , so it
should be an identity matrix IN . Therefore, the k-mode unfolding of Yk can be expressed by

Ykpkq � Xpkq

�
IN b Un � � � b Uk�1 b Uk�1 � � � b U1

�
.

Hence, another expression of the k-mode unfolding of Yk is given by

Ykpkq � rX1pkq X2pkq . . . XN pkqspIN b rUkq,

where rUk is defined as

rUk �
�
Un b � � � b Uk�1 b Uk�1 � � � b U1

�
.

As a result, the covariance matrix Rk is also determined as

Rk � YkpkqYk
T
pkq �

Ņ

i�1

Xipkq
rUk
rUT

k Xi
T
pkq.

So factor Uk can be given by the top singular vectors of Ykpkq as

Uk � svdpYkpkq, rkq � eigpRkq.

In other words, the factors tUku
n
k�1 obtained from Tucker-ALS exactly form the solution of

fSMLRAT in (6) as proved in Theorem 1. This completes the proof of Proposition 3.

C. Proof of Proposition 5

The nonnegative factors tUku
n
k�1 can be computed by the following steps [36, Section

III.D]. Given the minimization problem (11), we define the Lagrangian function L by using
Lagrange multipliers (i.e, tΛku

n
k�1 and tΘju

N
j�1) as follows:

L �
Ņ

i�1

}Xipkq � UkGipkq
rUT

k }
2
F �

Ņ

j�1

tracetΘjGj
T
pkqu �

ņ

l�1

tracetΛlU
T
l u

Since the Karush-Kuhn-Tucker (KKT) condition states that complementary slackness (i.e.
rΛksa,brUksa,b � 0) must hold, we can take the partial derivative of the Lagrangian L with
respect to Uk and equate it to zero to obtain an updating rule. In particular, the derivative
BL{BUk is determined by

BL
BUk

�
Ņ

i�1

pXipkq � UkGipkq
rUT

k q
rUkGi

T
pkq � Λk.
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Hence, the relationship between each elements of Uold
k and Unew

k can be expressed as

rUks
old
a,br

Ņ

i�1

Xipkq
rUkGi

T
pkqsa,b � rUks

new
a,b rU

old
k

Ņ

i�1

Gipkq
rUT

k
rUkGi

T
pkqsa,b

Thus,

rUks
new
a,b �

rUks
old
a,br
°N

i�1 Xipkq
rUkGi

T
pkqsa,b

rUold
k

°N
i�1 Gipkq

rUT
k
rUkGi

T
pkqsa,b

.

In other words, by denoting Si
k � Gipkq

rUT
k , we have the updating rule as

Unew
k � Uold

k f

°N
i�1 XipkqS

i
k
T

Uold
k

°N
i�1 Si

kS
i
k
T
, (I4)

where f represents the element-wise matrix product.

When we apply NTD (e.g. an NTD algorithm proposed by Kim et al. in [72, Table 5])
on X , where X � X1 `X2 � � �`XN , we also obtain the similar update rule for computing
nonnegative factors Uk. In particular, in each iteration, Uk is updated as

Unew
k � Uold

k f
rXpkqS

T
k s

Uold
k SkST

k

where the k-mode unfolding matrices of X and G can be expressed by

Xpkq � rX1pkq X2pkq . . . XN pkqs,

Gpkq � rG1pkq G2pkq . . . GN pkqs.

Meanwhile, the matrix Sk is defined by

Sk � GpkqpIN b rUkq,

because the last factor Un�1 is full column-rank (i.e. rn�1 � N ). Hence, these formulations
can be expressed in term of sub-tensors as

XpkqS
T
k �

Ņ

i�1

XipkqS
i
k

T
,

SkS
T
k �

Ņ

i�1

Si
kS

i
k

T
.

In other words, we obtain the rule in (I4). This completes the proof of Proposition (5).

D. Performance of Other Classifiers

We present here the results of using KNN and NB and Decision Tree as the classifier in
all the three experiments.
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TABLE V: Detection performance of the CP-KNN model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 0 8 14748 397 0.0000 0.9738 0.9733 0.8550
2 635 20484 163 472 20392 92 0.2567 0.9955 0.9733 0.8569
3 6 14975 0 6 14731 244 0.0000 0.9837 0.9833 0.7009
4 16 30751 3 13 28421 2330 0.1875 0.9242 0.9238 0.6202
5 351 25916 121 230 25748 168 0.3447 0.9935 0.9848 0.8210
6 22 44387 2 20 43713 674 0.0909 0.9848 0.9844 0.7182
7 2 2036 0 2 1917 119 0.0000 0.9416 0.9406 0.6636
8 11 29351 3 8 29127 224 0.2727 0.9924 0.9921 0.8145
9 1 3742 0 1 3686 56 0.0000 0.985 0.9848 0.6740
10 8 2371 0 8 2328 43 0.0000 0.9819 0.9786 0.7756
11 2 1565 0 2 1503 62 0.0000 0.9604 0.9592 0.5163
12 3 53302 0 3 51156 2146 0.0000 0.9597 0.9597 0.6038
13 5 69583 0 5 68806 777 0.0000 0.9888 0.9888 0.7653
14 8 6217 2 6 5879 338 0.2500 0.9456 0.9447 0.5804
15 324 11219 102 222 10360 859 0.3148 0.9234 0.9064 0.5453
16 28 35495 0 28 21211 2004 0.0000 0.9137 0.9126 0.4419
17 12 21170 1 11 20672 498 0.0833 0.9765 0.9760 0.7559

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.1059 � 0.1324 0.1059 0.2753 0.0100 0.0209 0.1255 � 0.1071
SPE : 0.9662 � 0.0270 0.9662 0.9662 0.9706 0.9637 0.9667 � 0.0028
ACC : 0.9627 � 0.0275 0.9627 0.9680 0.9628 0.9695 0.9658 � 0.0035
AUC : 0.6888 � 0.1235 0.6888 0.6888 0.6873 0.6634 0.6820 � 0.0124

TABLE VI: Detection performance of the NCP-KNN model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 1 7 14882 263 0.1250 0.9826 0.9822 0.8957
2 635 20484 167 468 20433 51 0.2630 0.9975 0.9754 0.7048
3 6 14975 0 6 14719 256 0.0000 0.9829 0.9825 0.8455
4 16 30751 1 15 27662 3089 0.0625 0.8995 0.8991 0.7479
5 351 25916 240 111 25408 508 0.6838 0.9804 0.9764 0.9724
6 22 44387 5 17 43004 1383 0.2273 0.9688 0.9685 0.8718
7 2 2036 0 2 1908 128 0.0000 0.9371 0.9362 0.5624
8 11 29351 0 11 27697 1654 0.0000 0.9436 0.9433 0.7774
9 1 3742 0 1 3604 138 0.0000 0.9631 0.9629 0.7803
10 8 2371 2 6 2357 14 0.2500 0.9941 0.9916 0.9025
11 2 1565 1 1 1514 51 0.5000 0.9674 0.9668 0.6463
12 3 53302 0 3 48159 5143 0.0000 0.9035 0.9035 0.4584
13 5 69583 0 5 67924 1659 0.0000 0.9762 0.9761 0.8241
14 8 6217 1 7 5819 398 0.1250 0.936 0.9349 0.6792
15 324 11219 92 232 10514 705 0.2840 0.9372 0.9188 0.5659
16 28 35495 4 24 21294 1921 0.1429 0.9173 0.9163 0.4932
17 12 21170 1 11 19878 1292 0.0833 0.9309 0.9385 0.7316

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.1616 � 0.1937 0.1616 0.3571 0.1555 0.0801 0.1886 � 0.1183
SPE : 0.9545 � 0.0305 0.9545 0.9503 0.9557 0.9616 0.9555 � 0.0046
ACC : 0.9514 � 0.0296 0.9514 0.9480 0.9525 0.9543 0.9515 � 0.0026
AUC : 0.7329 � 0.1496 0.7329 0.7329 0.7273 0.7103 0.7258 � 0.0107
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TABLE VII: Detection performance of the TD-KNN model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 3 5 15116 29 0.3750 0.9981 0.9978 0.8535
2 635 20484 14 621 20466 18 0.0220 0.9991 0.9697 0.4599
3 6 14975 0 6 14927 48 0.0000 0.9968 0.9964 0.3217
4 16 30751 0 16 30478 273 0.0000 0.9911 0.9906 0.5332
5 351 25916 70 281 25701 215 0.1994 0.9917 0.9811 0.4932
6 22 44387 5 17 43766 621 0.2273 0.9860 0.9856 0.7975
7 2 2036 0 2 2026 10 0.0000 0.9951 0.9941 0.4481
8 11 29351 1 10 29226 125 0.0909 0.9957 0.9954 0.7765
9 1 3742 0 1 3733 9 0.0000 0.9976 0.9973 0.0000
10 8 2371 2 6 2361 10 0.2500 0.9958 0.9933 0.6114
11 2 1565 0 2 1549 16 0.0000 0.9898 0.9885 0.6834
12 3 53302 0 3 52757 545 0.0000 0.9898 0.9897 0.2712
13 5 69583 0 5 69412 171 0.0000 0.9975 0.9975 0.7713
14 8 6217 3 5 5424 793 0.3750 0.8724 0.8718 0.6884
15 324 11219 7 317 10921 298 0.0216 0.9734 0.9467 0.2968
16 28 35495 3 25 22378 837 0.1071 0.9639 0.9629 0.3546
17 12 21170 0 12 21094 76 0.0000 0.9964 0.9958 0.5533

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.0981 � 0.1351 0.0981 0.0749 0.1080 0.0436 0.0812 � 0.0286
SPE : 0.9841 � 0.0303 0.9841 0.9891 0.9830 0.9853 0.9854 � 0.0026
ACC : 0.9797 � 0.0312 0.9797 0.9856 0.9786 0.9897 0.9834 � 0.0052
AUC : 0.5244 � 0.2291 0.5244 0.5244 0.5144 0.3424 0.4764 � 0.0895

TABLE VIII: Detection performance of the NTD-KNN model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 5 3 14740 405 0.6250 0.9733 0.9731 0.9261
2 635 20484 366 269 20150 334 0.5764 0.9837 0.9714 0.9358
3 6 14975 4 2 14569 406 0.6667 0.9728 0.9728 0.8665
4 16 30751 8 8 26780 3971 0.5000 0.8709 0.8707 0.7667
5 351 25916 296 55 25220 696 0.8433 0.9731 0.9714 0.9418
6 22 44387 10 12 42591 1796 0.4545 0.9595 0.9593 0.8919
7 2 2036 0 2 1909 127 0.0000 0.9376 0.9367 0.8320
8 11 29351 2 9 28558 793 0.1818 0.9730 0.9727 0.8982
9 1 3742 0 1 3361 81 0.0000 0.9784 0.9781 0.9049

10 8 2371 7 1 2301 70 0.1250 0.9705 0.9676 0.9123
11 2 1565 1 1 1518 47 0.5000 0.9700 0.9694 0.7201
12 3 53302 0 3 51625 1677 0.0000 0.9685 0.9685 0.8083
13 5 69583 1 4 67927 1656 0.2000 0.9762 0.9761 0.9261
14 8 6217 4 4 5896 321 0.500 0.9484 0.9478 0.8379
15 324 11219 247 77 10204 1015 0.7623 0.9095 0.9054 0.7592
16 28 35495 17 11 21568 1647 0.6071 0.9291 0.9287 0.6944
17 12 21170 4 8 20671 499 0.3333 0.9764 0.9761 0.9147

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.4045 � 0.2743 0.4045 0.6741 0.3765 0.1546 0.4024 � 0.2128
SPE : 0.9571 � 0.0299 0.9571 0.9578 0.9586 0.9601 0.9584 � 0.0013
ACC : 0.9556 � 0.0297 0.9556 0.95567 0.9559 0.9653 0.9584 � 0.0046
AUC : 0.8551 � 0.0794 0.8551 0.8551 0.8555 0.8594 0.8563 � 0.0021
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Fig. 14: Detection performance of the KNN model when applying our feature extraction
against using different tensor-based approaches (CP, NCP, TD and NTD).

TABLE IX: Detection performance of the CP-NB model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 1 7 12995 2150 0.1250 0.8580 0.8577 0.7262
2 635 20484 377 258 18757 1727 0.5937 0.9157 0.9060 0.8165
3 6 14975 1 5 10712 4263 0.1667 0.7153 0.7151 0.3110
4 16 30751 8 8 19439 11312 0.5000 0.6321 0.6321 0.5727
5 351 25916 295 56 22103 3813 0.8405 0.8529 0.8527 0.9217
6 22 44387 9 13 32628 11759 0.4091 0.7351 0.7349 0.6218
7 2 2036 1 1 1376 660 0.5000 0.6758 0.6757 0.5421
8 11 29351 8 3 24033 5318 0.7273 0.8188 0.8188 0.8745
9 1 3742 1 0 2713 1029 1.0000 0.7250 0.7251 0.9281
10 8 2371 5 3 1870 501 0.6250 0.7887 0.7881 0.7072
11 2 1565 2 0 825 740 1.0000 0.5272 0.5278 0.9387
12 3 53302 1 2 32770 20532 0.3333 0.6148 0.6148 0.5130
13 5 69583 4 1 61514 8069 0.8000 0.8840 0.8840 0.9249
14 8 6217 4 4 3391 2826 0.5000 0.5454 0.5454 0.5234
15 324 11219 217 107 6332 4887 0.6698 0.5644 0.5674 0.6400
16 28 35495 9 19 10385 12830 0.3214 0.4473 0.4472 0.3414
17 12 21170 2 10 16138 5032 0.1667 0.7623 0.7620 0.3523

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.5458 � 0.2745 0.5458 0.6553 0.5729 0.7343 0.6271 � 0.0853
SPE : 0.7096 � 0.1377 0.7096 0.7404 0.7092 0.6758 0.7088 � 0.0264
ACC : 0.7091 � 0.1366 0.7091 0.7401 0.7086 0.6939 0.7129 � 0.0075
AUC : 0.6621 � 0.2161 0.6621 0.6621 0.6832 0.7659 0.6933 � 0.0494
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TABLE X: Detection performance of the NCP-NB model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 1 7 13617 1528 0.1250 0.8991 0.8987 0.6159
2 635 20484 402 233 15901 4583 0.6331 0.7763 0.772 0.7374
3 6 14975 0 6 12779 2196 0.0000 0.8534 0.853 0.3297
4 16 30751 6 10 23095 7656 0.3750 0.7510 0.7508 0.6114
5 351 25916 321 30 25337 579 0.9145 0.9777 0.9768 0.9813
6 22 44387 11 11 38381 6006 0.5000 0.8647 0.8645 0.8340
7 2 2036 0 2 1169 867 0.0000 0.5742 0.5736 0.4163
8 11 29351 6 5 22922 6429 0.5455 0.7810 0.7809 0.7049
9 1 3742 1 0 2954 788 1.0000 0.7894 0.7895 0.7902

10 8 2371 4 4 2137 234 0.5000 0.9013 0.9000 0.7241
11 2 1565 2 0 1000 565 1.0000 0.639 0.6394 0.9677
12 3 53302 0 3 24824 28478 0.0000 0.4657 0.4657 0.1129
13 5 69583 0 5 57649 11934 0.0000 0.8285 0.8284 0.3434
14 8 6217 0 8 4272 1945 0.0000 0.6871 0.6863 0.3500
15 324 11219 78 246 6589 4630 0.2407 0.5873 0.5776 0.4762
16 28 35495 6 22 11542 11673 0.2143 0.4972 0.4968 0.3080
17 12 21170 2 10 15586 5584 0.1667 0.7362 0.7359 0.4528

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.3656 � 0.3580 0.3656 0.5825 0.3882 0.5509 0.4718 � 0.1107
SPE : 0.7417 � 0.1474 0.7417 0.7452 0.7369 0.7203 0.7360 � 0.0110
ACC : 0.7406 � 0.1478 0.7406 0.7445 0.7358 0.7163 0.7343 � 0.012s5
AUC : 0.5739 � 0.2500 0.5739 0.5739 0.5800 0.6209 0.5872 � 0.0226

TABLE XI: Detection performance of the TD-NB model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 5 3 14662 483 0.6250 0.9681 0.9679 0.9315
2 635 20484 166 469 20156 328 0.2614 0.9840 0.9623 0.8412
3 6 14975 3 3 14527 448 0.5 0.9701 0.9699 0.7712
4 16 30751 3 13 29328 1423 0.1875 0.9537 0.9533 0.7635
5 351 25916 101 250 14541 11375 0.2877 0.5611 0.5574 0.3448
6 22 44387 13 9 43148 1239 0.5909 0.9721 0.9719 0.833
7 2 2036 0 2 1851 185 0.0000 0.9091 0.9082 0.7665
8 11 29351 6 5 27959 1392 0.5455 0.9526 0.9524 0.9164
9 1 3742 0 1 3661 81 0 0.9784 0.9781 0.2357
10 8 2371 5 3 2322 49 0.6250 0.9793 0.9781 0.9694
11 2 1565 2 0 1072 493 1.0000 0.6850 0.6854 0.9447
12 3 53302 0 3 43366 9936 0.0000 0.8136 0.8135 0.4956
13 5 69583 0 5 67254 2329 0.0000 0.9665 0.9665 0.8506
14 8 6217 3 5 5013 1204 0.375 0.8063 0.8058 0.7058
15 324 11219 20 304 7332 3887 0.0617 0.6535 0.6369 0.2996
16 28 35495 10 18 11851 11364 0.3571 0.5105 0.5103 0.4228
17 12 21170 3 9 20194 976 0.2500 0.9539 0.9535 0.8393

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.3333 � 0.2861 0.3333 0.2357 0.3287 0.2145 0.2781 � 0.0618
SPE : 0.8599 � 0.1600 0.8599 0.8743 0.8562 0.8675 0.8645 � 0.0081
ACC : 0.8571 � 0.1607 0.8571 0.8718 0.8534 0.9059 0.8721 � 0.0239
AUC : 0.7019 � 0.2433 0.7019 0.7019 0.6879 0.5748 0.6666 �0.0616
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TABLE XII: Detection performance of the NTD-NB model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 4 4 13580 1565 0.5000 0.8967 0.8965 0.8466
2 635 20484 453 182 19731 753 0.7134 0.9632 0.9699 0.9221
3 6 14975 6 0 12969 2006 1.0000 0.8660 0.8661 0.9389
4 16 30751 7 9 23615 7136 0.4375 0.7679 0.7678 0.6463
5 351 25916 323 28 23274 2642 0.9202 0.8981 0.8984 0.9453
6 22 44387 16 6 39262 5125 0.7273 0.8845 0.8845 0.8512
7 2 2036 1 1 1698 338 0.5000 0.8340 0.8337 0.8530
8 11 29351 7 4 27548 1803 0.6364 0.9386 0.9385 0.8501
9 1 3742 0 1 3408 334 0.0000 0.9107 0.9105 0.4701
10 8 2371 5 3 2169 202 0.6250 0.9148 0.9138 0.6768
11 2 1565 1 1 1132 433 0.5000 0.7233 0.723 0.515
12 3 53302 0 3 43353 9949 0.0000 0.8133 0.8133 0.761
13 5 69583 0 5 64485 5098 0.0000 0.9267 0.9267 0.8719
14 8 6217 4 4 5121 1096 0.5000 0.8237 0.8233 0.7923
15 324 11219 278 46 7939 3280 0.8580 0.7076 0.7119 0.8336
16 28 35495 24 4 15579 7636 0.8571 0.6711 0.6713 0.8064
17 12 21170 9 3 19348 1822 0.7500 0.9139 0.9138 0.9206

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.5603 � 0.3131 0.5603 0.7892 0.5353 0.2700 0.5387 � 0.2145
SPE : 0.8502 � 0.0873 0.8502 0.8636 0.8519 0.8399 0.8514 � 0.0097
ACC : 0.8508 � 0.0873 0.8508 0.8633 0.8524 0.8618 0.8571 � 0.0064
AUC : 0.7942 � 0.1406 0.7942 0.7942 0.7826 0.6517 0.7557 � 0.0695
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Fig. 15: Detection performance of the NB model when applying our feature extraction against
using different tensor-based approaches (CP, NCP, TD and NTD).
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TABLE XIII: Detection performance of the CP-DT model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 7 1 12902 2243 0.8750 0.8519 0.8519 0.9063
2 635 20484 424 211 18829 1655 0.6677 0.9192 0.9116 0.8297
3 6 14975 4 2 12250 2725 0.6667 0.8180 0.8180 0.8869
4 16 30751 13 3 25093 5658 0.8125 0.8160 0.8160 0.8721
5 351 25916 300 51 22939 2977 0.8547 0.8851 0.8847 0.9039
6 22 44387 21 1 38397 5990 0.9545 0.8651 0.8651 0.9266
7 2 2036 2 0 1717 319 1.0000 0.8433 0.8435 0.896
8 11 29351 11 0 25072 4279 1.0000 0.8542 0.8543 0.9242
9 1 3742 1 0 3169 573 1.0000 0.8469 0.8469 0.862
10 8 2371 8 0 2100 271 1.0000 0.8857 0.8861 0.9493
11 2 1565 2 0 1246 319 1.0000 0.7962 0.7964 0.8839
12 3 53302 2 1 40766 12536 0.6667 0.7648 0.7648 0.8458
13 5 69583 0 5 53968 15615 0.000 0 0.7756 0.7755 0.4446
14 8 6217 8 0 4850 1367 1.0000 0.7801 0.7804 0.8867
15 324 11219 261 63 9147 2072 0.8056 0.8153 0.8150 0.8381
16 28 35495 23 5 17586 5629 0.8214 0.7575 0.7576 0.8171
17 12 21170 11 1 17275 3895 0.9167 0.8160 0.8161 0.8989

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.8260 � 0.2460 0.8260 0.7614 0.8352 0.9002 0.8307 � 0.0568
SPE : 0.8289 � 0.0459 0.8289 0.8185 0.8309 0.8373 0.8289 � 0.0078
ACC : 0.8285 � 0.0450 0.8285 0.8183 0.8304 0.8276 0.8262 � 0.0054
AUC : 0.8572 � 0.1122 0.8572 0.8572 0.8555 0.8553 0.8563 � 0.0010

TABLE XIV: Detection performance of the NCP-DT model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 6 2 13056 2089 0.7500 0.8621 0.8620 0.8967
2 635 20484 430 205 18851 1633 0.6772 0.9203 0.9130 0.8067
3 6 14975 6 0 12890 2085 1.0000 0.8608 0.8608 0.9355
4 16 30751 16 0 25254 5497 1.0000 0.8212 0.8213 0.9085
5 351 25916 326 25 23836 2080 0.9288 0.9197 0.9199 0.9452
6 22 44387 20 2 37682 6705 0.9091 0.8489 0.8490 0.9168
7 2 2036 1 1 1599 437 0.5000 0.7854 0.7851 0.8390
8 11 29351 10 1 24405 4946 0.9091 0.8315 0.8315 0.8761
9 1 3742 1 0 3197 545 1.0000 0.8544 0.8544 0.9526
10 8 2371 7 1 2114 257 0.8750 0.8916 0.8916 0.9505
11 2 1565 2 0 1238 327 1.0000 0.7911 0.7913 0.8717
12 3 53302 2 1 40255 13047 0.6667 0.7552 0.7552 0.7975
13 5 69583 5 0 61616 7967 1.0000 0.8855 0.8855 0.9321
14 8 6217 8 0 5045 1172 1.0000 0.8115 0.8117 0.8905
15 324 11219 257 67 8979 2240 0.7932 0.8003 0.8001 0.8307
16 28 35495 27 1 17620 5595 0.9643 0.7590 0.7592 0.8830
17 12 21170 10 2 16798 4372 0.8333 0.7935 0.7935 0.8659

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.8710 � 0.1487 0.8710 0.7864 0.8670 0.8743 0.8497 � 0.0423
SPE : 0.8348 � 0.0515 0.8348 0.8375 0.8364 0.8290 0.8344 � 0.0038
ACC : 0.8344 � 0.0505 0.8344 0.8373 0.8359 0.8277 0.8339 � 0.0043
AUC : 0.8882 � 0.0489 0.8882 0.8882 0.8892 0.9025 0.8920 � 0.0070
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TABLE XV: Detection performance of the TD-DT model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 3 5 13686 1459 0.3750 0.9037 0.9034 0.5924
2 635 20484 133 502 19660 824 0.2094 0.9598 0.9372 0.5106
3 6 14975 0 6 13791 1184 0.0000 0.9209 0.9206 0.8288
4 16 30751 2 14 27938 2813 0.1250 0.9085 0.9081 0.6403
5 351 25916 105 246 21762 4154 0.2991 0.8397 0.8325 0.5257
6 22 44387 4 18 40453 3934 0.1818 0.9114 0.9110 0.5243
7 2 2036 0 2 1837 199 0.0000 0.9023 0.9014 0.5153
8 11 29351 7 4 26632 2719 0.6364 0.9074 0.9073 0.7275
9 1 3742 0 1 3504 238 0.0000 0.9364 0.9361 0.8055
10 8 2371 2 6 2143 228 0.2500 0.9038 0.9016 0.5785
11 2 1565 0 2 1321 244 0.0000 0.8441 0.843 0.1917
12 3 53302 0 3 47012 6290 0.0000 0.8820 0.8819 0.4937
13 5 69583 2 3 66063 3520 0.4000 0.9494 0.9494 0.775
14 8 6217 5 3 5768 449 0.6250 0.9278 0.9274 0.9468
15 324 11219 95 229 9223 1996 0.2932 0.8221 0.8072 0.5729
16 28 35495 10 18 19065 4150 0.3571 0.8212 0.8207 0.5722
17 12 21170 4 8 19330 1840 0.3333 0.9131 0.9128 0.6100

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.2403 � 0.2067 0.2403 0.2580 0.2481 0.0963 0.2107 � 0.0766
SPE : 0.8973 � 0.0420 0.8973 0.9035 0.8979 0.8950 0.8984 � 0.0036
ACC : 0.8942 � 0.0427 0.8942 0.9010 0.8948 0.9101 0.9000 � 0.0074
AUC : 0.6124 � 0.1709 0.6124 0.6124 0.6176 0.6423 0.8338 � 0.0043

TABLE XVI: Detection performance of the NTD-DT model using Leave-One-Out Cross-
Validation (LOOCV)

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 8 0 13497 1648 1.0000 0.8912 0.8912 0.9569
2 635 20484 494 141 19588 896 0.7780 0.9563 0.9509 0.8955
3 6 14975 3 3 13989 986 0.5000 0.9342 0.9340 0.8585
4 16 30751 2 14 26069 4682 0.1250 0.8477 0.8478 0.9370
5 351 25916 333 18 23879 2037 0.9487 0.9214 0.9218 0.9286
6 22 44387 19 3 39000 5387 0.8636 0.8786 0.8786 0.9331
7 2 2036 1 1 1939 97 0.5000 0.9524 0.9519 0.8507
8 11 29351 10 1 26641 2710 0.9091 0.9077 0.9077 0.9450
9 1 3742 1 0 3298 444 1.0000 0.8813 0.8814 0.8991
10 8 2371 8 0 2221 150 1.0000 0.9367 0.9369 0.9765
11 2 1565 2 0 127 348 1.0000 0.7776 0.7779 0.9128
12 3 53302 2 1 43019 10283 0.6667 0.8071 0.8071 0.8812
13 5 69583 5 0 63460 6123 1.0000 0.9120 0.9120 0.9677
14 8 6217 7 1 5312 905 0.8750 0.8544 0.8545 0.9166
15 324 11219 296 28 8760 2513 0.9136 0.7760 0.7799 0.8339
16 28 35495 27 1 18029 5186 0.9643 0.7766 0.7768 0.8963
17 12 21170 12 0 18917 2253 1.0000 0.8936 0.8936 0.9456

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.8261 � 0.2457 0.8261 0.8530 0.8482 0.8622 0.8474 � 0.0153
SPE : 0.8768 � 0.0612 0.8768 0.8730 0.8780 0.8836 0.8778 � 0.0044
ACC : 0.8767 � 0.0603 0.8767 0.8729 0.8778 0.8787 0.8765 � 0.0026
AUC : 0.9138 � 0.0412 0.9138 0.9138 0.9139 0.9022 0.9110 � 0.0058
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Fig. 16: Detection performance of the DT model when applying our feature extraction against
using different tensor-based approaches (CP, NCP, TD and NTD).

TABLE XVII: Detection performance of the NTD-SVM model based on Phan-Cichocki
Method

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 5 3 14269 876 0.6250 0.9422 0.9420 0.8417
2 635 20484 165 470 20045 439 0.2598 0.9786 0.9570 0.7528
3 6 14975 4 2 802 802 0.6667 0.9464 0.9463 0.8373
4 16 30751 0 16 28848 1903 0.0000 0.9381 0.9376 0.5292
5 351 25916 244 107 24185 1731 0.6952 0.9332 0.9300 0.8507
6 22 44387 3 19 43512 875 0.1364 0.9803 0.9399 0.7548
7 2 2036 1 1 1933 103 0.5000 0.9494 0.9490 0.7846
8 11 29351 2 9 27569 1782 0.1818 0.9393 0.9390 0.6607
9 1 3742 0 1 3463 279 0.0000 0.9254 0.9252 0.8399
10 8 2371 4 4 2316 55 0.5000 0.9768 0.9752 0.8404
11 2 1565 1 1 1424 141 0.5000 0.9099 0.9094 0.7613
12 3 53302 2 1 50222 3080 0.6667 0.9422 0.9422 0.9487
13 5 69583 2 3 68465 1118 0.4000 0.9839 0.9839 0.9846
14 8 6217 5 3 5724 493 0.6250 0.9207 0.9203 0.9360
15 324 11219 112 212 9634 1585 0.3457 0.8587 0.8443 0.8064
16 28 35495 14 14 20336 2879 0.5000 0.8760 0.8755 0.8004
17 12 21170 4 8 19608 1562 0.3333 0.9262 0.9259 0.8492

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.4080 � 0.2283 0.4080 0.3939 0.4033 0.3091 0.3786 � 0.0467
SPE : 0.9369 � 0.0343 0.9369 0.9119 0.9375 0.9379 0.9311 � 0.0128
ACC : 0.9319 � 0.0332 0.9319 0.9099 0.9326 0.9348 0.9273 � 0.0116
AUC : 0.8105 � 0.1069 0.8105 0.8105 0.8137 0.8331 0.8170 � 0.0109
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TABLE XVIII: Detection performance of the NTD-NB model based on Phan-Cichocki
Method

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 5 3 13657 1488 0.6250 0.9017 0.9016 0.8546
2 635 20484 238 397 19441 1043 0.3748 0.9491 0.9318 0.7958
3 6 14975 4 2 12914 2061 0.6667 0.8624 0.8623 0.7522
4 16 30751 4 12 24562 6189 0.2500 0.7987 0.7985 0.6128
5 351 25916 140 211 11746 14170 0.3989 0.4532 0.4525 0.4311
6 22 44387 11 11 35750 8637 0.5000 0.8054 0.8053 0.7281
7 2 2036 1 1 1271 765 0.5000 0.6243 0.6241 0.6221
8 11 29351 7 4 27092 2259 0.6364 0.9230 0.9229 0.8374
9 1 3742 0 1 3231 511 0.0000 0.8634 0.8632 0.1937
10 8 2371 2 6 2212 159 0.2500 0.9329 0.9306 0.6327
11 2 1565 1 1 996 569 0.5000 0.6364 0.6362 0.5267
12 3 53302 0 3 41139 12163 0.0000 0.7718 0.7718 0.5317
13 5 69583 4 1 51251 18332 0.8000 0.7365 0.7365 0.8449
14 8 6217 0 8 4902 1315 0.0000 0.7885 0.7875 0.4538
15 324 11219 52 272 7264 3955 0.1605 0.6475 0.6338 0.4787
16 28 35495 15 13 16035 7180 0.5357 0.6907 0.6905 0.6222
17 12 21170 5 7 18790 2380 0.4167 0.8876 0.8873 0.8475

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.3891 � 0.2456 0.3891 0.3391 0.3921 0.2642 0.3461 � 0.0598
SPE : 0.7808 � 0.1353 0.7808 0.7785 0.7914 0.7635 0.7785 � 0.0115
ACC : 0.7786 � 0.1348 0.7786 0.7768 0.7890 0.7873 0.7829 � 0.0061
AUC : 0.6333 � 0.1843 0.6333 0.6333 0.6251 0.4663 0.5895 � 0.0822

TABLE XIX: Detection performance of the NTD-KNN model based on Phan-Cichocki
Method

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 4 4 14774 371 0.5000 0.9755 0.9753 0.8168
2 635 20484 24 611 20224 260 0.0378 0.9873 0.9588 0.6726
3 6 14975 0 6 14774 201 0.0000 0.9866 0.9862 0.5693
4 16 30751 1 15 29298 1453 0.0625 0.9527 0.9523 0.3919
5 351 25916 76 275 25438 478 0.2165 0.9816 0.9713 0.4157
6 22 44387 3 19 43512 875 0.1364 0.9803 0.9799 0.5830
7 2 2036 0 2 1964 72 0.0000 0.9646 0.9637 0.2919
8 11 29351 2 9 28835 516 0.1818 0.9824 0.9821 0.7541
9 1 3742 0 1 3561 181 0.0000 0.9516 0.9514 0.8546
10 8 2371 1 7 2339 32 0.1250 0.9865 0.9836 0.8147
11 2 1565 0 2 1367 198 0.0000 0.8735 0.8724 0.6294
12 3 53302 0 3 50682 2620 0.0000 0.9508 0.9508 0.5142
13 5 69583 0 5 68476 1107 0.0000 0.9841 0.9840 0.5847
14 8 6217 1 7 6063 154 0.1250 0.9752 0.9741 0.5880
15 324 11219 46 278 9878 1341 0.1420 0.8805 0.8597 0.4977
16 28 35495 14 24 22052 1163 0.1429 0.9499 0.9489 0.5603
17 12 21170 2 10 20401 769 0.1667 0.9637 0.9632 0.7391

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.1080 � 0.1263 0.1080 0.1137 0.1073 0.0376 0.0917 � 0.0362
SPE : 0.9604 � 0.0342 0.9604 0.9459 0.9623 0.9490 0.9544 � 0.0082
ACC : 0.9563 � 0.0354 0.9563 0.9427 0.9543 0.9501 0.9509 � 0.0060
AUC : 0.6046 � 0.1581 0.6046 0.6046 0.6046 0.6629 0.6221 � 0.0278
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TABLE XX: Detection performance of the NTD-DT model based on Phan-Cichocki Method

Pat. Spikes Non-Spikes TP FP TN FN SEN SPE ACC AUC

1 8 15145 0 8 13095 2050 0.0000 0.8646 0.8642 0.3471
2 635 20484 113 522 19557 927 0.1780 0.9547 0.9314 0.6468
3 6 14975 3 3 12962 2013 0.5000 0.8656 0.8654 0.6766
4 16 30751 1 15 25835 4916 0.0625 0.8401 0.8397 0.4694
5 351 25916 141 210 22717 3199 0.4017 0.8766 0.8702 0.5361
6 22 44387 7 15 38052 6335 0.3182 0.8573 0.8570 0.6301
7 2 2036 0 2 1667 369 0.0000 0.8188 0.8180 0.2527
8 11 29351 3 8 26466 2885 0.2727 0.9017 0.9015 0.6313
9 1 3742 0 1 3349 393 0.0000 0.8950 0.8947 0.3799
10 8 2371 2 6 2268 103 0.2500 0.9566 0.9542 0.6296
11 2 1565 2 0 1200 365 1.0000 0.7668 0.7671 0.9112
12 3 53302 1 2 43466 9836 0.3333 0.8155 0.8154 0.4931
13 5 69583 0 5 63971 5612 0.0000 0.9193 0.9193 0.4586
14 8 6217 2 6 5380 837 0.2500 0.8654 0.8646 0.5709
15 324 11219 37 287 9069 2150 0.1142 0.8084 0.7889 0.5120
16 28 35495 6 22 19376 3839 0.2143 0.8346 0.8339 0.5517
17 12 21170 2 10 18437 2733 0.1667 0.8709 0.8705 0.4987

Average Performance: Mean � S.D. ρAM ρTA ρTWA ρTEW ρ̄ � S.D.
SEN : 0.2389 � 0.2469 0.2389 0.2219 0.2214 0.1862 0.2171 � 0.0222
SPE : 0.8654 � 0.0505 0.8654 0.8707 0.8701 0.8586 0.8662 � 0.0056
ACC : 0.8621 � 0.0495 0.8621 0.8682 0.8667 0.8612 0.8646 � 0.0034
AUC : 0.5409 � 0.1490 0.5409 0.5409 0.5339 0.4701 0.5214 � 0.0344
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Fig. 17: Detection performance of the four classifiers using Phan-Cichocki’s features.
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