
Thèse de Doctorat de
Université d’Orléans

École Doctorale N° 551
Mathématiques, Informatique, Physique
Théorique et Ingénierie des Systèmes

par

Trung Thanh LE
Signal and Image Data Stream Analytics:
From Subspace to Tensor Tracking

Thèse présentée et soutenue à Orléans, le 20/10/2022
Spécialité de doctorat : Informatique et Traitement du Signal
Unité de recherche : Université d’Orléans, INSA CVL, Laboratoire PRISME

Rapporteurs avant soutenance :

Laurent ALBERA Professeur, Université Rennes 1
Mohammed Nabil EL KORSO Professeur, Université Paris-Saclay

Composition du Jury :

Président : Philippe RAVIER Professeur, Université d’Orléans
Examinateurs : Laurent ALBERA Professeur, Université Rennes 1

Mohammed Nabil EL KORSO Professeur, Université Paris-Saclay
Roland BADEAU Professeur, Télécom ParisTech
Rémy BOYER Professeur, Université de Lille

Dir. de thèse : Karim ABED-MERAIM Professeur, Université d’Orléans
Co-dir. de thèse : Adel HAFIANE MCF-HDR, INSA Centre Val de Loire
Co-encadrant : Linh Trung NGUYEN Professeur Associé, Université Nationale due

Vietnam - Hanoi

Signal and Image Data Stream Analytics:

From Subspace to Tensor Tracking

by Trung Thanh LE

© Trung Thanh LE 2022

MIPTIS DS, PRISME

University of Orléans, INSA CVL

12 Rue de Blois, 45100 Orléans

France

Acknowledgments

This thesis marks the end of my three-year journey towards a Ph.D. degree

in Signal Processing from the University of Orléans, INSA CVL, PRISME. De-

spite having some difficulties and things that didn’t go as expected, I have still

enjoyed being a doctoral student at the PRISME Laboratory. I am so grate-

ful to have had the opportunity to meet, work with, and learn from so many

wonderful people.

To my supervisors. First of all, I would like to express my great appreciation

to Prof. Karim Abed-Meraim and Prof. Adel Hafiane, my supervisors at the

University of Orléans, INSA CVL, PRISME, and Prof. Nguyen Linh Trung,

my advisor at VNU University of Engineering and Technology. I am lucky

to work under the supervision of Prof. Karim who is very kind, friendly, and

unconditionally supportive throughout my study. Thank you very much for

giving me a lot of freedom to pursue my ideas in research. I am so grateful to

Prof. Adel for his useful comments on my works in regular meetings. With-

out the support of Prof. Trung, I wouldn’t have got where I am today, thank

you so much.

Tomy colleagues andmy friends. Many thanks tomy “senpai”, Dr. NguyenViet

Dung, for his suggestions and discussions onmy study as well as his academic

and social experience in France. Some results in my thesis are specifically

inspired from his works on subspace tracking and tensor decomposition. I

am very fortunate to have three fantastic friends, Guanglie Ouyang, Zuokun

Ouyang, and PhamMinh Tuan, whose sincerity and friendship are highly ap-

preciated. My Ph.D. journey has been much more fun and exciting with their

stories, talks, and moments. I would like to thank Dr. Hoang Vy Thuy Lynh

for her tremendous support during the years. As starting a new life abroad

is never easy, my life in France would not have been as pleasant as it is right

now without her help.

To my wife, my parents, and my late little brother. I am immensely thankful

to my wife, Vu Thi Kim Chung, for her love, care, and patience. She means

everything to me, she is the reason for my happiness and the anchor when

things are difficult for me. I am indebted to my parents for all their love and

support. Lastly, this thesis is specifically dedicated to the memory of my late

little brother, Le Long Xuyen, who has left a void never to be filled in my

family.

Thank you!

Le Trung Thanh

i

Contents

Acknowledgments i

Table of Contents ii

List of Figures vii

List of Tables xii

1 General Introduction 1

1.1 Big Data Stream Processing . 1

1.1.1 Vector, Matrix, and Tensor Operations 3

1.1.2 Batch Low-rank Approximation: From SVD to Tensor

Decomposition . 6

1.1.3 Online Low-rank Approximation: From Subspace to

Tensor Tracking . 10

1.2 Thesis Description . 12

1.2.1 Thesis Outline and Contributions 12

1.2.2 List of Publications . 16

2 An Overview of Robust Subspace Tracking 18

2.1 Introduction . 19

2.1.1 Related Work . 20

2.1.2 Main Contributions . 20

2.2 Robust Subspace Tracking: Problem Formulation 22

2.3 Robust Subspace Tracking in the Presence of Missing Data

and Outliers . 24

2.3.1 Grassmannian Algorithms 24

2.3.2 Recursive Least-Squares based Algorithms 26

2.3.3 Recursive Projected Compressive Sensing based Al-

gorithms . 26

2.3.4 Adaptive Projected Subgradient Method based Algo-

rithms . 27

2.3.5 Other Algorithms . 27

2.4 Robust Subspace Tracking in the Presence of Impulsive Noise 27

2.4.1 Robust Variants of PAST 27

2.4.2 Adaptive Kalman Filtering 28

ii

TABLE OF CONTENTS iii

2.4.3 Weighted Recursive Least-Squares Method 29

2.5 Robust Subspace Tracking in the Presence of Colored Noise . 29

2.5.1 Instrumental Variable based Algorithms 29

2.5.2 Oblique Projection based Algorithms 30

2.6 Sparse Subspace Tracking . 31

2.7 Conclusions . 32

3 Robust Subspace Tracking with Missing Data and Outliers 34

3.1 Introduction . 35

3.1.1 Related Works . 36

3.1.2 Contributions . 37

3.2 Problem Formulation . 38

3.2.1 Robust Subspace Tracking 39

3.2.2 Assumptions . 40

3.3 Proposed PETRELS-ADMM Algorithm 41

3.3.1 Online ADMM for Outlier Detection 42

3.3.2 Improved PETRELS for Subspace Estimation 46

3.3.3 Computational Complexity Analysis 48

3.4 Performance Analysis . 48

3.5 Experiments . 53

3.5.1 Robust Subspace Tracking 54

3.5.2 Robust Matrix Completion 64

3.5.3 Video Background/Foreground Separation 66

3.6 Conclusions . 66

3.7 Appendix . 66

3.7.1 Proof of Lemma 1 . 66

3.7.2 Proof of Proposition 2 70

3.7.3 Proof of Lemma 2 . 73

3.7.4 Proof of Lemma 3 . 75

3.7.5 Proof of Lemma 4 . 76

4 Sparse Subspace Tracking in High Dimensions 79

4.1 Introduction . 80

4.1.1 Related Works . 81

4.1.2 Contribution and Significance 82

4.1.3 Organization and Notations 83

4.2 Problem Formulation . 84

4.3 Proposed Methods . 85

4.3.1 OPIT Algorithm . 85

4.3.2 OPIT with Deflation 88

4.3.3 Discussions . 90

4.4 Convergence Analysis . 93

TABLE OF CONTENTS iv

4.5 Experiments . 96

4.5.1 Experiments with Synthetic Data 96

4.5.2 Experiments with Real Video Data 103

4.6 Conclusions . 105

4.7 Appendix . 106

4.7.1 Appendix A: Proof of Lemma 1 106

4.7.2 Appendix B: Proof of Lemma 2 107

4.7.3 Appendix C: Proof of Lemma 3 109

4.7.4 Appendix D: Proof of Lemma 4 110

5 An Overview of Tensor Tracking 117

5.1 Introduction . 118

5.1.1 State-of-the-art Surveys 119

5.1.2 Main Contributions . 121

5.2 Tensor Decompositions . 122

5.2.1 CP/PARAFAC Decomposition 123

5.2.2 Tucker Decomposition 123

5.2.3 Block-Term Decomposition 124

5.2.4 Tensor-train Decomposition 124

5.2.5 T-SVD Decomposition 125

5.3 Tensor Tracking Formulation 125

5.3.1 Single-aspect Streaming Model 125

5.3.2 Multi-aspect Streaming Model 127

5.3.3 General Formulation of Optimization 128

5.4 Streaming CP Decomposition 128

5.4.1 Subspace-based Methods 128

5.4.2 Block-Coordinate Descent 131

5.4.3 Bayesian Inference . 134

5.4.4 Multi-aspect streaming CP decomposition 136

5.5 Streaming Tucker Decomposition 138

5.5.1 Online Tensor Dictionary Learning 140

5.5.2 Tensor Subspace Tracking 144

5.5.3 Multi-aspect streaming Tucker decomposition 147

5.6 Other Streaming Tensor Decompositions 149

5.6.1 Streaming Tensor-Train Decomposition 149

5.6.2 Streaming Block-Term Decomposition 150

5.6.3 Streaming t-SVD Decomposition 152

5.7 Applications . 153

5.7.1 Computer Vision . 153

5.7.2 Neuroscience . 154

5.7.3 Anomaly Detection . 155

5.7.4 Others . 156

TABLE OF CONTENTS v

5.8 Conclusions . 156

6 Robust Tensor Tracking with Missing Data and Outliers 157

6.1 Introduction . 159

6.1.1 Related Works . 160

6.1.2 Main Contributions . 161

6.2 Tensor Tracking with Missing Data 163

6.2.1 Problem Statement . 163

6.2.2 Adaptive CP Decomposition 165

6.2.3 Adaptive Tucker Decomposition 172

6.3 Tensor Tracking with Sparse Outliers 177

6.3.1 Problem Statement . 177

6.3.2 Robust Adaptive CP Decomposition 179

6.3.3 Performance Analysis 187

6.4 Performance Evaluation . 192

6.4.1 Performance of ACP 192

6.4.2 Performance of ATD 198

6.4.3 Performance of RACP 203

6.5 Conclusions . 221

6.6 Appendix . 222

6.6.1 Appendix A: Proof of Lemma 9 222

6.6.2 Appendix B: Proof of Lemma 11 231

6.6.3 Appendix D: Proof of Lemma 12 235

6.6.4 Appendix D: Proof of Lemma 13 237

6.6.5 Appendix E: Useful Propositions 241

7 Tensor Tracking under Tensor-Train Format 243

7.1 Introduction . 244

7.2 Streaming Tensor-Train Decomposition 246

7.2.1 Problem Formulation 246

7.2.2 Proposed Method . 248

7.3 Streaming Tensor-Train Decomposition with Missing Data . . 252

7.3.1 Problem Formulation 252

7.3.2 Proposed Method . 253

7.4 Streaming Tensor-Train Decomposition with Sparse Outliers . 257

7.4.1 Problem Formulation 258

7.4.2 Proposed Method . 259

7.5 Experiments . 262

7.5.1 Performance of TT-FOA 263

7.5.2 Performance of ATT 267

7.5.3 Performance of ROBOT 271

7.6 Conclusions . 275

TABLE OF CONTENTS vi

8 Conclusions 277

8.1 Conclusions . 277

8.2 Research Challenges, Open Problems, and Future Directions . 279

8.2.1 Data Imperfection and Corruption 280

8.2.2 Rank Revealing and Tracking 281

8.2.3 Efficient and Scalable Tensor Tracking 282

8.2.4 Others . 283

A Résumé de la Thèse 285

A.1 Traitement de Flux de Données Volumineuses 285

A.1.1 Approximation de Rang Inférieur: Du SVD auDécom-

position du Tenseur 287

A.1.2 Approximation de Rang Inférieur en Ligne: Du Sous-

espace au Suivi Tensoriel 291

A.2 Description de la Thèse . 293

A.2.1 Sommaire et Contributions de la Thèse 293

A.2.2 Liste des Publications 296

Bibliography 299

List of Figures

1.1 Internet of Things . 2

1.2 SVD of a rank-𝑟 matrix X. 7

1.3 Multiway extensions of SVD to high-order tensors: CP/PARAFAC,

Tucker, BTD, tensor-train, and t-SVD. 8

1.4 Streaming data. 11

1.5 Effect of outliers on the standard PCA. 12

1.6 Thesis structure. 13

2.1 The structure of the survey. 23

3.1 Adaptive step size 𝜂𝑡 . 48

3.2 Convergence of PETRELS-ADMM in terms of the variation

∥s𝑘+1 − s𝑘 ∥2: 𝑛 = 50, 𝑟 = 2, 90% entries observed and outlier

density 𝜔outlier = 0.1. 55

3.3 Convergence of PETRELS-ADMM in terms of the variation

∥U𝑡+1 − U𝑡 ∥𝐹 : 𝑛 = 50, 𝑟 = 2, 90% entries observed and outlier

intensity fac-outlier = 10. 56

3.4 Outlier detection accuracy versus the noise level: 𝑛 = 50, 𝑟 =

2, 80% entries observed and 20% outliers. 57

3.5 Outlier detection and data reconstruction: 𝑛 = 50, 𝑟 = 2, 90%

entries observed, outlier intensity fac-outlier = 1, and outlier

density 𝜔outlier = 0.1. 58

3.6 Impact of outlier intensity on algorithm performance: 𝑛 = 50,

𝑟 = 2, 90% entries observed, outlier density 𝜔outlier = 0.1 and

SNR = 20 dB. 59

3.7 Impact of outlier density on algorithm performance: 𝑛 = 50,

𝑟 = 2, 90% entries observed, outlier intensity fac-outlier = 10

and SNR = 20 dB. 60

3.8 Impact of the density of missing entries on algorithm perfor-

mance: 𝑛 = 50, 𝑟 = 2, outlier density 𝜔outlier = 0.1, outlier

intensity fac-outlier = 10 and SNR = 20 dB. 61

3.9 Impact of the corruption fraction by missing data and outliers

on algorithm performance: 𝑛 = 50, 𝑟 = 2 and fac-outlier = 10

and SNR = 20 dB. 62

vii

LIST OF FIGURES viii

3.10 Impact of the additive noise on algorithm performance: 𝑛 =

50, 𝑟 = 2, 90% entries observed and 10% outliers with intensity

fac-outlier = 10. 63

3.11 PETRELS-ADMM in time-varying scenarios. 64

3.12 Effect of outlier intensity on robust matrix completion per-

formance. White color denotes perfect recovery, black color

denotes failure and gray colour is in between. 65

3.13 Qualitative illustration of video background-foreground sep-

aration application. 67

4.1 Effect of the forgetting factor 𝛽 98

4.2 Effect of the noise level 𝜎𝑛 on performance of OPIT: sparsity

level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%, time-varying factor 𝜀 = 10
−4
, and forget-

ting factor 𝛽 = 0.9. 99

4.3 Effect of the time-varying factor 𝜀 on performance of OPIT:

sparsity level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%, noise level 𝜎 = 10
−4
, and forget-

ting factor 𝛽 = 0.9. 99

4.4 Performance comparisons between OPIT and other SST algo-

rithms in the classical setting: dimension 𝑛 = 50, snapshots

𝑇 = 1000, and time-varying factor 𝜀 = 10
−3
. 100

4.5 Performance comparisons between OPIT and other SST al-

gorithms in high dimensions: target rank 𝑟 = 10, snapshots

𝑇 = 1000, and time-varying factor 𝜀 = 10
−3
. 101

4.6 OPITd versus OPIT: Run time. 102

4.7 Effect of the target rank 𝑟 on performance of OPITd: dimen-

sion 𝑛 = 100, snapshots 𝑇 = 3000, time-varying factor 𝜀 =

10
−3
, sparsity level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%, forgetting factor 𝛽 = 0.97,

and two abrupt changes at 𝑡 = 1000 and 𝑡 = 2000. 103

4.8 Effect of the sparsity level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 on performance of OPITd:

dimension 𝑛 = 100, rank 𝑟 = 20, snapshots 𝑇 = 3000, time-

varying factor 𝜀 = 10
−3
, forgetting factor 𝛽 = 0.97, and two

abrupt changes at 𝑡 = 1000 and 𝑡 = 2000. 103

4.9 Four video sequences used in this chapter. 104

4.10 Tracking ability of algorithms on the video datasets. 104

4.11 OPIT vs the best optimal power-based subspace tracker FAPI:

Data dimension 𝑛 = 100, true rank 10, number of snapshots

𝑇 = 2000, forgetting factor 𝛽 = 0.97, abrupt changes at 𝑡 = 500

and 𝑡 = 1500. 113

4.12 Performance comparisons between OPIT and other ST algo-

rithms in the classical setting: dimension 𝑛 = 50, snapshots

𝑇 = 1000, time-varying factor 𝜀 = 10
−3
, and the noise level

𝜎𝑛 = 10
−1
. 114

LIST OF FIGURES ix

4.13 Performance comparisons between OPIT and other SST al-

gorithms in high dimensions: target rank 𝑟 = 10, snapshots

𝑇 = 1000, time-varying factor 𝜀 = 10
−3
, and the noise level

𝜎𝑛 = 10
−1
. 115

4.14 𝑛 = 50,𝑇 = 200: rank 𝑟 = 10, time-varying 𝜖 = 10
−3
, spar-

sity 90%. 115

4.15 𝑛 = 1000,𝑇 = 500: rank 𝑟 = 10, time-varying 𝜖 = 10
−3
, spar-

sity 90% . 116

4.16 𝑛 = 2000,𝑇 = 2000: rank 𝑟 = 20, time-varying 𝜖 = 10
−3
,

sparsity 90% . 116

4.17 𝑛 = 5000,𝑇 = 2000: rank 𝑟 = 20, time-varying 𝜖 = 10
−3
,

sparsity 90% . 116

5.1 Structure of this chapter. 122

5.2 Single-aspect and multi-aspect streaming models. 126

5.3 Single-aspect streaming CP decomposition of a third-order

tensor. 129

5.4 Multi-aspect streamingCP decomposition of a third-order ten-

sor. 137

5.5 Online tensor dictionary learning. 140

5.6 Online tensor subspace learning. 144

5.7 Multi-aspect streaming Tucker decomposition of a three-order

tensor. 147

5.8 Single-aspect streaming tensor-train decomposition. 149

5.9 Tracking the rank-(𝐿, 𝐿, 1) BTD of 3-rd order streaming X𝑡 . . 151

6.1 Incomplete streaming tensors. 164

6.2 Temporal slice Y𝑡 with missing data and sparse outliers. . . . 177

6.3 Effect of the forgetting factor 𝛽 on the performance of ACP

versus the rotation angle 𝛼 . 194

6.4 Performance of ACP in stationary environments: Y𝑡 ∈ R20×20×20×1000
,

the true rank 𝑟 = 5, an abrupt change at 𝑡 = 500. 194

6.5 Convergence behavior of ACP in terms of the objective values

𝑓𝑡 (U𝑡) and ∥U𝑡+1 − U𝑡 ∥𝐹 . 195
6.6 Effect of the noise level 𝜎 on the performance of ACP. 196

6.7 Time-varying scenarios: ACP’s tracking ability versus themiss-

ing density 𝜌 and the rotation angle 𝛼 : The noise level 𝜎 =

10
−3

and an abrupt change at 𝑡 = 600. 196

6.8 Tracking ability of four adaptive CP algorithms in a time-

varying scenario with 50% missing observations: The tensor

of size 20 × 20 × 1000, the noise level 𝜎 = 10
−3
, the rotation

angle 𝛼 = 𝜋/360 and an abrupt change at 𝑡 = 600. 197

LIST OF FIGURES x

6.9 Performance of four adaptive CP algorithms on synthetic 3-

order tensors: The noise level 𝜎 = 10
−3

and the rotation angle

𝛼 = 𝜋/360. 197

6.10 Performance of ATD versus the missing density 𝜌 and the

noise level 𝜎 : On the 4-order tensor of size 20 × 20 × 20 × 500

and its Tucker rank rTD = [3, 3, 3, 3]. 199
6.11 Performance of Tucker algorithms in the case where 50% en-

tries are observed and Tucker rank rTD = [3, 3, 3, 3], and the

noise level 𝜎 = 10
−2
. 201

6.12 Effect of the time-varying factor 𝜀 on the performance of ATD:

Tucker rank [3, 3, 3, 3], 90% entries are observed, the noise

level is 𝜎 = 10
−2

and an abrupt change at 𝑡 = 300. 202

6.13 Comparison of ATD and ATD-O (orthogonality constraint) in

a dynamic scenario: the time-varying factor 𝜀 = 10
−2
, the

noise level 𝜎 = 10
−3
, 70% observations are observed and an

abrupt change at 𝑡 = 300. 203

6.14 Effect of the forgetting factor 𝛽 on the video completion ac-

curacy of ACP and ATC on Lobby data. 204

6.15 Performance of adaptive tensor completion algorithms on the

video sequences. 205

6.16 Waveform-preserving character of ACP on the EEG tensor:

20 channels are missing. 205

6.17 Waveform-preserving character of ACP on the EEG tensor:

40 channels are missing. 207

6.18 Effect of data corruptions (outliers andmissing values) on per-

formance of RACP. Black color denotes failure, white color

denotes perfect estimation, and gray color is in between. . . . 207

6.19 Performance of RACP in time-varying environments. 208

6.20 Impact of outlier intensity (𝐴outlier) on performance of adap-

tive CP algorithms; 𝜔miss = 10%, 𝜔outlier = 20%, 𝜎 = 10
−2
,

𝜀 = 10
−2
. 208

6.21 Impact of outlier density (𝜔outlier) on performance of adap-

tive CP algorithms: 𝜔miss = 10%, 𝜎 = 10
−2
, 𝜀 = 10

−2
,𝐴outlier =

10. 209

6.22 Non-Gaussian loading factors. 210

6.23 Outlier rejection with different trackers. 211

6.24 Convergence rate of RACP and its modification with the re-

update of P𝑡 as defined in (6.61): 𝜔miss = 10%, 𝜔outlier =

10%, 𝐴outlier = 10, 𝜎 = 10
−2
, and 𝜀 = 10

−2
. 212

6.25 Incomplete observations & time-varying scenarios: Perfor-

mance of NRACP on a synthetic rank-5 tensor of size 50 ×
50 × 50 × 500; 𝜎𝑛 = 10

−3
, 𝐴outlier = 10, 𝜔outlier = 10%. . . . 212

LIST OF FIGURES xi

6.26 Nonnegative adaptive CP decompositions: Outliers-free, full

observations and an abrupt change at 𝑡 = 600. 213

6.27 Experimental results on the Intel Berkeley Lab data. 214

6.28 Completion accuracy of adaptive CP algorithms on real-world

data streams. 215

6.29 Epileptic EEG Dataset. 216

6.30 First component of EEG factors when 40/60 EEG channels are

missing. 218

6.31 The error 𝑒𝑡 over time with 𝛼 = 1.5 and 𝐿𝑡 = 𝑡 . Normal data

which are inaccurately labelled as abnormal are referred to as

“false positive”. 219

6.32 Three video surveillance sequences. 220

6.33 Qualitative illustration of video background modeling results. 220

6.34 Qualitative illustration of video foreground detection results. 221

7.1 Tensor-train decomposition of X ∈ R𝐼1×𝐼2×···×𝐼𝑁 245
7.2 Streaming Tensor-Train Decomposition of X𝑡 ∈ R𝐼1×···×𝐼𝑁 −1×𝐼𝑡𝑁 . 246
7.3 Temporal slice Y𝑡 with missing data and outliers. 258

7.4 Effect of the forgetting factor 𝛽 on the performance of TT-FOA. 263

7.5 Effect of the noise level 𝜖 on the performance of TT-FOA. . . . 264

7.6 Effect of the time-varying factor 𝜎 on the performance of TT-

FOA in the case of noise-free. 265

7.7 Performance of three TT decomposition algorithms in a time-

varying scenario: The noise level 𝜖 = 10
−1

and the time vari-

ance factor 𝜎 = 10
−4
. 265

7.8 Track surveillance video: TT-rank rTT = [15, 15] and CP-rank
𝑟CP = 15. 266

7.9 Reconstructed 1345-th frame. 267

7.10 Effect of TT-rank on the low-rank approximation of fMRI scans:

(a) original MRI scan, (b)-(d) low-rank approximation images

for rTT of [10, 10], [20, 20] and [50, 50] respectively. 268

7.11 Effect of the noise level 𝜎𝑛 on the tracking ability of ATT. . . . 269

7.12 Effect of the time-varying factor 𝜀 on the tracking ability of

ATT. 270

7.13 Effect of the missing density 𝜔miss on the tracking ability of

ATT. 271

7.14 The 500-th video frame of “Hall” data: 80% pixels are missing. 271

7.15 Effect of the noise level 𝜎𝑛 on the performance of ROBOT. . . 273

7.16 Effect of the varying factor 𝜖 on the performance of ROBOT. . 274

7.17 Effect of the missing density 𝜔𝑚𝑖𝑠𝑠 on the tracking ability of

ROBOT. 274

7.18 Effect of the outliers on the tracking ability of ROBOT. 275

LIST OF FIGURES xii

7.19 Background and foreground separation. From bottom to top

row: Highway, Hall, and Lobby. From left to right column:

Original video frame, PETRELS-ADMM, GRASTA, and ROBOT. 276

A.1 SVD d’une matrice X. 287
A.2 Multiway extensions of SVD to high-order tensors: CP/PARAFAC,

Tucker, BTD, tensor-train, and t-SVD. 289

A.3 Données en continu. 292

A.4 Effet des valeurs aberrantes sur la norme PCA 294

List of Tables

1.1 Main differences between batch processing and stream pro-

cessing . 3

2.1 Surveys on PCA/SE and ST . 21

2.2 Robust subspace tracking algorithms in the presence of both

missing data and sparse outliers. 25

2.3 Robust subspace tracking algorithms in the presence of im-

pulsive noise. 28

2.4 Robust subspace tracking algorithms in the presence of col-

ored noise. 30

2.5 Sparse subspace tracking algorithms 31

4.1 Runtime and averaged relative error of adaptive algorithms

on tracking the four video sequences. 105

5.1 The State-of-the-art Surveys on Tensor Decompositions and

Applications . 120

5.2 Main features of the state-of-the-art single-aspect streaming

CP decomposition algorithms. 130

5.3 Main features of multi-aspect streaming CP decomposition al-

gorithms. 138

5.4 Main features of the state-of-the-art streaming Tucker decom-

position algorithms. 139

6.1 Performance of Tucker algorithms on a static 4-order tensor

of size 20 × 20 × 20 × 500 and the noise level 𝜎 = 10
−2
. 200

6.2 Performance of adaptive tensor decompositions on video data.

. 206

6.3 Real datasets under the study. 213

6.4 Averaged errors of adaptive CP algorithms for multichannel

EEG analysis from incomplete observations. 217

6.5 Anomaly EEG detection results. Sensitivity and specificity

measure the percentage of anomaly and normal data detected

correctly, respectively. Accuracy indicates the overall. 219

xiii

LIST OF TABLES xiv

7.1 Averaged relative error of adaptive tensor decompositions on

incomplete video sequences. 272

A.1 Principales différences entre le traitement par lots et le traite-

ment des flux . 286

Acronyms

ADMM Alternating Direction Method of Multipliers

ALS Alternating Least-Squares

BCD Block-Coordinate Descent

BTD Block-term Decomposition

CANDECOMP Canonical Decompostion

CP CANDECOMP/PARAFAC

EVD Eigenvalue Decomposition

FFT, iFFT Fast Fourier transform and its inverse

HDLSS High Dimension and Low Sample Size

HOOI Higher Order Orthogonal Iteration

HOSVD Higher-Order SVD

IoT Internet of Things

LRA Low-rank Approximation

PARAFAC Parallel Factors

PCA Principal Component Analysis

RE Relative Error

RLS Recursive Least Squares

SCM Sample Covariance Matrix

SEP Subspace Estimation Performance

ST Subspace Tracking

SVD Singular Value Decomposition

TD Tensor Decomposition

T-SVD Tensor SVD

TT Tensor Train

xv

Notations

R (resp. C) set of real (resp. complex) numbers

𝑥, x,X, X, and X scalar, vector, matrix, tensor, and set/subset/support

X(𝑖, 𝑗)/[X]𝑖 𝑗 (𝑖, 𝑗)-th entry of X
X(𝑖1, . . . , 𝑖𝑁)/[X]𝑖1 ...𝑖𝑁 (𝑖1, . . . , 𝑖𝑁)-th entry of X

x = vec(X) vectorization of X
X = diag(x) diagonal matrix X with x on the main diagonal

X(𝑖, :),X(:, 𝑗) 𝑖-th row and 𝑗-th column of X
X⊤, X−1 X#

transpose, inverse, and pseudo-inverse of X
𝜆max(X), 𝜆min(X) largest and smallest singular values of X
𝜅 (X) condition number of X equal to

𝜆max (X)
𝜆min (X)

rank(X) rank of X
span(X) the column space of a tall matrix X
tr(X) trace of X
𝜃 (X,Y) canonical angle between span(X) and span(Y)
I𝑛 𝑛 × 𝑛 identity matrix

U(𝑛) 𝑛-th loading factor/matrix

X(𝑛) , unfold𝑛 (X) mode-𝑛 unfolding of X

Y = bcirc(X) block circulant tensor Y specified by X

◦, ⊛, ⊙, ⊗ outer, Hadamard, Khatri-Rao, and Kronecker product⊙𝑁

𝑛=1
U(𝑛) U(𝑁) ⊙ U(𝑁−1) ⊙ · · · ⊙ U(1)⊗𝑁

𝑛=1
U(𝑛) U(𝑁) ⊗ U(𝑁−1) ⊗ · · · ⊗ U(1)

X ×𝑛 U 𝑛-mode product of X with U,
X ×1

𝑛 Y mode-(𝑛, 1) contracted product of X with Y

X ⊞𝑛 Y concatenation of X with Y along the 𝑛-th mode

xvi

X ∗ Y t-product of X with Y

X ⊆ Y X is a sub-tensor of Y

J{U(𝑛) }𝑁𝑛=1
K

∑𝑟
𝑖=1

U(1) (:, 𝑖) ◦ U(2) (:, 𝑖) ◦ · · · ◦ U(𝑁) (:, 𝑖)
JX; {U(𝑛) }𝑁𝑛=1

K X ×1 U(1) ×2 U(2) ×3 · · · ×𝑁 U(𝑁)

∥ .∥𝐹 , ∥.∥𝑝 , ∥.∥∗ Euclidean norm, ℓ𝑝 norm, and nuclear norm

⌊𝑥⌉ integer closest to 𝑥

max{𝑥,𝑦} maximum of 𝑥 and 𝑦

min{𝑥,𝑦} mminimum of 𝑥 and 𝑦

(.)⊥ orthogonal (perpendicular) complement

E[.] expectation operator

∼ distributed as

∝ proportional to

N(𝜇, 𝜎2) Gaussian distribution of mean 𝜇 and variance 𝜎2

N(𝝁, 𝚺) Gaussian vector distribution of mean 𝝁 and variance 𝚺

xvii

General Introduction 1

1.1 Big Data Stream Processing . 1

1.1.1 Vector, Matrix, and Tensor Operations 3

1.1.2 Batch Low-rank Approximation: From SVD to Tensor

Decomposition . 6

1.1.3 Online Low-rank Approximation: From Subspace to

Tensor Tracking . 10

1.2 Thesis Description . 12

1.2.1 Thesis Outline and Contributions 12

1.2.2 List of Publications . 16

1.1 Big Data Stream Processing

Stream processing has recently attracted much attention from both academia

and industry due to the fact that massive data streams have been increas-

ingly collected over the years and they can be smartly mined to discover new

insights and valuable information [1–3]. For example, we are living in the In-

ternet of Things (IoT) era where a huge number of sensing devices have been

installed and developed, see Fig. 1.1. These devices have the capability to col-

lect, manage, and transmit data via IoT networks in real time. Accordingly,

stream processing is required to retrieve important insights from such IoT

data in seconds or even faster for facilitating real-time decision making [4].

In many modern online applications, data streams have three “V” charac-

teristics: Volume, Velocity, and Veracity. As they are continuously generated,

their volume grows significantly over time and possibly to infinity. Thus, one

of the most notable features of streaming data is that they are unbounded

sequences of data samples. Velocity refers to the high-speed data arrival rate

and real-time processing. Data collected from user interactions in social net-

works (e.g., Facebook, Instagram, and Twitter) are, for example, at very high

velocity. Veracity implies the suitability, credibility, and trustworthiness of

data streams. More specifically, this characteristic relates to the biasedness,

noise, uncertainty, incompleteness, and abnormality in data. Apart from the

three “V”s, streaming data have some other distinctive characteristics, in-

cluding time sensitivity/variation (aka concept drift), heterogeneity (different

sources with diversity of data types), volatile and unrepeatable property, and

1

CHAPTER 1. GENERAL INTRODUCTION 2

Internet of

Things

Figure 1.1: Internet of Things

so on [2, 3, 5, 6]. These characteristics lead to several inherent requirements

and computational issues for stream processing, such as:

■ Low latency: Stream methods and systems need to efficiently acquire,

manage, and process flows of data without introducing additional de-

lays.

■ Low memory storage: Stream methods and systems must have the abil-

ity to operate in an online fashion with limited memory resources.

■ Scalability: As streaming data normally grow in size much faster than

computational resources, stream processing requires scalable methods

and systems.

■ Time variation: As streaming data can evolve with time, stream meth-

ods and systems are required to be capable of tracking their variation

along the time.

■ Robustness: In many cases, streaming data are imperfect and unreliable,

so stream methods and systems should have the potential to estimate

and compute answers from corrupted observations.

They are, however, also potential benefits of stream processing against batch

processing, we refer the readers to Table. 1.1 for a brief comparison between

the two kinds of processing.

In this work, we mainly focus on stream methods which are capable of

tracking the low-rank approximation (LRA) of big data streams over time.

Technically, the primary objective of the LRA is to approximate high-dimensional

data by a more compact low-dimensional representation with limited loss of

information [7]. Therefore, finding the LRA is a fundamental and essential

CHAPTER 1. GENERAL INTRODUCTION 3

Table 1.1: Main differences between batch processing and stream processing

Features Batch Processing Stream Processing

Input Large batches/chunks of data (Continuous) streams of data

Data size Known and finite Unknown and/or infinite

Data type Static Dynamic/time-varying

Processing

Process data all at once Process data streams in (near) real time

Process in multiple passes Process in one- or two-pass

Response Provide after completion Provide immediately

Hardware

Require much storage Require much less storage or no storage

Require much processing resources Require much less processing resources

Time Take longer time, latencies

Take a few seconds or faster

in minutes to hours

task for data mining in general and streaming data analytics in particular. For

the sake of convenience and convention, in what follows, we first list some

linear and multilinear algebraic operations (for vectors, matrices, and ten-

sors) that are frequently used throughout this manuscript. Next, we introduce

one of the most well-known linear algebra techniques for finding the LRA of

matrices in batch setting, singular value decomposition (SVD), and then de-

scribe its connection to some common types of tensor decomposition (TD).

Finally, we present their online (adaptive) variants for dealing with stream-

ing data derived from one-dimensional observations (i.e., SVD → subspace

tracking) and multi-dimensional observations (i.e., tensor decomposition→
tensor tracking).

1.1.1 Vector, Matrix, and Tensor Operations

In this thesis, we use the following notational conventions. Lowercase, bold-

face lowercase, and boldface capital letters denote scalars (e.g., 𝑥), vectors

(e.g., x), and matrices (e.g.,X), respectively. Calligraphic and bold calligraphic
letters are used to represent sets/subsects/supports (e.g., X) and tensors (e.g.,
X), respectively. For index notations, we use 𝑥𝑖 or x(𝑖) to denote the 𝑖-th

element of x. The (𝑖, 𝑗)-th element, the 𝑖-th row, and the 𝑗-th column of X
are denoted by 𝑥𝑖, 𝑗 or X(𝑖, 𝑗), X𝑖,: or X(𝑖, :), and X:, 𝑗 or X(:, 𝑗), respectively.
We denote by X⊤, X−1

, and X#
the transpose, inverse, and pseudo-inverse of

X, respectively. The (𝑖1, 𝑖2, . . . , 𝑖𝑁)-th element of X is represented by 𝑥𝑖1,𝑖2,...,𝑖𝑁 ,

X(𝑖1, 𝑖2, . . . , 𝑖𝑁), or [X]𝑖1,𝑖2,...,𝑖𝑁 . In addition, X:,...,:,𝑖𝑛,:,...,: orX(:, . . . , :, 𝑖𝑛, :, . . . , :)
represents a sub-tensor of X obtained by holding the 𝑛-th index of X at 𝑖𝑛 .

CHAPTER 1. GENERAL INTRODUCTION 4

The mode-𝑛 matricization of X is denoted by X(𝑛) . Symbols ∥ .∥𝑝 and ∥ .∥𝐹
represent the ℓ𝑝 norm and Frobenius norm. In the following, we summarize

some useful linear and multilinear algebraic operations, to be used later.

Outer product: Given two vectors x ∈ R𝑁×1
and y ∈ R𝑀×1

, their outer

product is defined as follows

x ◦ y =


𝑥1𝑦1 𝑥1𝑦2 . . . 𝑥1𝑦𝑀

𝑥2𝑦1 𝑥2𝑦2 . . . 𝑥2𝑦𝑀
...

...
. . .

...

𝑥𝑁𝑦1 𝑥𝑁𝑦2 . . . 𝑥𝑁𝑦𝑀


=

[
𝑦1x 𝑦2x . . . 𝑦𝑀x

]
∈ R𝑁×𝑀 .

(1.1)

For a generalized case, the outer product of two tensors X ∈ R𝐼1×𝐼2×···×𝐼𝑁
and Y ∈ R𝐽1× 𝐽2×···× 𝐽𝑀 yields a tensor Z = X ◦ Y ∈ R𝐼1×···×𝐼𝑁 × 𝐽1×···× 𝐽𝑀 with

elements

Z(𝑖1, 𝑖2, . . . , 𝑖𝑁 , 𝑗1, 𝑗2, . . . , 𝑗𝑀) = X(𝑖1, 𝑖2, . . . , 𝑖𝑁)Y (𝑗1, 𝑗2, . . . , 𝑗𝑀) . (1.2)

Kronecker product: Given two matrices X ∈ R𝑁×𝑀 and Y ∈ R𝑃×𝑄 , the
Kronecker product of X and Y results in an 𝑁𝑃 ×𝑀𝑄 matrix of the following

form

X ⊗ Y =


𝑥1,1Y 𝑥1,2Y . . . 𝑥1,𝑀Y
𝑥2,1Y 𝑥2,2Y . . . 𝑥2,𝑀Y
...

...
. . .

...

𝑥𝑁,1Y 𝑥𝑁,2Y . . . 𝑥𝑁,𝑀Y


∈ R𝑁𝑃×𝑀𝑄 . (1.3)

Khatri-Rao product (aka Column-wise Kronecker product): Given two ma-

trices Y ∈ R𝑁×𝑟 and Y ∈ R𝑀×𝑟 , their Khatri-Rao product is an 𝑁𝑀 × 𝑟 matrix

of the following form

X ⊙ Y =

[
X(:, 1) ⊗ Y(:, 1) X(:, 2) ⊗ Y(:, 2) . . . X(:, 𝑟) ⊗ Y(:, 𝑟)

]
∈ R𝑁𝑀×𝑟 .

(1.4)

For short, we denote the Kronecker product and Khatri-Rao product of a se-

quence of matrices {U(𝑛) }𝑁𝑛=1
as follows

𝑁⊗
𝑛=1

U(𝑛) = U(𝑁) ⊗ U(𝑁−1) ⊗ · · · ⊗ U(1) , (1.5)

𝑁⊙
𝑛=1

U(𝑛) = U(𝑁) ⊙ U(𝑁−1) ⊙ · · · ⊙ U(1) . (1.6)

CHAPTER 1. GENERAL INTRODUCTION 5

Tensor unfold and fold operations: The unfold of X ∈ R𝐼1×𝐼2×···×𝐼𝑁 , written
as unfold(X), returns a tensor Z of lower order:

Z = unfold
(
X

)
=


X:,...,:,1

X:,...,:,2

...

X:,...,:,𝐼𝑁


∈ R𝐼1𝐼𝑁 ×𝐼2×𝐼3×···×𝐼𝑁 −1 . (1.7)

Its inverse operator denoted by fold(Z) reshapes Z back to X as

fold
(
unfold(X)

)
= X. (1.8)

Tensor concatenation: The concatenation of two tensors X ∈ R𝐼1×𝐼2×···×𝐼𝑁
and Y ∈ R𝐼1×···×𝐼𝑁 −1×𝑊

along the last dimension results in Z = X ⊞ Y ∈
R𝐼1×···×𝐼𝑁 −1×(𝐼𝑁 +𝑊)

with elements

Z(𝑖1, 𝑖2, . . . , 𝑖𝑁) =
{
X(𝑖1, 𝑖2, . . . , 𝑖𝑁), if 𝑖𝑁 ≤ 𝐼𝑁 ,
Y (𝑖1, 𝑖2, . . . , 𝑖𝑁), if 𝐼𝑁 +𝑊 ≥ 𝑖𝑁 > 𝐼𝑁 .

(1.9)

Mode-𝑛 product: The mode-𝑛 product of a tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 with

a matrix U ∈ R𝐽 ×𝐼𝑛 returns a tensor Z = X ×𝑛 U ∈ R𝐼1×···×𝐼𝑛−1× 𝐽 ×𝐼𝑛+1×···×𝐼𝑁

with elements

Z(𝑖1, . . . , 𝑖𝑛−1, 𝑗, 𝑖𝑛+1, . . . , 𝑖𝑁) =
𝐼𝑛∑︁
𝑖𝑛=1

X(𝑖1, . . . , 𝑖𝑛−1, 𝑖𝑛, 𝑖𝑛+1, . . . , 𝑖𝑁)U(𝑗, 𝑖𝑛) .

(1.10)

The mode-𝑛 product of X with 𝑁 matrices {U(𝑛) }𝑁𝑛=1
along all 𝑁 modes is

denoted as

r
X,

{
U(𝑛)

}𝑁
𝑛=1

z
= X ×1 U(1) ×2 U(2) ×3 · · · ×𝑁 U(𝑁) . (1.11)

Mode-(𝑁, 1) product (aka tensor-train contraction): The mode-(𝑁, 1) prod-
uct of X ∈ R𝐼1×𝐼2×···×𝐼𝑁 with Y ∈ R𝐼𝑁 × 𝐽2×···× 𝐽𝑀 , written as X ×1

𝑁
Y, results

in a tensor Z ∈ R𝐼1×···× 𝐽𝑁 −1× 𝐽2×···× 𝐽𝑀
with elements

Z(𝑖1, . . . , 𝑖𝑁−1, 𝑗2, . . . , 𝑗𝑀) =
𝐼𝑁∑︁
𝑖𝑁 =1

X(𝑖1, . . . , 𝑖𝑁−1, 𝑖𝑁)Y (𝑖𝑁 , 𝑗2, . . . , 𝑗𝑀) . (1.12)

T-product: The t-product of X ∈ R𝐼1×𝐼2×···×𝐼𝑁 and Y ∈ R𝐼2× 𝐽 ×𝐼3×···×𝐼𝑁 ,
written as X ∗ Y, returns an 𝐼1 × 𝐽 × 𝐼3 × · · · × 𝐼𝑁 tensor Z of the recursive

form

Z = X ∗ Y = fold
(
bcirc(X) ∗ unfold(Y)

)
, (1.13)

CHAPTER 1. GENERAL INTRODUCTION 6

where circ(.) is a block circulant tensor defined as

bcirc(U) =


U1 U𝐼𝑁 U𝐼𝑁 −1

. . . U2

U2 U1 U𝐼𝑁 . . . U3

...
. . .

. . .
. . .

...

U𝐼𝑁 U𝐼𝑁 −1
. . . U2 U1


, (1.14)

where U𝑖 = U :,...,:,𝑖 and the base case of the t-product of two 3-order tensors

A ∈ R𝐽1× 𝐽2× 𝐽3 and B ∈ R𝐽2×𝐾× 𝐽3 is defined as

A ∗ B = fold
(
bcirc(A) · unfold(B)

)
∈ R𝐽1×𝐾× 𝐽3 . (1.15)

Inner product: Given two tensors X and Y of the same size 𝐼1×𝐼2×· · ·×𝐼𝑁 ,
their inner product is defined as

〈
X, Y

〉
=

𝐼1∑︁
𝑖1

𝐼2∑︁
𝑖2

· · ·
𝐼𝑁∑︁
𝑖𝑁

X(𝑖1, 𝑖2 . . . , 𝑖𝑁)Y (𝑖1, 𝑖2 . . . , 𝑖𝑁). (1.16)

1.1.2 Batch Low-rank Approximation: From SVD to Tensor
Decomposition

It is very well known that SVD is one of the most powerful and widely-

used linear algebra techniques with a number of applications in various do-

mains [8, 9]. Particularly, the compact SVD of a rank-𝑟 matrix X ∈ R𝐼1×𝐼2 is
given by

X SVD

=

[
u1, u2, . . . , u𝑟

]
︸ ︷︷ ︸

U


𝜆1

𝜆2

. . .

𝜆𝑟

︸ ︷︷ ︸
𝚲


v⊤

1

v⊤
2

...

v⊤𝑟

︸︷︷︸
V⊤

=

𝑟∑︁
𝑖=1

𝜆𝑖u𝑖v⊤𝑖 , (1.17)

where U ∈ R𝐼1×𝑟 and V ∈ R𝐼2×𝑟 are unitary matrices; and 𝚲 ∈ R𝑟×𝑟 is a

diagonal matrix whose diagonal values are positive, i.e., 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑟 >
0, see Fig. 1.2 for an illustration. For the problem of low-rank approximation

in batch setting, the following theorem indicates that SVD can give the best

LRA for any matrix X.

CHAPTER 1. GENERAL INTRODUCTION 7


   1 r

1u
1v

X U

V

 rv

ru

Figure 1.2: SVD of a rank-𝑟 matrix X.

Theorem 1 (Eckart-Young-Mirsky Theorem [9]) Denote by X =

U𝚲V⊤ the SVD of X ∈ R𝐼1×𝐼2 . If 𝑘 ≤ rank(X) and X𝑘 =
∑𝑘
𝑖=1
𝜆𝑖u𝑖v⊤𝑖 ,

then

min

A∈R𝐼1×𝐼2
rank(A)≤𝑘

X − A

 =

X − X𝑘

, (1.18)

with respect to both the spectral norm and Frobenius norm.

Thanks to Theorem 1, the best rank-𝑘 approximation ofX can be obtained

by applying the following procedure:

■ Step 1: Compute X SVD

= U𝚲V⊤, where U ∈ R𝐼1×𝐼1 and V ∈ R𝐼2×𝐼2 are

unitary matrices, and the diagonal matrix 𝚲 ∈ R𝐼1×𝐼2 contains positive
diagonal entries in descending order.

■ Step 2: Select the first 𝑘 singular vectors from U and V to form the

following matrices U𝑘 = U(:, 1 : 𝑘) and V𝑘 = V(:, 1 : 𝑘).
■ Step 3: Select the top 𝑘 strongest singular values in 𝚲 to form: 𝚲𝑘 =

𝚲(1 : 𝑘, 1 : 𝑘) .
■ Step 4: Derive the best rank-𝑘 approximation ofX from: X𝑘 = U𝑘𝚲𝑘V⊤𝑘 .

When dealing with tensors (aka, multidimensional arrays), several mul-

tiway extensions of the SVD have been developed for tensor decomposition

(TD) in the literature [10–13]. The five common types of TD are CP/PAR-

FAC [14], Tucker/HOSVD [15], tensor-train/network [16], t-SVD [17], and

block-term decomposition (BTD) [18], see Fig. 1.3 for illustrations. Specifi-

cally, they aim to factorize a tensor into a set of basis components (e.g., vec-

tors, matrices, or simpler tensors) and hence offer good low-rank tensor ap-

proximations. In the following, we describe their connection to SVD and refer

the readers to Chapter 5 for further details on their main features, properties,

and algorithms.

CP/PARAFAC Decomposition: Similar to SVD that represents X by a sum

of rank-1 matrices (i.e., 𝜆𝑖u𝑖v⊤𝑖), the CP decomposition also factorizes a tensor

CHAPTER 1. GENERAL INTRODUCTION 8

(1)
U (2)

U

(
)N

U

1 2

N

G

   

X (2) (: 1),U

  
  

(
) (:

)

N

,r

U

(2) (:),rU

(1) (:),rU





(2)

1U

1

2

N

1G
(1)

1U

()

1

N
U



 VG 1

1
1

2
1

N
(1)

G
(2)

G (1)N 
G

()N
G1

1N   

(1) (: 1),U

CP/PARAFAC

X

Tensor-Train


X

Tucker/HOSVD

T-SVD

X

  

(2) (:),rU

(1) (: 2),U



(
) (:

2
)

N

,

U
BTD

X

(2)

2U

1

2

N

2G
(1)

2U

()

2

N
U



(2)

rU

1

2

N

rG
(1)

rU

()N

rU



(
) (:

1)

N

,

U

U

  

Figure 1.3: Multiway extensions of SVD to high-order tensors: CP/PARAFAC,

Tucker, BTD, tensor-train, and t-SVD.

X ∈ R𝐼1×𝐼2×···×𝐼𝑁 into rank-1 terms:

X
CP

=

𝑟∑︁
𝑖=1

𝜆𝑖 u
(1)
𝑖
◦ u(2)

𝑖
◦ · · · ◦ u(𝑁)

𝑖︸ ︷︷ ︸
rank-1 term

, (1.19)

where u(𝑛)
𝑖
∈ R𝐼𝑛×1

with 1 ≤ 𝑛 ≤ 𝑁 plays the same role as singular vectors

of U and V in the SVD model (1.17) (note that u𝑖v⊤𝑖 = u𝑖 ◦ v𝑖) [14]. The

matrix U(𝑛) =
[
u(𝑛)

1
, u(𝑛)

2
, . . . , u(𝑛)𝑟

]
is the 𝑛-th CP factor of X and it is not

required to be orthogonal. Following the general definition of matrix rank,

the smallest integer 𝑟 satisfying (1.19) is referred to as the tensor (CP) rank of

X. Under certain conditions, CP decomposition is essentially unique up to a

permutation and scale which is an useful property in many applications.

Tucker/HOSVD Decomposition: Apart from the classical form (1.17), we

can express the SVD of X as follows

X SVD

= U𝚲V⊤ = 𝚲︸︷︷︸
core

×1U ×2 V︸ ︷︷ ︸
2 factors

. (1.20)

Accordingly, a direct multiway extension of (1.20) to high-order tensors can

be given by

X
Tucker

= G︸︷︷︸
core

×1U(1) ×2 U(2) ×3 · · · ×𝑁 U(𝑁)︸ ︷︷ ︸
𝑁 factors

, (1.21)

CHAPTER 1. GENERAL INTRODUCTION 9

where the core G ∈ R𝑟1×𝑟2×···×𝑟𝑁
is a tensor of smaller size than X (i.e., 𝑟𝑛 ≤

𝐼𝑛 ∀𝑛) and 𝑁 tensor factors {U(𝑛) }𝑁𝑛=1
, U(𝑛) ∈ R𝐼𝑛×𝑟𝑛 are orthogonal matrices.

The representation model (1.21) is regarded as the high-order SVD (HOSVD)

or Tucker format [15]. Unlike the SVD and CP, Tucker/HOSVD is not unique

in general. However, as the subspace covering U(𝑛) is physically unique, its

main objective is for finding principal subspaces of the tensor factors [11].

Block-Term Decomposition: BTD factorizes X into several blocks of low

multilinear-rank instead of rank-1 terms

X
BTD

=

𝑟∑︁
𝑖=1

G𝑖 ×1 U
(1)
𝑖
×2 U

(2)
𝑖
×3 · · · ×𝑁 U(𝑁)

𝑖︸ ︷︷ ︸
low multilinear-rank term

. (1.22)

The BTD can be viewed as a unification and generalization of the two well-

known CP and Tucker decompositions. Specifically, when {G𝑖}𝑟𝑖=1
are diag-

onal tensors, BTD boils down to the CP decomposition. It has the form of

Tucker decomposition when only one block term (i.e., 𝑟 = 1) is considered.

In addition, several appealing features of the BTD are inherited from CP and

Tucker such as stable computation of Tucker, identification and uniqueness

of CP [18]. In parallel, it is worth recalling a remark in [18] that “the rank of a

higher-order tensor is actually a combination of the two aspects: one should

specify the number of blocks and their size”. That means BTD provides a

unified approach to generalize the concept of matrix rank to tensors.

Tensor-Train Decomposition: Together with (1.17) and (1.20), we can write

the SVD of X as

X(𝑖1, 𝑖2)
SVD

=

𝑟∑︁
𝑘=1

𝜆𝑘U(𝑖1, 𝑘)V(𝑘, 𝑖2) . (1.23)

Accordingly, each element of a high-order tensor X can be represented by

X(𝑖1, 𝑖2, . . . , 𝑖𝑁)
TT

=

𝑟1,𝑟2,...,𝑟𝑁 −1∑︁
𝑘1,𝑘2,...,𝑘𝑁 −1

G
1
(1, 𝑖1, 𝑘1)G2

(𝑘1, 𝑖2, 𝑘2) . . . G𝑁 (𝑘𝑁−1, 𝑖𝑁 , 1) .

(1.24)

where G𝑛 is an 𝑟𝑛−1 × 𝐼𝑛 × 𝑟𝑛 tensor with 𝑛 = 1, 2, . . . , 𝑁 − 1 and 𝑟0 = 𝑟𝑁 = 1.

We refer to the representation model (1.24) as tensor-train (TT). Like CP, the

TT format offers amemory-savingmodel for representing high-order tensors.

Like Tucker, the TT decomposition and the TT rank r = [𝑟1, 𝑟2, . . . , 𝑟𝑁−1] of
any tensor X can be numerically computed in a stable and efficient way.

t-SVDDecomposition: Last but not least, another extension of SVD to high-

order tensors is the tensor SVD (t-SVD) which is of the following form:

X
t-SVD

= U︸︷︷︸
orthogonal

∗ G︸︷︷︸
𝑓 -diagonal

∗ V︸︷︷︸
orthogonal

, (1.25)

CHAPTER 1. GENERAL INTRODUCTION 10

where U and V are unitary tensors, and G is a rectangle 𝑓 -diagonal ten-

sor whose frontal slices are diagonal matrices [17]. Intuitively, the t-SVD

model (1.25) shares the similar form with the SVD in (1.17). However, due to

the t-product “∗”, the algebraic framework used in the t-SVD is quite different

from the classical (multi)-linear algebra in other types of TD and SVD. For ex-

ample, most of its computations are performed in the Fourier domain. Under

the t-SVD format, the tubal-rank which is equal to the number of non-zero

tubes of G is used to define the LRA of tensors in the same manner as the

SVD.

1.1.3 Online Low-rankApproximation: FromSubspace to Ten-
sor Tracking

In online setting, data samples are continuously collected with time. Accord-

ingly, recomputing the batch LRAmethods (e.g., SVD or batch TD algorithms)

at each time step becomes inefficient due to their high complexity and the

time variation, aka concept/distribution drift. This has led to defining a vari-

ant of the LRA called online (adaptive) LRA in which we may want to track

the underlying process that generates streaming data with time.

When observations arriving at each time are one-dimensional (i.e., vec-

tors), the main interest in the online LRA is to estimate the principal subspace

that compactly spans these observations over time. Specifically, it is referred

to as the problem of subspace tracking (ST) in signal processing which has

been developed for over three decades [19–21]. In general, on the arrival of

the new data y𝑡 ∈ R𝐼1×1
at time 𝑡 , the subspace matrix U𝑡 ∈ R𝐼1×𝑟 can be

derived from analysing the spectrum of the following covariance matrix

C𝑡 =
𝑡∑︁

𝜏=𝑡−𝐿𝑡+1
𝛽𝑡−𝜏y𝜏y⊤𝜏 , (1.26)

where 𝐿𝑡 is the window length and 0 < 𝛽 ≤ 1 is the forgetting factor [20].

When 𝐿𝑡 = 𝑡 and 𝛽 = 1, C𝑡 in (1.26) boils down to the classical sample co-

variance matrix. More specifically, in a connection to the batch LRA using

SVD, the vector y𝑡 can be seen as the 𝑡-th column of the underlying ma-

trix X𝑡 = [X𝑡−1 y𝑡], see Fig. 1.4 for an illustration. The subspace matrix

U𝑡 plays a role as the left singular vector matrix of X𝑡 , while the coefficient

vector w𝑡 = U⊤𝑡 y𝑡 is indeed the 𝑡-th row of the matrix V𝚲 in the SVD ex-

pression (1.17). Depending on the choice of C𝑡 and the subspace estimation

technique, we can obtain several subspace tracking algorithms.

When observations arriving at each time are multidimensional (i.e., ten-

sors), the online LRA turns out to be tensor tracking which can be considered

as a generalization of subspace tracking. In particular, we wish to estimate

CHAPTER 1. GENERAL INTRODUCTION 11

1tX

tX

Yt1tX

X t

ty

Old Observations New Data

Matrix Tensor

At time t

1X t

X t

1
Yt

2
Yt

3
Yt

Figure 1.4: Streaming data.

the tensor dictionary (e.g., core tensor(s) and tensor factors) that generates

the underlying streaming data X𝑡 over time:

X𝑡 =

{
X𝑡−1 ⊞ Y𝑡 if single-aspect streaming

X𝑡−1 ∪ Y𝑡 if multi-aspect streaming

, (1.27)

where “ ⊞ ” and “ ∪ ” denote the tensor concatenation and union operator,

while X𝑡−1 and Y𝑡 represent the old and new observations, respectively. The

“single-aspect streaming” model and the “multi-aspect streaming” model are,

respectively, dedicated to represent data streams having one dimension and

multiple dimensions varying with time. When new data samples arrive, the

tensor dictionary of X𝑡 should be incrementally updated without reusing the

batch TD algorithms. Similar to subspace tracking, we can also obtain many

tensor tracking algorithms based on different tensor formats, streaming mod-

els, and optimization techniques. The readers are referred to Chapter 5 for a

comprehensive overview of the state-of-the-art tensor tracking algorithms.

In recent years, the explosion of big data streams have posed significant

challenges to the online LRA problem. For example, efficiency and robustness

are highly important when we deal with streaming data in high dimensions.

Many theoretical results in randommatrix theory (e.g., [22–24]) indicated that

the sample covariance matrix (SCM) is not an efficient estimator of the ac-

tual covariance matrix in the high-dimension, low-sample-size regime where

datasets are massive in both dimension and sample size. However, most of

the state-of-the-art subspace tracking methods in the literature are mainly

based on the spectral analysis of the SCM, and thus, they are not effective

in such a regime. In parallel, sparse outliers and missing data become more

and more ubiquitous in modern streaming applications [6]. Sparse outliers

CHAPTER 1. GENERAL INTRODUCTION 12

True Principal Component (PC)
Estimated PC

Inlier

Outlier

O Ox

y

x

y
Outlier points

Figure 1.5: Effect of outliers on the standard PCA.

are data points that appear to be inconsistent with or exhibit abnormal be-

haviour different from others. Missing data are often encountered during the

acquisition and collection. Both sparse outliers and missing data can cause

several issues for knowledge discovery from data in general and data streams

in particular, see Fig. 1.5 for an illustration of outlier’s impact on the stan-

dard principal component analysis (PCA) which specifically uses SVD in its

computation. Therefore, it requires robust algorithms capable of dealing with

such data corruptions with time. In addition, scalable tracking algorithms are

always desirable for handling modern data streams, especially dealing with

large-scale and high-multidimensional data streams. As indicated later, most

of the existing tracking algorithms are of high complexitywith respect to both

computation and memory storage. Accordingly, it is essential to develop ef-

ficient and scalable tracking techniques of low cost. In this work, we aim to

develop efficient and effective tracking algorithms which have the capability

to deal with such challenges.

1.2 Thesis Description

1.2.1 Thesis Outline and Contributions

The rest of my thesis is organized into two major parts addressing respec-

tively subspace tracking and tensor tracking, followed by the conclusion and

outlook, please see Fig. 1.6 for an overview.

CHAPTER 1. GENERAL INTRODUCTION 13

SUBSPACE
TRACKING

An Overview of Robust
Subspace Tracking

Robust Subspace Tracking with
Missing Data and Outliers

Sparse Subspace Tracking In
High Dimensions

TH
ES

IS
 S

TR
U

C
TU

R
E

PART I

Chapter 2

Chapter 3

Chapter 4

TENSOR
TRACKING

An Overview of Tensor
Tracking

Robust Tensor Tracking with
Missing Data and Outliers

Tensor Tracking under Tensor-
Train Format

PART II

Chapter 5

Chapter 6

Chapter 7

Conclusion and Outlook
Chapter 9

Chapter 1
Introduction

INTRODUCTION

CONCLUSION

Figure 1.6: Thesis structure.

Part I: Subspace Tracking

In Chapter 2, we provide a brief survey on recent robust subspace track-

ing algorithms which were mostly developed over the last decade. Partic-

ularly, we begin by introducing the basic ideas of the subspace tracking prob-

lem. We then highlight main classes of algorithms for dealing with non-

Gaussian noises (e.g., sparse outliers, impulsive noise, and colored noise). Re-

cent years have also witnessed the widespread of high-dimensional data anal-

ysis in which sparse representation-basedmethods are successfully applied to

many signal processing applications. Accordingly, the state-of-the-art sparse

subspace tracking algorithms are also reviewed therein.

In Chapter 3, we propose a novel algorithm, namely PETRELS-ADMM, to

deal with subspace tracking in the presence of outliers and missing data. The

proposed approach consists of two main stages: outlier rejection and sub-

CHAPTER 1. GENERAL INTRODUCTION 14

space estimation. In the first stage, alternating direction method of multipli-

ers (ADMM) is effectively exploited to detect outliers affecting the observed

data. In the second stage, we propose an improved version of the parallel

estimation and tracking by recursive least squares (PETRELS) algorithm to

update the underlying subspace in the missing data context. We then present

a theoretical convergence analysis of PETRELS-ADMM which shows that it

generates a sequence of subspace solutions converging to the optimum of its

batch counterpart. The effectiveness of the proposed algorithm, as compared

to state-of-the-art algorithms, is illustrated on both simulated and real data.

In Chapter 4, we develop a new provable effective method called OPIT

for tracking the sparse principal subspace of data streams over time. Partic-

ularly, OPIT introduces a new adaptive variant of power iteration with space

and computational complexity linear to the data dimension. In addition, a

new column-based thresholding operator is developed to regularize the sub-

space sparsity. Utilizing both advantages of power iteration and thresholding

operation, OPIT is capable of tracking the underlying subspace in both classi-

cal regime and high dimensional regime. We also present a theoretical result

on its convergence to verify its consistency in high dimensions. Several ex-

periments are carried out on both synthetic and real data to demonstrate the

tracking ability of OPIT.

Part II: Tensor Tracking

In Chapter 5, we provide a contemporary and comprehensive survey on dif-

ferent types of tensor tracking techniques. We particularly categorize the

state-of-the-art methods into three main groups: streaming CP decomposi-

tions, streaming Tucker decompositions, and streaming decompositions un-

der other tensor formats (i.e., tensor-train, t-SVD, and BTD). In each group,

we further divide the existing algorithms into sub-categories based on their

main optimization framework and model architectures. Specifically, 04 main

groups of streaming CP decomposition algorithms were emphasized, includ-

ing subspace based, block-coordinate descent, Bayesian inference, and multi-

aspect streaming decompositions. We categorized streaming Tucker decom-

position algorithms into three major classes based on their model architec-

ture. They are online tensor dictionary learning, tensor subspace tracking,

and multi-aspect streaming decompositions. Finally, a brief survey on the

existing methods which are capable of tracking tensors under TT, BTD, and

t-SVD formats is presented.

In Chapter 6, we propose three novel adaptive algorithms for tracking

higher-order streaming tensors with time, including ACP, ATD, and RACP.

Under the CP format, ACP minimizes an exponentially weighted recursive

least-squares cost function to obtain the tensor factors in an efficient way,

CHAPTER 1. GENERAL INTRODUCTION 15

thanks to the alternativeminimization framework and the randomized sketch-

ing technique. Under the Tucker format, ATD first tracks the underlying low-

dimensional subspaces covering the tensor factors, and then estimates the

core tensor using a stochastic approximation. Both the two algorithms ACP

and ATD are fast and fully capable of tracking streaming tensors from incom-

plete observations. When observations are corrupted by sparse outliers, we

introduce the so-called RACP algorithm robust to gross corruptions. Partic-

ularly, RACP first performs online outlier rejection to accurately detect and

remove sparse outliers, and then performs tensor factor tracking to efficiently

update the tensor factors. Convergence analysis for three algorithms are es-

tablished in the sense that the sequence of generated solutions converges

asymptotically to a stationary point of the objective function. Extensive ex-

periments are conducted on both synthetic and real data to demonstrate the

effectiveness of the proposed algorithms in comparison with state-of-the-art

adaptive algorithms.

In Chapter 7, we introduce three new methods for the problem of stream-

ing tensor-train decomposition. The first method called TT-FOA is capable

of tracking the low-rank components of high-order tensors from noisy and

high-dimensional data with high accuracy, even when they come from time-

dependent observations. The second method called ATT is particularly de-

signed for handling incomplete streaming tensors. ATT is scalable, effective,

and adept at estimating low TT-rank component of streaming tensors. Be-

sides, ATT can support parallel and distributed computing. To deal with

sparse outliers, we propose the so-called ROBOT which stands for ROBust

Online Tensor-Train decomposition. Technically, ROBOT has the ability to

tracking streaming tensors from imperfect streams (i.e., due to noise, out-

liers, and missing data) as well as tracking their time variation in dynamic

environments.

Conclusion and Outlook

Chapter 8 concludes the thesis with our main results and an outlook to future

works. Particularly, we present several research challenges and open prob-

lems that should be considered for the development of tracking the low-rank

component of data streams in the future. They are data imperfection and cor-

ruption; rank revealing and tracking; efficient and scalable tensor tracking;

and other aspects such as theoretical analysis, symbolic data, and tracking

under some less common tensor formats. Possible solutions for these chal-

lenges are also discussed.

CHAPTER 1. GENERAL INTRODUCTION 16

1.2.2 List of Publications

Most of the above results have been published/submitted in the following

papers:

Journal Papers:

[25] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace
Tracking With Missing Data and Outliers: Novel Algorithm With Convergence
Guarantee”, IEEE Trans. Signal Process., vol. 69, pp. 2070–2085, 2021.

[26] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace
Tracking Algorithms in Signal Processing: A Brief Survey”,REV J. Elect. Com-

mun., vol. 11, no. 1–2, pp. 15–25, 2021.

[27] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor
Tracking with Missing Data and Outliers: Novel Adaptive CP Decomposition and
Convergence Analysis”, IEEE Trans. Signal Process., vol. 70, pp. 4305–4320,

2022.

[28] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Contemporary
and Comprehensive Survey on Streaming Tensor Decomposition”, IEEE Trans.

Knowl. Data. Eng., 2022 (in press).

[29] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “OPIT: A Simple
and Effective Method for Sparse Subspace Tracking in High-dimension and Low-
sample-size Context”, IEEE Trans. Signal Process., 2022 (submitted).

[30] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Tracking On-
line Low-Rank Approximations of Higher-Order Incomplete Streaming Tensors”,
Elsevier Patterns, 2022 (submitted).

[31] L. T. Thanh, K. Abed-Meraim, N. L. Trung andA.Hafiane, “Streaming Tensor-
Train DecompositionWithMissing Data”, Elsevier Signal Process., 2022 (sub-
mitted).

Conference Papers:

[32] L. T. Thanh, K. Abed-Meraim, N. L. Trung and R. Boyer, “Adaptive Algo-
rithms for Tracking Tensor-Train Decomposition of Streaming Tensors”, in Proc.

28th EUSIPCO, 2020, pp. 995–999.

[33] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Fast Random-
ized Adaptive CP Decomposition for Streaming Tensors”, inProc. 46th ICASSP,

2021, pp. 2910–2914.

[34] L. T. Thanh, K. Abed-Meraim, A. Hafiane and N. L. Trung, “Sparse Subspace
Tracking in High Dimensions”, in Proc. 47th ICASSP, 2022, pp. 5892–5896.

[35] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor
Tracking With Missing Data Under Tensor-Train Format”, in Proc. 30th EU-

SIPCO, 2022, pp. 832–836.

[36] L. T. Thanh, T. T. Duy, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust
Online Tucker Dictionary Learning from Multidimensional Data Streams”, in
Proc. 14th APSIPA-ASC, 2022, pp. 1815–1820.

CHAPTER 1. GENERAL INTRODUCTION 17

Contributions Outside the Scope of the Thesis

During my Ph.D study, I have also some other contributions to system iden-

tification which are not included in this thesis:

[37] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Misspecified Cramer-Rao
Bounds for Blind Channel Estimation under Channel Order Misspecification”,
IEEE Trans. Signal Process., vol. 69, pp. 5372–5385, 2021.

[38] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Performance Lower Bounds
of Blind System Identification Techniques in the Presence of Channel Order Esti-
mation Error”, in Proc. 29th EUSIPCO, 2021, pp. 1646–1650.

[39] O. Rekik, A. Mokraoui, T. T. T Quynh, L. T. Thanh and K. Abed-Meraim.

“Side Information Effect on Semi-Blind Channel Identification for MIMO-OFDM
Communications Systems”, in Proc. 55th ASILOMAR 2021, pp. 443–448.

Particularly in [37, 38], we have addressed the problem of analyzing the

theoretical performance limit of system identification techniques under the

misspecification of the channel order through the lens of the misspecified

Cramer-Rao bound (MCRB) –which is an extension of thewell-knownCramer-

Rao bound (CRB) when the underlying system model is misspecified. Specifi-

cally, we have introduced a new interpretation of the MCRB, called the gener-

alized MCRB (GMCRB), via the Moore–Penrose inverse operator. This bound

is useful for singular problems and particularly blind channel estimation prob-

lems in which the Hessian matrix is noninvertible. Two closed-form expres-

sions of the GMCRB are derived for unbiased blind estimators when the chan-

nel order is misspecified. The first bound deals with deterministic models

where both the channel and unknown symbols are deterministic. The sec-

ond one is devoted to stochastic models where we assume that transmitted

symbols are unknown random variables i.i.d. drawn from a Gaussian distri-

bution. Two case studies of channel order misspecification are investigated

to demonstrate the effectiveness of the proposed GMCRBs over the classical

CRBs. In [39], we have investigated the effect of different prior about commu-

nications channels (e.g., specular channel model, finite memory linear time

invariant channel model, misspecification caused by array calibration errors,

so on) on the performance of semi-blind channel identification for MIMO-

OFDM systems.

An Overview of Robust

Subspace Tracking 2

2.1 Introduction . 19

2.1.1 Related Work . 20

2.1.2 Main Contributions . 20

2.2 Robust Subspace Tracking: Problem Formulation 22

2.3 Robust Subspace Tracking in the Presence of Missing Data

and Outliers . 24

2.3.1 Grassmannian Algorithms 24

2.3.2 Recursive Least-Squares based Algorithms 26

2.3.3 Recursive Projected Compressive Sensing based Al-

gorithms . 26

2.3.4 Adaptive Projected Subgradient Method based Algo-

rithms . 27

2.3.5 Other Algorithms . 27

2.4 Robust Subspace Tracking in the Presence of Impulsive Noise 27

2.4.1 Robust Variants of PAST 27

2.4.2 Adaptive Kalman Filtering 28

2.4.3 Weighted Recursive Least-Squares Method 29

2.5 Robust Subspace Tracking in the Presence of Colored Noise . 29

2.5.1 Instrumental Variable based Algorithms 29

2.5.2 Oblique Projection based Algorithms 30

2.6 Sparse Subspace Tracking . 31

2.7 Conclusions . 32

Principal component analysis (PCA) and subspace estimation (SE) are popu-
lar data analysis tools and used in a wide range of applications. The main in-
terest in PCA/SE is for dimensionality reduction and low-rank approximation
purposes. The emergence of big data streams have led to several essential issues
for performing PCA/SE. Among them are (i) the size of such data streams in-
creases over time, (ii) the underlying models may be time-dependent, and (iii)
problem of dealing with the uncertainty and incompleteness in data. A robust
variant of PCA/SE for such data streams, namely robust online PCA or robust
subspace tracking (RST), has been introduced as a good alternative. The main

18

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 19

goal of this chapter is to provide a brief survey on recent RST algorithms in
signal processing. Particularly, we begin this survey by introducing the basic
ideas of the RST problem. Then, different aspects of RST are reviewed with
respect to different kinds of non-Gaussian noises and sparse constraints. Our
own contributions on this topic are also highlighted.

2.1 Introduction

Principal component analysis (PCA) and subspace estimation (SE) are widely

used as a fundamental step for dimensionality reduction and analysis. Their

main purpose is to extract low-dimensional subspaces from high-dimensional

data while still keeping as much relevant information as possible. Conse-

quently, PCA and SE have found success in awide range of fields, fromfinance

to neuroscience, with the most successful applications in computer science.

The main difference between them is that PCA emphasizes the use of eigen-

vectors rather than of subspace as in SE. PCA in a standard set-up can be im-

plemented by using either eigenvalue decomposition (EVD) or singular value

decomposition (SVD) and is proved to be optimal in terms of the Frobenius-

norm approximation error by the Eckart-Young theorem [40].

Recent years have witnessed an increasing interest in adaptive process-

ing [2]. It is mainly due to the fact that online applications generate a huge

amount of data streams over time and such streams are often with high ve-

racity and velocity. It is known that veracity requires robust algorithms for

handling imperfect data while velocity demands (near) real-time processing.

Accordingly, important classes of PCA, such as subspace tracking (ST) also

called PCA for streaming data or streaming PCA or dynamic PCA, and ST

with missing data have drawnmuch research attention recently in signal pro-

cessing and modern data analysis.

The attractive point of ST resides on two aspects. First, in a similar man-

ner to batch subspace methods [20], both the main components and the dis-

turbance components of data observation can be exploited in many differ-

ent ways. In fact, the subspace is simple to understand (i.e., in a statistical

sense) and implement, thus proving its efficiency in many practical applica-

tions. Second, different from batch subspace methods, ST has a better trade-

off between the accuracy and the computational complexity, thus making it

suitable for time-sensitivity and real-time applications. Due to its practical

use, we can find a wide range of applications in diverse fields [19, 20, 41], for

example, direction of arrival (DoA) tracking in radar and sonar, data com-

pression and filtering, blind channel estimation and equalization, and pattern

recognition, to name a few.

However, it is well-known that PCA/SE is very sensitive to data corrup-

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 20

tions. This fact remains across the above important PCA classes in general

and ST in particular. PCA dealing with impulsive noise and outliers is re-

ferred to as robust PCA. In 2011, it was revisited in a seminal work of Candes

et al [42]. This work has attracted many research studies and applications,

with over 4000 citations as of now. PCA for streaming data with impulsive

noise and outliers is referred to as robust subspace tracking (RST). It is con-

sidered much more difficult than the original ST [43].

ST algorithms have been developed for over three decades [19,20]. It has

been around ten years since Delma’s survey [20] and we thus believe it is

not only important but the right time to do an up-to-date survey in order

to highlight some aspects that were not mentioned in [20] as well as recent

advances on this topic.

2.1.1 Related Work

Due to the importance of ST, there have been a number of published sur-

veys in the literature. One of the first and earliest surveys on principal sub-

space tracking algorithms was carried on by Comon and Golub in [19]. The

survey focuses on methods with high and moderate computational complex-

ity for tracking the low-rank approximation of covariance matrices which

may be slowly varying with time. In [20], Delmas provided a comprehen-

sive overview on developments of classical ST algorithms with low (linear)

complexity.

Recently, different adaptations of PCA for modern datasets and applica-

tions were reviewed in [44]. However, PCA for streaming data or ST was

not addressed. The problem of tracking the underlying subspace of data from

incomplete observations was discussed in [41] and [45]. Particularly, the for-

mer concerned methodological classes of ST algorithms that are able to deal

with missing data while the latter presented a high-dimensional framework

for analyzing their convergence behavior. The survey in [21] carried out re-

views on robust PCA, RST, and robust subspace recovery in the presence of

sparse outliers. Two similar surveys to [21] have also been conducted in [46]

and [47] which respectively review (i) static and dynamic RPCA algorithms,

and (ii) the entire body of works on robust sparse recovery. In the litera-

ture, there exist two others surveys on two adaptations of PCA which are

distributed PCA [48] and sparse PCA [49]. The main contributions of the

above-mentioned papers are summarized in Table 2.1.

2.1.2 Main Contributions

To the best of our knowledge, we are not aware of any work that reviews the

RST problem in the presence of different kinds of non-Gaussian noise. Al-

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 21

T
a
b
l
e
2
.
1
:
S
u
r
v
e
y
s
o
n
P
C
A
/
S
E
a
n
d
S
T

P
a
p
e
r

T
o
p
i
c
&
s
c
o
p
e

M
a
i
n
c
o
n
t
r
i
b
u
t
i
o
n

[1
9,

19
90

]
Pr

in
ci

pa
lS

T
A

su
rv

ey
on

nu
m

er
ic

al
m

et
ho

ds
fo

rt
ra

ck
in

g
th

e
lo

w
-ra

nk
ap

pr
ox

im
at

io
n

of

co
va

ria
nc

e
m

at
ric

es
slo

w
ly

va
ry

in
g

w
ith

tim
e.

[2
0,

20
10

]
Pr

in
ci

pa
la

nd
m

in
or

ST
A

co
m

pr
eh

en
siv

e
su

rv
ey

on
cl

as
sic

al
ST

al
go

rit
hm

s.

[4
4,

20
16

]
Pr

in
ci

pa
lc

om
po

ne
nt

an
al

ys
is

A
su

rv
ey

on
ad

ap
ta

tio
ns

of
PC

A
fo

rm
od

er
n

da
ta

se
ts

an
d

ap
pl

ic
at

io
ns

.

[4
5,

20
18

]
Pr

in
ci

pa
lS

T
A

hi
gh

-d
im

en
sio

na
la

na
ly

sis
fra

m
ew

or
k

fo
rt

he
sta

te
-o

f-t
he

-a
rt

ST
al

go
rit

hm
s

fro
m

in
co

m
pl

et
e

ob
se

rv
at

io
ns

.

[4
1,

20
18

]
ST

an
d

str
ea

m
in

g
PC

A
A

su
rv

ey
on

bo
th

cl
as

sic
al

an
d

re
ce

nt
ST

al
go

rit
hm

sa
bl

e
to

ha
nd

le
m

iss
in

g
da

ta

an
d

th
ei

rp
er

fo
rm

an
ce

gu
ar

an
te

e.

[2
1,

20
18

]
Ro

bu
st

su
bs

pa
ce

le
ar

ni
ng

A
su

rv
ey

on
ro

bu
st

PC
A

,R
ST

,a
nd

ro
bu

st
su

bs
pa

ce
re

co
ve

ry
in

th
e

pr
es

en
ce

of
sp

ar
se

ou
tli

er
s.

[4
6,

20
18

]
Ro

bu
st

PC
A

A
su

rv
ey

on
sta

tis
tic

an
d

dy
na

m
ic

ro
bu

st
PC

A
al

go
rit

hm
s.

[4
8,

20
18

]
Pr

in
ci

pa
lc

om
po

ne
nt

an
al

ys
is

A
su

rv
ey

on
di

str
ib

ut
ed

PC
A

al
go

rit
hm

s.

[4
7,

20
18

]
Ro

bu
st

su
bs

pa
ce

re
co

ve
ry

A
su

rv
ey

on
w

or
ks

on
ro

bu
st

su
bs

pa
ce

re
co

ve
ry

w
he

n
m

ea
su

re
m

en
ts

ar
e

co
rr

up
te

d
by

sp
ar

se
ou

tli
er

s.

[4
9,

20
18

]
Sp

ar
se

PC
A

A
su

rv
ey

on
re

ce
nt

th
eo

re
tic

al
de

ve
lo

pm
en

ts
of

sp
ar

se
PC

A
.

O
ur

s
RS

T
A

su
rv

ey
on

RS
T

al
go

rit
hm

si
n

th
e

pr
es

en
ce

of
di

ffe
re

nt
ki

nd
so

fc
or

ru
pt

io
ns

(e
.g

.o
ut

lie
rs

,m
iss

in
g

da
ta

,i
m

pu
lsi

ve
,a

nd
co

lo
re

d
no

ise
)a

nd
sp

ar
se

su
bs

pa
ce

.

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 22

though the three surveys [21,46,47] reviewed some classes of RST algorithms,

they only discussed on sparse outliers. Methods for other non-Gaussian noises

(e.g., impulsive noise and colored noise) have not been reviewed yet. More-

over, no survey exists on the problem of sparse ST in the literature. This

observation motivates us to carry out a survey on the topic.

The main goal of this survey is to fill the gap in the literature addressing

the following three kinds of non-Gaussian noises (including outliers, impul-

sive noise, and colored noise) and sparse constraints. Our contributions are as

follows. First, in the context of missing data and outliers, we review four main

approaches for dealing with them. They are Grassmannian, recursive least-

squares (RLS), recursive projected compressive sensing (ReProCS), and adap-

tive projected subgradient method (APSM). Second, when the measurements

are corrupted by impulsive noise, we show that most of state-of-the-art RST

algorithms are based on improving the well-known PAST algorithm which

belongs to the class of RLS methods. Two other appealing approaches includ-

ing weighted RLS and adaptive Kalman filtering are also reviewed. Third, we

outline two main classes of RST algorithms that are able to deal with colored

noise: instrumental variable-based and oblique projections. Finally, a short

review on sparse ST algorithms is presented.

The structure of our review is as follows, please see Fig. 2.1 for an illus-

tration. Section 2.2 states the problem of RST. In Section 2.3, we provide the

state-of-the-art algorithms for the RST problem in the presence of missing

data and outliers. The next two sections, 2.4 and 2.5, present RST algorithms

that are able to handle impulsive noise and colored noise, respectively. Sec-

tion 2.6 provides a short review on sparse ST. Finally, Section 2.7 concludes

the chapter.

2.2 Robust Subspace Tracking: Problem Formu-
lation

At each time 𝑡 , we suppose to observe a signal x𝑡 ∈ R𝑛 satisfying

x𝑡 = P𝑡 (ℓ𝑡 + v𝑡), (2.1)

where P𝑡 ∈ R𝑛×𝑛 is an observation mask matrix indicating the 𝑖-th entry

of x𝑡 is observed (i.e., P𝑡 (𝑖, 𝑖) = 1) or not (i.e., P𝑡 (𝑖, 𝑖) = 0), v𝑡 ∈ R𝑛×1
is the

(non-Gaussian) noise vector and ℓ𝑡 is the true signal living in a fixed or slowly
time-varying low-dimensional subspace of R𝑛 . More concretely, ℓ𝑡 = U𝑡w𝑡

in which w𝑡 is a weight vector and U𝑡 ∈ R𝑛×𝑟 (𝑟 ≪ 𝑛) is a basis matrix with

𝑑 (U𝑡 ,U𝑡−1)
Δ
= sin𝜃 (U𝑡 ,U𝑡−1) ≪ 1 where 𝜃 (U𝑡 ,U𝑡−1) denotes the largest prin-

cipal angle between U𝑡 and U𝑡−1. The RST problem can be stated as follows:

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 23

Introduction

Related WorksSECTION 1

Missing data
& Outliers

SECTION 3

Problem
Formulation

SECTION 2

Colored
Noise

SECTION 5

Main Contributions

Grassmannian Algorithms

Recursive Least-Squares

Recursive Compressive Sensing

Adaptive Projected Sub-Gradient

Other Algorithms

Instrumental Variable

Oblique Projection

SECTION 6
Conclusion

Impulsive
Noise

SECTION 4

Weighted Recursive Least-Squares

Robust variants of PAST

Adaptive Kalman Filtering

Figure 2.1: The structure of the survey.

Robust Subspace Tracking: Given a streaming set of observed signals
{x𝑡 }𝑡≥1 in (3.1), we wish to estimate a rank-𝑟 matrix U𝑡 such that it can
cover the span of the complete-data noiseless signal ℓ𝑡 .

In this chapter, we consider the RST problem in the presence of different

kinds of the non-Gaussian noise v𝑡 : sparse outliers, impulse noise, and col-

ored noise. Also, we review sparse ST algorithms under the constraint that

the basis matrix U𝑡 is sparse.

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 24

2.3 Robust Subspace Tracking in the Presence of
Missing Data and Outliers

In the literature, there have been several studies on ST in the presence of out-

liers and missing data. The proposed RST algorithms can be categorized into

four main classes: (i) Grassmannian, (ii) recursive east-Squares (RLS), (iii) re-

cursive projected compressive sensing (ReProCS), and (iv) adaptive projected

subgradient method (APSM). We summarize all the RST algorithms robust to

outliers and missing data in Table 2.2.

2.3.1 Grassmannian Algorithms

Many of RST algorithms are based on the Grassmannian approach in which

the ST procedure can be cast into an optimization process on a Grassmann

manifold. More concretely, Grassman manifold is a space that parameterizes

all 𝑟 -dimensional linear subspaces of the 𝑁 -dimensional vector space. The

underlying subspace can be derived from averaging the column span of the

(fully or partially) observed signals on the Grassmannian. Interestingly, each

observed signal ℓ𝑡 spans a one-dimensional subspace which can be described

as a point in the Grassmannian. Therefore, the Grassmannian approach offers

several advantages such as a lower number of parameters to optimize and

limited memory usage and the resulting RST algorithms are often efficient

and scalable to high dimensional data [71].

The state-of-the-art RST algorithms include GRASTA [50], GOSUS [51],

pROST [52, 53], and RoIGA [68, 69]. In [50], He et al. proposed an efficient

RST algorithm called Grassmannian robust adaptive ST (GRASTA) which is a

robust version of GROUSE in [72]. GRASTA first uses an ℓ1-norm cost func-

tion to reduce the effect of sparse outliers and then performs the incremen-

tal gradient on the Grassmann manifold of the subspace U. In [51], Xu et
al. introduced an effective algorithm namely GOSUS for tracking subspace

with structured-sparsity. GOSUS also incorporates an adaptive step-size for

the incremental gradient on the manifold. The effectiveness of GOSUS was

demonstrated via the real application of video background subtraction and

multiple face tracking. In [52, 53], Hage et al. proposed a method, namely

pPOST that combines the advantages of Grassmannian optimization with a

non-convex sparsity measure. Instead of using the ℓ1-norm regularization,

pPOST uses the penalty with non-convex ℓ0-surrogates allows reconstruc-

tion even in the case when ℓ1-based methods fail. Another algorithm dubbed

robust intrinsic Grassmann average (RoIGA) was proposed by Rudrasis et al.
in [68,69]. RoIGA is a geometric approach to computing principal linear sub-

spaces in finite and infinite dimensional reproducing kernel Hilbert spaces.

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 25

Table 2.2: Robust subspace tracking algorithms in the presence of bothmiss-

ing data and sparse outliers.

Algorithm Approach

Missing Sparse Prior Warm Convergence Computational

Data? Outliers? Information Start? Guarantee Complexity

GRASTA ℓ1-norm + ADMM
✓ ✓ ✗ random ✗ O(𝑛𝑟 + 𝑟 3)(2012 [50]) + Grassmannian

GOSUS ℓ2-norm + ADMM
✗ ✓ ✓ random ✗ -(2014 [51]) + Grassmannian

pROST ℓ0-norm + Grassmannian
✗ ✓ ✗ random ✗ -(2014 [52,53]) + Conjugate Gradient

MRMD Online max-norm
✗ ✓ ✓ random ✓ -(2014 [54]) regularization

ROSETA ℓ1,2-norm + ADMM +
✓ ✓ ✗ random ✗ O(𝑛𝑟 2)(2015 [55]) RLS

Roubst STAPSM APSM + CoSAMP∗ ✓ ✓ ✗ random ✓ O(𝑘𝑛𝑟 2)(2015 [56,57])

ReProCS-cPCA ReProCS ✗ ✓ ✓ batch ✓ O(𝑛𝑟 log
2 (𝑛) log(1/𝜖))⋄(2016 [58])

OTNNR Truncated nuclear-norm
✗ ✓ ✗ random ✗ -(2016 [59]) regularization

OLP-RPCA ℓ𝑝 -norm + singular
✗ ✓ ✗ random ✓ O(𝑛𝑟 + 𝑟 3)(2017 [60]) value thresholding

L1-PCA ℓ1-norm
✗ ✓ ✗ batch ✗ O(𝑛𝑟𝜔2)‡(2018 [61]) + Bit-flipping

PETRELS-CFAR Robust statistic + RLS ✓ ✓ ✓ batch ✗ O(𝑛𝑟 2 + 𝑛𝜔)+(2018 [62])

s-ReProCS ReProCS ✓ ✓ ✓ batch ✓ O(𝑛𝑟 log(𝑛) log(1/𝜖))⋄(2019 [63])

NORST-miss ReProCS ✓ ✗ ✓ batch ✓ O(𝑛𝑟 log(1/𝜖))⋄(2019 [64])

L1-IRW ℓ1-norm
✗ ✓ ✗ batch ✗ O(𝑘 (𝑛𝑤𝑟 3𝑝 + 2

𝑟𝑛𝑟 2))†(2019 [65]) + Bit-flipping

OSTP Schatten quasi-norm
✗ ✓ ✗ random ✓ O(𝑛𝑟 2)(2019 [66]) + Block-proximal gradient

NORST ReProCS ✓ ✓ ✓ batch ✓ O(𝑛𝑟 log(1/𝜖))⋄(2020 [67])

RoIGA IGA# + Grassmannian ✗ ✓ ✗ random ✗ -(2020 [68,69])

PETRELS-ADMM ℓ1-norm + ADMM
✓ ✓ ✓ random ✓ O(𝑛𝑟 2)(2021 [25,70]) + RLS

IGA: Intrinsic Grassmann Average
∗ CoSAMP: Compressed Sampling Orthogonal Matching Pursuit
+ 𝜔 : length of training window
⋄ 𝜖 : a desired subspace recovery accuracy
‡ 𝜔 : length of sliding window
† 𝜔 : length of sliding window, 𝑘 : number of iterations, and 𝑝: number of bit flips

Among them, RoIGA is shown as one of the fastest RST algorithms for han-

dling missing data corrupted by outliers.

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 26

2.3.2 Recursive Least-Squares based Algorithms

Another line of the RST research is based on recursive least-squares (RLS)

methods where the underlying subspace is recursively updated by minimiz-

ing a (weighted) least-squares objective function containing squared residu-

als and a penalty accounting for outliers. An efficient RLS-based algorithm

is parallel estimation and tracking by recursive least squares (PETRELS) [73]

which can be considered as an extension of the projection approximation ST

(PAST) algorithm [74] in order to handle missing data.

Inspired by PETRELS, several robust variants have been proposed to deal

with outliers the same line such as [25, 55, 62, 70]. Robust online subspace

estimation and tracking (ROSETA) in [55] applies an adaptive step size at the

stage of subspace estimation to enhance the convergence rate. Meanwhile the

main idea of PETRELS-CFAR algorithm [62] is to handle “outliers-removed”

data (i.e., outliers are first removed before performing ST) using a Constant

False Alarm Rate (CFAR) detector. Adopting the approach of PETRELS-CFAR,

but aiming to improve RST performance, we proposed an efficient algorithm

called PETRELS-ADMM which is able to remove outliers more effectively

in [25,70]. It includes two main stages: outlier rejection and subspace estima-

tion and tracking. Outliers living in the measurement data are detected and

removed by a ADMM solver in an effective way. An improved PETRELS was

then introduced to update the underlying subspace. In practice, the conver-

gence rate of RST-type algorithms is often faster than that of Grassmmannian-

based algorithms in slowly time-varying environments.

2.3.3 Recursive Projected Compressive Sensing based Algo-
rithms

Recursive projected compressive sensing (ReProCS)-based algorithms [58,63,

64, 67] are also capable of tracking subspace in the presence of outliers and

missing data.

ReProCS-type algorithms use the piecewise constant subspace change

model described previously and start with a “good” estimate of the initial

subspace. At each time, they first solve a projected compressive sensing

problem to derive the sparse outliers, e.g., using ℓ1 minimization followed

by thresholding-based support estimation. After that, the subspace direction

change is then estimated by using projection-SVD [63].

ReProCS provides not only a memory-efficient and highly robust solu-

tion, but also a precise subspace estimation compared to the state-of-the-arts.

However, ReProCS-type algorithms often require strong assumptions on sub-

space changes, outlier magnitudes, and accurate initialization.

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 27

2.3.4 Adaptive Projected Subgradient Method based Algo-
rithms

Adaptive projected subgradient method (APSM) can provide a robust solu-

tion to the presence of missing data and outliers [56,57]. Main advantages of

APSM are that convex constraints can be readily incorporated and it can be

used as an alternative to constructing the cost function from the sum of square

errors like RLS methods. The key idea of APSM stems from that unknown pa-

rameters of regression models can be estimated from seeking a point in the

intersection of all the sets defined by measurements. In the context of ST,

based on the latest observed signals, a cost function is properly chosen at

each time instant which scores a zero loss. The next task is to reach the inter-

section point. To deal with sparse outliers, APSM-type algorithms detect the

time instances at which the observed signals are corrupted by outliers via us-

ing sparsity-aware greedy techniques (e.g. compressed sampling orthogonal

matching pursuit as used in [57]) and then reject them.

2.3.5 Other Algorithms

Some other RST algorithms are able to track the underlying subspace over

time from measurements corrupted by sparse outliers such as MRMD [54],

OTNNR [59], L1-PCA [61], L1-IRW [65], OLP-RPCA [60], and OSTP [66].

Most of them use a ℓ𝑝-regularization (0 ≤ 𝑝 ≤ 1) to discard the effect of

outliers. However, they are not designed for missing data.

2.4 Robust Subspace Tracking in the Presence of
Impulsive Noise

By “impulsive”, we mean it can be burst noise [75, 76], spherically invariant

random variable (SIRV) noise [77, 78], or alpha-stable noise [79, 80]. We note

that even though these algorithms were described to reduce the effect of im-

pulsive noise in general, most simulation results were shown for burst noise

only. RST algorithms that are robust to impulsive noise are summarized in

Table 2.3.

2.4.1 Robust Variants of PAST

To take into account impulsive noise, some methods proposed in the litera-

ture have mainly been based on robust statistics so far. Among them, some

studies have proposed robust variants of PAST to deal with impulsive noise.

In [81], a robust PAST (RPAST) was proposed. The algorithm first detects the

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 28

Table 2.3: Robust subspace tracking algorithms in the presence of impulsive

noise.

Algorithm Approach

Burst SIRV 𝛼-stable Warm Convergence Computational

noise noise noise Start? Guarantee Complexity

RPAST PAST + M-estimation ✓ - ✓ random ✓ O(𝑛𝑟 + 𝑟2)
(2006 [81])

MCC-PAST Maximum correntropy
✓ - ✓ random ✗ O(𝑛𝑟 + 𝑟2)

(2014 [82]) criterion (MCC) + PAST

BNC-PAST Bounded nonlinear
✓ - ✓ random ✗ O(𝑛𝑟 + 𝑟2)

(2014 [83]) covariance (BNC) + PAST

robust KFVM Adaptive Kalman filter +
✓ - - random ✗

O(𝑛𝑟ℓ + ℓ𝑟2)+
(2020 [84]) M-estimation O(ℓ2𝑟 + ℓ3)

ROBUSTA Weighted RLS +
✓ ✓ ✓ random ✓ O(𝑛𝑟 + 𝑟2)

(2018 [62]) Mahalanobis distance

ℓ: length of the sliding window
−: unknown or undetermined

occurrence of the impulsive noise based on a threshold, and then eliminates

undesirable effects by discarding contaminated observations. The threshold is

determined based on an empirical function of noise variancewith the assump-

tion that error vectors follow a Gaussian distribution corrupted by additive

impulsive noise.

Zhang et al. introduced another PAST’s variant called MCC-PAST via the

maximum correntropy criterion (MCC) in [82, 85, 86]. MCC-PAST exploits a

correntropy as a new statistic, which can quantify both the time structures

and statistics of two random processes, to deal with impulsive noise. Accord-

ingly, the maximum correntropy criterion (MCC) is applied as a substitute for

the mean square error criterion in the objective function of PAST. Based on

the RLS technique, the MCC-PAST algorithm was then developed. To extend

the tracking capability of the MCC-PAS, a variable forgetting factor (FF) tech-

nique was also employed in the recursion process. In parallel, Shengyang et
al. developed another robust variant of PAST, namely BNC-PAST, to track

the underlying subspace via a different criterion [83]. The authors defined a

new concept namely bounded non-linear covariance (BNC) to handle relative

problems (including ST) in the presence of non-Gaussian noise with a heavy-

tailed distribution. In particular, bounded nonlinear maps were employed to

discard the effect of impulsive noise. Accordingly, a new robust PAST algo-

rithm based on BNC was derived.

2.4.2 Adaptive Kalman Filtering

Another good approach capable of handling impulsive noise is based on adap-

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 29

tive Kalaman filtering. In [84], Liao et al. proposed a RST algorithm based on

an adaptive Kalman filter with variable number of measurements (KFVM).

The main idea of using the KFVM is to deal with the tracking of fast-varying

subspace [87]. More concretely, when the underlying subspace varies quickly,

a small number of past observations are exploited in the recursion and vice

versa. To handle the impulsive noise, the M-estimate technique is incorpo-

rated into the KFVNM algorithm. The complexity of the proposed KFVM-

based algorithm is much higher than the PAST-based algorithms especially

when the number of observations used for subspace update is large.

2.4.3 Weighted Recursive Least-Squares Method

Recently, based on robust statistics but different from the common two-step

scheme mentioned above, we proposed in [62] an RST algorithm with lin-

ear computational complexity based on a weighted RLS approach, namely

ROBUSTA. On the theoretical aspect, we provided a converge analysis of

ROBUSTA in the presence of SIRV noise. Interestingly, we showed that it

also corresponded to adaptive robust covariance estimation. ROBUSTA out-

performed many state-of-the-art algorithms for burst noise, SIRV noise, and

alpha-stable noise. Also, it can be easily adapted, in conjunction with pre-

processing steps, to handle alpha-stable noise.

2.5 Robust Subspace Tracking in the Presence of
Colored Noise

In the literature, RST algorithms that are robust to colored noise can be cate-

gorized into two groups: (i) instrumental variable and (ii) oblique projection.

We summarize these algorithms in Table 2.5.

2.5.1 Instrumental Variable based Algorithms

For colored noise, one of the main directions is to use the instrumental vari-

able (IV) which allows avoiding biased estimate. An appealing benefit of this

approach is easy to adapt derivation from classical ST algorithms. While

having improved performance, the computational complexity of IV-based al-

gorithms is often higher than the original ones due to the selection of the

IV vector size. Specifically, in [88], two direct extensions of the PAST algo-

rithms, named IV-PAST and extended IV-PAST, were proposed. It is shown

that their performance is enhanced, comparing to the original ones. With the

aim to improve further performance in subspace-based system identification

applications, several algorithms in conjunction with using IV were addressed

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 30

Table 2.4: Robust subspace tracking algorithms in the presence of colored

noise.

Algorithm Approach

Warm Guarantee Computational

Start? Convergence Complexity

IV-PAST IV + PAST random ✗ 3𝑛ℓ + O(𝑛𝑟)
(2012 [88])

IVPM IV + propagator-based random ✗ 𝑛(ℓ + 2𝑟)
(2014 [89])

LOFF-VR-SREIV-PAST IV + PAST +
random ✓

6𝑛𝑟 + 5𝑟2 + 4𝑛

(2020 [90]) adaptive forgetting factor +14𝑟 + O(𝑛𝑟)

obPAST Oblique projection
random ✗ 3𝑛𝑟2 + 3𝑛𝑟 + O(𝑟3)

(2005 [91]) + PAST

obYAST Oblique projection
random ✗ 5𝑛𝑟 + O(𝑟2 + 𝑛) + O(𝑟3)

(2012 [92]) + YAST

ℓ: the dimension of instrumental variable (IV) vector.

in [89]. The key idea is to adapt the propagator approach by exploiting the

relationship between array signal processing and subspace identification.

Very recently, Chan et al. in [90] proposed a new robust variant of PAST

capable of handing linear models with complex coefficients, multiple outputs,

and colored noises. In the proposed method, the authors used a new adap-

tive forgetting factor and imposed a ℓ2-norm regularization into the objective

function of PAST. In particular, the adaptive forgetting factor was obtained

at each time instant by minimizing the mean-square deviation of the estima-

tor from an extended IV linear model and IV-PAST. The additional ℓ2-norm

regularized term on the weight vectors is aimed to reduce the error variance

and prevent the ill-conditioned computation at low SNR levels. Generally, if

low computational complexity is concerned, IV-based methods require a IV

vector uncorrelated with the noise which is not always met in practice.

2.5.2 Oblique Projection based Algorithms

Another direction, which can avoid the above drawback, is based on oblique

projection onto the subspacemanifold, such as [91,92]. It is due to the fact that

the noise vector may lie in a low dimension subspace instead of being treated

as full rank in the observation space. Naturally, oblique projections arise in

the solution to recover the signal. Accordingly, Chen et al. proposed a variant
of PAST named oblique PAST (obPAST) to track the signal subspace in [91].

In the same line, based on the well-known YAST algorithm [99], Florian et
al. introduced the new obYAST algorithm in [92]. Both obPAST and obYAST

minimized a new exponential least-squares cost function where the orthog-

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 31

Table 2.5: Sparse subspace tracking algorithms

Algorithm Approach

Prior Warm Guarantee Computational

Information Start? Convergence Complexity

OIST Oja method
✗ random ✓ O(𝑛𝑟)

(2016 [93]) + Soft-thresholding

Streaming SPCA Row truncation
✗ batch ✓ O(𝑛𝑟 min(𝑟, 𝑠 log𝑛))

(2015 [94]) + QR decomposition

ℓ1-PAST PAST method + ℓ1-norm
✓ random ✗ 3𝑛𝑟2 + 3𝑛𝑟 + O(𝑟2)

(2016 [95]) sample matrix inverse

OVBSL Bayesian inference
✓ random ✗ O(𝑛𝑟2 + 𝑛𝑟)

(2017 [96]) + ℓ2/ℓ1-norm promotion

SS/DS-OPAST 2-step approach + OPAST
✗ random ✗

3𝑛𝑟2 + 3𝑛𝑟 + O(𝑟3)/
(2017 [97]) + ℓ1-norm approximation 3𝑛𝑟 + O(𝑛𝑟2)

SS/GSS-FAPI 2-step approach + FAPI
✗ random ✓

2𝑛𝑟2 + 4𝑛𝑟 + O(𝑟2)/
(2020 [98]) + Givens rotations 4𝑛𝑟 + 4𝑛𝑠 + O(𝑟2)

onal projection in the residual error term is replaced with an oblique one.

Experiment results indicate that this modification can facilitate the tracking

ability of PAST and YAST in the presence of colored noise. Table 2.4 reports

further information about these RST algorithms, e.g., convergence and com-

putational complexity.

2.6 Sparse Subspace Tracking

Recently, sparse subspace estimation and tracking have been attracted more

attention from the signal processing community due to the fact that many

modern datasets admit sparse representation has huge potential capabilities

for analyzing them [100]. Although several algorithms have been introduced

for sparse subspace estimation in the batch setting (see [101–103] for exam-

ples), there exist only a few studies on sparse ST algorithms so far.

In [93], Chuang and Yue proposed an adaptive algorithm called OIST

(which stands for Oja’s algorithm with Iterative Soft Thresholding) for on-

line sparse PCA. The authors investigated a rank-one spiked model in a high-

dimension regime and indicated that the estimate of the eigenvector from the

sample covariance matrix is inconsistent. To alleviate it, they introduced an

extended version of Oja’s algorithm followed by a soft-thresholding step to

promote sparsity on the estimate. The asymptotic convergence, steady state,

and phase transition of OIST were also derived to understand its behavior in a

high-dimension regime when the dimension is much larger than the number

of observations. However, OIST is designed for only rank-one subspaces, i.e.

lines. In parallel, a novel online sparse PCA algorithm able to deal with rank-

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 32

𝑘 spiked models (𝑘 ≥ 1) was proposed via row truncation technique in [94].

More concretely, a simple ℓ2-norm based row truncation operator was intro-

duced to zero out rows whose leverage score is below a predefined threshold.

At each time instant, the QR decomposition of the resulting truncated co-

variance matrix was realized to update the principal subspace. The authors

also proved that the proposed algorithm is consistent in the high-dimension

regime.

In [95], Xiaopeng et al. introduced a new robust variant of PAST called ℓ1-

PAST. Specifically, the authors modified the cost function of PAST by adding

a ℓ1-norm constraint imposed on the subspace matrix to control its sparsity.

Accordingly, a new RLS algorithm like PAST was derived to minimize the

proposed objective function in an efficient way. The ℓ1-PAST is robust and

stable even when the number of observations is small.

In [96], Giampouras et al. developed a novel robust sparse ST method

namely OVBSL in the lens of Bayesian inference. To deal with the sparsity

constraint on the subspace matrix, OVBSL utilized the group-sparsity induc-

ing the convex ℓ2/ℓ1-norm. Since it belongs to the family of Bayesian meth-

ods, no fine-tuning parameter is required and the proposed algorithm is fully

automated.

In this topic, we also proposed several two-stage approach based algo-

rithms for sparse ST in [97,98,104]. The main steps of the two-stage approach

is as follows. We first utilize a well-known ST algorithm from the literature

(e.g. PAST or FAPI) to extract an orthonormal basis of the underlying sub-

space. Then, we estimate a sparse weight matrix based on some criteria on

sparsity such that it can span the same subspace. For example, in [97], two

new algorithms SS-OPAST and DS-OPAST were designed for sparse system

matrix and sparse source signals respectively. We particularly exploited the

natural gradient to find the sparsest matrix from the estimated orthonormal

matrix by OPAST. In [98, 104], we used FAPI in the first stage and then de-

rived SS-FAPI, orthogonal SS-FAPI, and GSS-FAPI algorithms. Specifically,

the sparsity criterion considered there is differentiable and smoother than the

previous one in [97]. Accordingly, it facilitates the optimization by employ-

ing the Newton method and Taylor expansions. To sum up, a performance

comparison among these sparse ST algorithms is given in Table 2.5.

2.7 Conclusions

ST has shown an increased interest in signal processingwith the aim of analysing

real-time big data problems and its improvement is in parallel to recent ad-

vances in optimization. In this chapter, we provided a brief survey on adaptive

algorithms for RST which were mostly developed over the last decade. We

CHAPTER 2. AN OVERVIEW OF ROBUST SUBSPACE TRACKING 33

highlighted three classes of RST algorithms for dealing with non-Gaussian

noises including sparse outliers, impulsive noise, and colored noise. The last

decade has also witnessed the widespread of high-dimensional data analy-

sis in which sparse representation-based methods are successfully applied to

many signal processing applications. Accordingly, sparse ST algorithms are

also reviewed in this chapter.

Robust Subspace Tracking

with Missing Data and

Outliers

3

3.1 Introduction . 35

3.1.1 Related Works . 36

3.1.2 Contributions . 37

3.2 Problem Formulation . 38

3.2.1 Robust Subspace Tracking 39

3.2.2 Assumptions . 40

3.3 Proposed PETRELS-ADMM Algorithm 41

3.3.1 Online ADMM for Outlier Detection 42

3.3.2 Improved PETRELS for Subspace Estimation 46

3.3.3 Computational Complexity Analysis 48

3.4 Performance Analysis . 48

3.5 Experiments . 53

3.5.1 Robust Subspace Tracking 54

3.5.1.1 Convergence of PETRELS-ADMM 55

3.5.1.2 Outlier Detection 56

3.5.1.3 Robustness of PETRELS-ADMM 57

3.5.2 Robust Matrix Completion 64

3.5.3 Video Background/Foreground Separation 66

3.6 Conclusions . 66

3.7 Appendix . 66

3.7.1 Proof of Lemma 1 . 66

3.7.1.1 Proof of Proposition (P-1) 67

3.7.1.2 Proof of Proposition (P-2) 68

3.7.1.3 Proof of Proposition (P-3) 69

3.7.1.4 Proof of Proposition (P-4) 69

3.7.1.5 Proof of Proposition (P-5) 70

3.7.2 Proof of Proposition 2 70

3.7.3 Proof of Lemma 2 . 73

3.7.4 Proof of Lemma 3 . 75

3.7.5 Proof of Lemma 4 . 76

34

CHAPTER 3. ROBUST SUBSPACE TRACKING 35

In this chapter, we propose a novel algorithm, namely PETRELS-ADMM, to
deal with subspace tracking in the presence of sparse outliers and missing data.
The proposed approach consists of two main stages: outlier rejection and sub-
space estimation. In the first stage, alternating direction method of multipliers
(ADMM) is effectively exploited to detect outliers affecting the observed data.
In the second stage, we propose an improved version of the parallel estimation
and tracking by recursive least squares (PETRELS) algorithm to update the
underlying subspace in the missing data context. We then present a theoreti-
cal convergence analysis of PETRELS-ADMMwhich shows that it generates a
sequence of subspace solutions converging to the optimum of its batch counter-
part. The effectiveness of the proposed algorithm, as compared to state-of-the-art
algorithms, is illustrated on both simulated and real data.

3.1 Introduction

Subspace estimation plays an important role in signal processingwith numer-

ous applications in wireless communications, radar, navigation, image/video

processing, biomedical imaging, etc. [105], especially processing modern data

in today’s big and messy data [43]. It corresponds to estimating an appropri-

ate 𝑟 -dimensional subspace U of R𝑛 where 𝑟 ≪ 𝑛, from a set of𝑚 observed

data vectors {x𝑖}𝑚𝑖=1
, or equivalently, a measurement data matrix X of size

𝑛 × 𝑚. To this end, the standard approach is to solve an eigen-problem in

a batch manner where the underlying subspace can be obtained from either

singular value decomposition of the data matrix or eigenvalue decomposition

of its covariance matrix. In certain online or large-scale applications, batch

algorithms become inefficient due to their high computational complexity,

O(𝑛𝑚min(𝑚,𝑛)), and memory cost, O(𝑛𝑚) [9].
In the signal processing literature, several good surveys of the standard

algorithms for subspace tracking can be found, e.g., [19,105]. The algorithms

can be categorized into three classes in terms of their computational com-

plexity: high complexity O(𝑛2𝑟), moderate complexity O(𝑛𝑟 2) and low com-

plexity O(𝑛𝑟). Note that, there usually exists a trade-off among estimation

accuracy, convergence rate and computational complexity. However, the per-

formance of standard algorithms may be degraded significantly if the mea-

surement data are corrupted by even a small number of outliers or missing

observations [44]. Recent surveys [21,41,45] show that missing data and out-

liers are ubiquitous and more and more common in the big data regime. This

has led to attempts to define robust variants of subspace learning, namely

robust subspace tracking (RST), or online robust PCA. In this work, we aim

to investigate the RST problem in the presence of both sparse outliers and

missing data.

CHAPTER 3. ROBUST SUBSPACE TRACKING 36

Our study is also motivated by several emerging applications in diverse

fields. In big data analysis, subspace tracking is used to monitor dynamic car-

diacmagnetic resonance imaging (MRI), track network-traffic anomalies [106]

ormitigate radio frequency interference (RFI) in radio astronomy [107]. More-

over, in 5Gwireless communication, subspace tracking have recently been ex-

ploited for channel estimation in massive MIMO [108] and millimeter wave

multiuser MIMO [109].

3.1.1 Related Works

In the literature, there have been several studies on subspace tracking in the

missing data context. Among them, Grassmannian rank-one update sub-

space estimation (GROUSE) [72] is an incremental gradient subspace algo-

rithm that performs the stochastic gradient descent on the Grassmannian

manifold of the 𝑟 -dimensional subspace. It belongs to the class of low com-

plexity and its convergence has recently been proved in [110]. A robust ver-

sion of GROUSE for handling outliers is Grassmannian robust adaptive sub-

space tracking (GRASTA) [50]. GRASTA first uses an ℓ1-norm cost function

to reduce the effect of sparse outliers and then performs the incremental gra-

dient on the Grassmannian manifold of subspace U in a similar way as in

GROUSE. AlthoughGRASTA is one of the fastest RST algorithms for handling

missing data corrupted by outliers, convergence analysis of this algorithm is

not available.

Parallel estimation and tracking by recursive least squares (PETRELS) [73]

can be considered as an extension of the well-known projection approxima-

tion subspace tracking (PAST) algorithm [74] in order to handle missing data.

Specifically, PETRELS is a recursive least squares-type algorithm applying the

second order stochastic gradient descent to the cost function. Inspired by PE-

TRELS, several variants have been proposed to deal with missing data in the

same line such as [55, 62, 106]. The subspace tracking algorithm in [106] is

derived from minimizing the sum of squared residuals, but adding a regular-

ization of the nuclear norm of subspace U. Robust online subspace estimation

and tracking (ROSETA) in [55] applies an adaptive step size at the stage of

subspace estimation to enhance the convergence rate. Meanwhile the main

idea of PETRELS-CFAR algorithm [62] is to handle “outliers-removed” data

(i.e., outliers are first removed before performing subspace tracking) using a

constant false alarm rate (CFAR) detector. However, the convergence of these

PETRELS-based algorithms has not been mathematically proved yet.

Recursive projected compressive sensing (ReProCS)-based algorithms [63,

64] are also able to adaptively reconstruct a subspace from missing observa-

tions. They provide not only a memory-efficient solution, but also a precise

subspace estimation as compared to the state-of-the-arts. However, they re-

CHAPTER 3. ROBUST SUBSPACE TRACKING 37

quire strong assumptions on subspace changes, outlier magnitudes and accu-

rate initialization.

Other subspace tracking algorithms, able to deal with missing data, in-

clude pROST [53], APSM [57], POPCA [111] and OVBSL [96]. They either

require memorizing previous observations and good initialization or do not

provide a convergence guarantee.

Among the subspace tracking algorithms reviewed above, only a few of

them are robust in the presence of both outliers and missing observations,

including GRASTA [50], pROST [53], ROSETA [55], ReProCS-based algo-

rithms [63, 64] and PETRELS-CFAR [62].

3.1.2 Contributions

Adopting the approach of PETRELS-CFAR [62] but aiming to improve RST

performance, we are interested in looking for a method that can remove out-

liers more effectively. Following our preliminary study presented in [70], the

main contributions of the chapter are as follows.

First, we propose a novel algorithm, namely PETRELS-ADMM, for the

RST problem to deal with both missing data and outliers. It includes twomain

stages: outlier rejection and subspace estimation and tracking. Outliers resid-

ing in the measurement data are detected and removed by our ADMM solver

in an effectiveway. Particularly, we design an efficient augmented Lagrangian

alternating direction method for the ℓ1-regularized loss minimization. Fur-

thermore, we propose an improved version of PETRELS, namely iPETRELS.

It is observed that PETRELS is ineffective when the fraction of missing data is

too large. We thus add a regularization of the ℓ2,∞-norm, which aims to control

the maximum ℓ2-norm of rows in U, in the objective function to avoid such

performance loss. In addition, we introduce an adaptive step size to speed up

the convergence rate as well as enhance the subspace estimation accuracy.

Second, we provide a convergence analysis of the proposed algorithm

where we show that the solutions {U𝑡 }∞𝑡=1
generated by PETRELS-ADMM

converge to a stationary point of the expected loss function 𝑓 (U) asymptot-

ically. To the best of our knowledge, this is a pioneer analysis for RST algo-

rithm’s convergence in the presence of both outliers and missing data, under
mild conditions.

Finally, we provide extensive experiments on both simulated and real data

to illustrate the effectiveness of PETRELS-ADMM in three application con-

texts: robust subspace tracking, robust matrix completion and video back-

ground foreground separation.

There are several differences between PETRELS-ADMM and the state-

of-the-art RST algorithms. In particular, our mechanism for outlier rejection

can facilitate the subspace estimation ability of RST algorithms where “clean”

CHAPTER 3. ROBUST SUBSPACE TRACKING 38

data involve the process only, thus improving overall performance. Except-

ing PETRELS-CFAR, the common principle of the state-of-the-art algorithms

is “outlier-resistant” (i.e., to have a “right” direction toward the true subspace).

The algorithms thus require robust cost functions as well as additional adap-

tive parameter selection. For examples, GRASTA and ROSETA use the ℓ1-

norm robust estimator to reduce the effect of outliers while pROST applies

the ℓ0-norm one instead. However, there is no guarantee that the ℓ𝑝-norm

robust estimator (i.e., 𝑝 ∈ [0, 1]) can provide an optimal solution because

of non-convexity. Accordingly, the effect of outliers can not be completely

removed in tracking. This is why the algorithms can fail in the appearance

of a large fractions of outliers or significant subspace changes in practice.

By contrast, “detect and skip” approach like PETRELS-CFAR can utilize ad-

vantage (i.e., competitive performance) of the original PETRELS in missing

observations and then treat outliers as missing data to facilitate the subspace

tracking.

Compared to PETRELS-CFAR, our ADMM solver may be efficient than

CFAR in terms of memory cost and flexibility. The constant false alarm rate

method (CFAR) [112] uses a moving window to detect outliers (i.e., using

both old and new observations at each time instant). By contrast, our ADMM

solver exploits only a new incoming data vector, hence requiring a lower stor-

age complexity. Moreover, the performance of CFAR depends on predefined

parameters such as the probability of false alarm and the size of the reference

window [62]. Our ADMM solver does not involve such parameters and hence

it is more efficient. Third, PETRELS-CFAR may provide an unstable solution

in the presence of a high corruption fraction due to lack of regularization (i.e.,

in the similar way as PETRELS).

Moreover, PETRELS-ADMM can be classified to a class of provable ST

algorithms [63,64] where a performance guarantee is provided. Our proposed

algorithm takes both advantages of streaming solution (need only single-pass

of data) and preserved convergence.

The structure of the chapter is organized as follows. Section 3.2 formulate

the RST problem. Section 3.3 establishes our PETRELS-ADMM algorithm for

RST and Section 3.4 gives its theoretical convergence analysis. Section 3.5

presents extensive experiments to illustrate the effectiveness of PETRELS-

ADMM as compared to the state-of-the-art algorithms. Section 3.6 concludes

the chapter.

3.2 Problem Formulation

CHAPTER 3. ROBUST SUBSPACE TRACKING 39

3.2.1 Robust Subspace Tracking

Assume that at each time 𝑡 , we observe a signal x𝑡 ∈ R𝑛 satisfying the fol-

lowing model:

x𝑡 = P𝑡 (ℓ𝑡 + n𝑡 + s𝑡), (3.1)

where ℓ𝑡 ∈ R𝑛 is the true signal that lies in a low dimensional subspace
1
of

U ∈ R𝑛×𝑟 (i.e., ℓ𝑡 = Uw𝑡 , where w𝑡 is a weight vector and 𝑟 ≪ 𝑛), n𝑡 ∈ R𝑛
is the noise vector, s𝑡 ∈ R𝑛 is the sparse outlier vector, while the diagonal

matrix P𝑡 ∈ R𝑛×𝑛 is the observation mask indicating whether the 𝑘-th entry

of x𝑡 is observed (i.e., P𝑡 (𝑘, 𝑘) = 1) or not (i.e., P𝑡 (𝑘, 𝑘) = 0). For the sake of
convenience, let Ω𝑡 be the set of observed entries at time 𝑡 .

Before introducing the RST formulation, we first define a loss function

ℓ (.) that remains convex while still promoting sparsity: For a fixed subspace

U ∈ R𝑛×𝑟 and a signal x ∈ R𝑛 under an observation mask P, the loss func-
tion ℓ (U, P, x) with respect to U and {P, x} is derived from minimizing the

projection residual on the observed entries and accounting for outliers as

ℓ (U, P, x) Δ
= min

s,w
ℓ̃ (U, P, x,w, s), (3.2)

with ℓ̃ (U, P, x,w, s) =

P(Uw + s − x)

2

2
+ 𝜌 ∥s∥

1
, (3.3)

where we here use the ℓ1 regularization to promote entry-wise sparsity on s
and 𝜌 > 0 is a regularization parameter to control the degree of the sparsity.

2

Now, given a streaming set of observed signals, X = {x𝑖}𝑡𝑖=1
in (3.1), we

wish to estimate a rank-𝑟 matrix U𝑡 ∈ R𝑛×𝑟 such that it can cover the span of

the complete-data noiseless signal ℓ𝑡 . RST can be achieved via the following

minimization problem:

U𝑡 = argmin

U∈R𝑛×𝑟

[
𝑓𝑡 (U)

Δ
=

1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖𝑖 ℓ
(
U, P𝑖 , x𝑖

)]
, (3.4)

where the forgetting factor 𝛽𝑖 ∈ (0, 1] is to discount the effect of past observa-
tions. For the convergence analysis, we will consider the expected cost 𝑓 (U)
on signals distributed by the true data-generating distribution Pdata, instead

of the empirical cost 𝑓𝑡 (U). Thanks to the law of large numbers, expectation

1
In an adaptive scheme, this subspace might be slowly time-varying, i.e., U = U𝑡 , and

hence the adaptive RST algorithm introduced next would not only estimate U but also track

its variations along the iterations.

2
The most direct way of enforcing sparsity constraints is to control the ℓ0-norm of the

solutionwhich counts the number of non-zero entries. Following this way, the problem of (3.2)

is well specified but computationally intractable. Interestingly, the ℓ1 relaxation can recover

the original sparse solution of the ℓ0 problem while still preserving convexity [113].

CHAPTER 3. ROBUST SUBSPACE TRACKING 40

of the observations without discounting (i.e., 𝛽 = 1) converges to the true

value when 𝑡 tends to infinity,

Û = argmin

U∈R𝑛×𝑟

[
𝑓 (U) Δ

= E
xi.i.d∼ Pdata

[ℓ (U, P, x)] = lim

𝑡→∞
𝑓𝑡 (U)

]
. (3.5)

From the past estimations {s𝑖 ,w𝑖}𝑡𝑖=1
, instead of minimizing the empirical

cost function 𝑓𝑡 (U) in (3.4), we propose to optimize the surrogate 𝑔𝑡 (U) of
𝑓𝑡 (U), which is defined as

𝑔𝑡 (U) =
1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖𝑖

(

P𝑖 (Uw𝑖 + s𝑖 − x𝑖)

2

2
+ 𝜌 ∥s𝑖 ∥1

)
, (3.6)

where {s𝑖 ,w𝑖}𝑡𝑖=1
are considered as constants. Note that, the surrogate func-

tion provides an upper bound on 𝑓𝑡 (U). In our convergence analysis, we will

prove that 𝑓𝑡 (U𝑡) and 𝑔𝑡 (U𝑡) converge almost surely to the same limit. As a

result, the solution U𝑡 obtained by minimizing 𝑔𝑡 (U) is exactly the solution

of 𝑓𝑡 (U) when 𝑡 tends to infinity.

3.2.2 Assumptions

Wemake the following assumptions for convenience of convergence analysis

as well as helping deploy our optimization algorithm:

(A-1): The data-generation distribution Pdata has a compact support, x i.i.d∼
Pdata. Indeed, real data are often bounded such as audio, image and video,

hence this assumption naturally holds in many situations.

(A-2): U is constrained to the setU Δ
= {U ∈ R𝑛×𝑟 ,

U:,𝑘

2
≤ 1, 1 ≤ 𝜅 (U) ≤ 𝛼}

with a constant 𝛼 . The first constraint

U:,𝑘

2
≤ 1 is not restrictive as it is

considered to bound the scale of basis vectors in U and hence prevents the

arbitrarily very large values of U. While the low condition number of the

subspace 𝜅 (U) is to prevent the ill-conditioned computation.

(A-3): Coefficients w are constrained to the setW = {w ∈ R𝑟 , 𝜔1 ≤ |𝑤 (𝑖) | ≤
𝜔2, 𝑖 = 1, 2, . . . , 𝑟 } with two constants 𝜔1 and 𝜔2, 0 ≤ 𝜔1 < 𝜔2. Since the data

x and subspace U are assumed to be bounded, it is natural that the subspace

weight vector w is bounded too.

(A-4): The subspace changes at two successive time instances is small, i.e.,

the largest principal angle between U𝑡 and U𝑡−1 is 0 ≤ 𝜃max ≪ 𝜋/2, or the
distance between the two subspaces, d(U𝑡 ,U𝑡−1) = sin(𝜃max), satisfies 0 ≤
d(U𝑡 ,U𝑡−1) ≪ 1.

CHAPTER 3. ROBUST SUBSPACE TRACKING 41

3.3 Proposed PETRELS-ADMM Algorithm

In this section, we present a novel algorithm, namely PETRELS-ADMM, for

RST to handle missing data in the presence of outliers. The main idea is to

minimize the empirical cost function𝑔𝑡 in (3.6) by updating outliers s𝑡 , weight
vector w𝑡 and subspace U𝑡 alternatively.

Under the assumption (A-2) that the underlying subspaceU changes slowly,

we can detect outliers in s𝑡 by projecting the new observation x𝑡 into the

space spanned by the formerly estimated subspaceU𝑡−1 in the previous phase.

Specifically, we solve the following minimization problem:

{s𝑡 ,w𝑡 }
Δ
= argmin

s,w
ℓ̃ (U𝑡−1, P𝑡 , x𝑡 ,w, s) (3.7)

with

ℓ̃ (U𝑡−1, P𝑡 , x𝑡 ,w, s) =

P𝑡 (U𝑡−1w + s − x𝑡)

2

2
+ 𝜌 ∥s∥

1
. (3.8)

In the second phase, the subspace U𝑡 can be estimated by minimizing the sum

of squared residuals:

U𝑡 = argmin

U

1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖
tr(P̃𝑖)
𝑛

P̃𝑖 (Uw𝑖 − x𝑖)

2

2
+ 𝛼

2𝑡
∥U∥2

2,∞, (3.9)

where the regularization

𝛼

2𝑡
∥U∥2

2,∞ is to bound the scale of vectors in Uwhile

the outliers s𝑡 has been disregarded and the new observation P̃𝑖 are deter-

mined by the following rule:{
P̃𝑖 (𝑘, 𝑘) = P𝑖 (𝑘, 𝑘), if s𝑖 (𝑘) = 0,

P̃𝑖 (𝑘, 𝑘) = 0, otherwise,
(3.10)

which we aim to skip the corrupted entries of x𝑖 .
Our algorithm first applies the ADMM framework in [114], which has

beenwidely used in previous works for solving (3.7), and then propose amod-

ification of PETRELS [73] to handle (3.9). In the outlier rejection stage, we em-

phasize here that we propose to focus on augmenting s (as shown in (3.12)) to

further annihilate outlier effect, unlike GRASTA and ROSETAwhich focus on

augmenting the residual error only.
3
Meanwhile, we modify the subspace up-

date step in PETRELS by adding an adaptive step size 𝜂𝑡 ∈ (0, 1] at each time

3
In GRASTA [50] and ROSETA [55], both the authors aimed to detect outliers s by solving

the augmented Lagrangian of (3.7) as follows

L(s, y,w) = ∥s∥
1
+ y⊤

(
P𝑡 (U𝑡−1w + s − x𝑡)

)
+ 𝜌

2

P𝑡 (U𝑡−1w + s − x𝑡
)

2

2
.

CHAPTER 3. ROBUST SUBSPACE TRACKING 42

Input: Observed signals {x𝑖 }𝑡𝑖=1
, x𝑖 ∈ R𝑛×1

, masks {P𝑖 }𝑡𝑖=1
, P𝑖 ∈ R𝑛×𝑛 , rank 𝑟 .

Main Program:

for 𝑖 = 1, 2, . . . , 𝑡

// Estimate outliers s𝑖 and coefficient w𝑖 using Algorithm 2:

{s𝑖 ,w𝑖 } = argmin

s,w

P𝑖 (U𝑖−1w + s − x𝑖)

2

2
+ 𝜌 ∥s∥

1
.

// Update the new mask P̃𝑖 :{
P̃𝑖 (𝑘, 𝑘) = P𝑖 (𝑘, 𝑘), if s𝑖 (𝑘) = 0,

P̃𝑖 (𝑘, 𝑘) = 0, otherwise.

// Estimate subspace U𝑖 using Algorithm 3:

U𝑖 = argmin

U

[
1

𝑖

𝑖∑︁
𝑗=1

𝛽𝑖− 𝑗
tr(P̃𝑗)
𝑛

P̃𝑗 (x𝑗 − Uw)

2

2
+ 𝛼

2𝑖
∥U∥2

2,∞

]
.

end for

Output: U𝑡 ∈ R𝑛×𝑟

Algorithm 1: PETRELS-ADMM

instant 𝑡 , instead of a constant one as in the original version. The modifica-

tion can be interpreted as an approximation of Newtonmethod. The proposed

method is summarized in Algorithm 1.

3.3.1 Online ADMM for Outlier Detection

We show in the following how to solve (3.7) step-by-step:

Update s𝑡

To estimate outlier s𝑡 given w, we exploit the fact that (3.7) can be cast into

the ADMM form as follows:

min

u,s
ℎ(u) + 𝑞(s) subject to u − s = 0, (3.11)

where u is the additional decision variable, ℎ(u) = 1

2
| |P𝑡 (U𝑡−1w + u − x𝑡) | |22

and 𝑞(s) = 𝜌 ∥s∥1. The corresponding augmented Lagrangian with the dual

variable vector 𝜷 is thus given by

L(s, u, 𝜷) = 𝑞(s) + ℎ(u) + 𝜷⊤(u − s) + 𝜌1

2

∥u − s∥2
2
, (3.12)

CHAPTER 3. ROBUST SUBSPACE TRACKING 43

Input: Observed signal x𝑡 ∈ R𝑛×1
, observation mask P𝑡 ∈ R𝑛×𝑛 , the

previous estimate U𝑡−1 ∈ R𝑛×𝑟 , maximum iteration 𝐾 , penalty parameters

𝜌1, 𝜌2, absolute and relative tolerances 𝜖abs and 𝜖rel.

Initialization:

■ Choose {u0, s0,w0, z0, e0} randomly.

■ {r0, e0} ← 0𝑛

Main Program:

for 𝑘 = 0, 1, . . . , 𝐾 Cost

// Update w
w𝑘+1 = (P𝑡U𝑖−1)#P𝑡 (x𝑡 − s𝑘 + e𝑘) 2Ω𝑡𝑟

2 + Ω𝑡𝑟
z𝑘+1 = P𝑡 (U𝑡−1w𝑘+1 + s𝑘 − x𝑡) Ω𝑡𝑟

e𝑘+1 = 𝜌2

1+𝜌2

z𝑘+1 + 1

1+𝜌2

𝑆
1+ 1

𝜌
2

(z𝑘+1) Ω𝑡

// Update s

u𝑘+1 = 1

1+𝜌1

(
P𝑡 (x𝑡 − U𝑡−1w𝑘+1) − 𝜌1 (s𝑘 − r𝑘)

)
Ω𝑡𝑟

s𝑘+1 = 𝑆𝜌/𝜌1
(u𝑘+1 + r𝑘) Ω𝑡

r𝑘+1 = r𝑘 + u𝑘+1 − s𝑘+1 Ω𝑡

// Stopping criteria

if

s𝑘+1 − s𝑘

2
<
√
𝑛𝜖abs + 𝜖rel

𝜌1r𝑘+1

2
break; Ω𝑡

end if

end for

Output: s,w

Algorithm 2: Outlier Detection

where 𝜌1 > 0 is the regularization parameter
4
. Let r = 𝜷/𝜌1 be the scaled

dual variable, we can rewrite the Lagrangian (3.12) as follows:

L(s, u, r) = 𝑞(s) + ℎ(u) + 𝜌1r⊤(u − s) +
𝜌1

2

∥u − s∥2
2
. (3.13)

The optimization of (3.13) is achieved iteratively where we have the following

update rule using the scaled dual variable at the 𝑘-th iteration,

u𝑘+1 = argmin

u

(
ℎ(u) + 𝜌1(r𝑘)⊤(u − s𝑘) +

𝜌1

2

u − s𝑘

2

2

)
, (3.14)

s𝑘+1 = argmin

s

(
𝑞(s) − 𝜌1(r𝑘)⊤s +

𝜌1

2

u𝑘+1 − s

2

2

)
, (3.15)

r𝑘+1 = r𝑘 + u𝑘+1 − s𝑘+1. (3.16)

4
It is referred to as the penalty parameter. Although the convergence rate of the proposed

algorithm depends on a specific chosen value, our convergence analysis indicates that the

ADMM solver can converge for any positive fixed penalty parameters. However, varying

penalty parameters can give superior convergence in practice [114–117].

CHAPTER 3. ROBUST SUBSPACE TRACKING 44

In particular, we first exploit that the minimization (3.14) can be formulated

as a convex quadratic form:

u𝑘+1 = argmin

u

(
1 + 𝜌1

2

∥u∥2
2
−

[
P𝑡 (x𝑡 − U𝑡−1w) − 𝜌1(s𝑘 − r𝑘)

]⊤u)
=

1

1 + 𝜌1

(
P𝑡 (x𝑡 − U𝑡−1w) − 𝜌1(s𝑘 − r𝑘)

)
. (3.17)

While (3.15) is a standard proximal minimization with the ℓ1-norm [118] as

s𝑘+1 = argmin

s

(
𝜌 ∥s∥

1
+ 𝜌1

2

s − (
u𝑘+1 + r𝑘

)

2

2

)
= 𝑆𝜌/𝜌1

(
u𝑘+1 + r𝑘

)
, (3.18)

where 𝑆𝑎 (𝑥) is a thresholding operator applied element-wise and defined as

𝑆𝑎 (𝑥) =


0, if |𝑥 | ≤ 𝑎,
𝑥 − 𝑎, if 𝑥 > 𝑎,

𝑥 + 𝑎, if 𝑥 < −𝑎,
(3.19)

which is a proximity operator of the ℓ1-norm. Finally, a simple update rule

for the scaled dual variable r can be given by the dual ascent, as

r𝑘+1 = r𝑘 + 𝛾𝑘∇L (r𝑘), (3.20)

where the gradient ∇L (r𝑘) is computed by ∇L (r𝑘) = 𝜌1(u𝑘+1 − s𝑘+1) and
𝛾𝑘 > 0 is the step size controlling the convergence rate. For ADMMmethods,

the regularization parameter is often used as the the step size for updating

dual variables [114]. Due to the scaled version r of the dual variable 𝜷 , the
step size 𝛾𝑘 is here set to be 𝛾𝑘 = 1/𝜌1 at the 𝑘-th iteration.

Update w𝑡

To estimate w𝑡 given s, (3.7) can be recast into the following ADMM form:

min

w∈W,e∈R𝑛×1

1

2

P𝑡 (U𝑡−1w + s − x𝑡)

2

2
+ 𝑦 (e),

subject to P𝑡 (U𝑡−1w + s − x𝑡) = e,
(3.21)

where𝑦 (e) is a convex regularizer function for the noise e, (e.g. 𝑦 (e) = 𝜎
2
∥e∥2

2
,

with 𝜎−1
can be chosen as the signal to noise ratio, SNR). The minimiza-

tion (3.21) is equal to the following optimization:

min

w∈W,e∈R𝑛×1

∥e∥2
2

subject to P𝑡
(
U𝑡−1w + s − x𝑡

)
= e.

(3.22)

CHAPTER 3. ROBUST SUBSPACE TRACKING 45

However, the noise e is still affected by outliers because s may not be com-

pletely rejected in each iteration. Therefore, (3.22) can be cast further into the

ADMM form such that it can lie between least squares (LS) and least abso-

lute deviations to reduce the impact of outliers. The Huber fitting can bring

transition between the quadratic and absolute terms of Lw,e(w, e)5, as

Lw,e(w, e) = 𝑓 Hub(e) +
𝜌2

2

P𝑡 (U𝑡−1w + s − x𝑡
)
− e

2

2
, (3.23)

where 𝜌2 > 0 is the penalty parameter whose characteristics are similar to

that of 𝜌1 and the Huber function is given by [114]

𝑓 Hub(𝑥) =
{
𝑥2/2, |𝑥 | ≤ 1,

|𝑥 | − 1/2, |𝑥 | > 1.
(3.24)

As a result, e-updates for estimatingw involves the proximity operator of the

Huber function, that is,

e𝑘+1 =
𝜌2

1 + 𝜌2

P𝑡
(
U𝑡−1w𝑘+1 + s − x𝑡

)
+ 1

1 + 𝜌2

𝑆
1+ 1

𝜌
2

(
P𝑡

(
U𝑡−1w𝑘+1 + s − x𝑡

))
.

(3.25)

Hence, at the (𝑘 + 1)-th iteration, w𝑘+1
can be updated using the following

closed-form solution of the convex quadratic function:

w𝑘+1 =
(
P𝑡U𝑡−1

)
#P𝑡

(
x𝑡 − s + e𝑘

)
. (3.26)

To sum up, the rule for updating w𝑡 can be given by

w𝑘+1 =
(
P𝑡U𝑡−1

)
#P𝑡

(
x𝑡 − s + e𝑘

)
, (3.27)

z𝑘+1 = P𝑡
(
U𝑡−1w𝑘+1 + s − x𝑡

)
, (3.28)

e𝑘+1 =
𝜌2

1 + 𝜌2

z𝑘+1 + 1

1 + 𝜌2

𝑆
1+ 1

𝜌
2

(
z𝑘+1

)
. (3.29)

We note that, by using the Huber fitting operator, our algorithm is better

in reducing the impact of outliers than GRASTA and ROSETA which use ℓ2-

norm regularization.

The procedure is stopped when the number of iterations reaches the max-

imum or the accuracy tolerance for the primal residual and dual norm has

been met, i.e.,

s𝑘+1 − s𝑘

2

<
√
𝑛𝜖abs + 𝜖rel

𝜌1r𝑘+1

2

, (3.30)

5
Due to the natural ℓ2-ball behavior of the noise (i.e., normal distributed vector) and the

sparsity of some unremoved parts of outliers, Huber fitting can be a reasonable choice. The

Huber function consists of square and linear terms, so it is less sensitive to variables which

have a strong effect on the function ℓ2-norm, but also does not encourage the sparsity like

ℓ1-norm.

CHAPTER 3. ROBUST SUBSPACE TRACKING 46

Input: Observed signals {x𝑖 }𝑡𝑖=1
, observation mask P̃𝑡 , the previous estimate

U𝑡−1, forgetting factor 𝛽 , regularization parameter 𝛼 , the step size 𝜂, 𝜉𝑡 the

previous matrix H𝑡−1.

Main Program: Cost

𝑥𝑡 =
∥P̃𝑡x𝑡 − P̃𝑡U𝑡−1w𝑡 ∥2

∥w𝑡 ∥2
Ω𝑡𝑟

𝜂𝑡 =
𝑥𝑡√︃
𝑥2

𝑡 + 1

O(1)

if 𝜂𝑡 > 𝜂 then 𝜂𝑡 = 1 end if O(1)
for𝑚 = 1 to 𝑛 do

R𝑚𝑡 = 𝛽R𝑚𝑡−1
+ P̃𝑡 (𝑚,𝑚)w𝑡w⊤𝑡 𝑟 2

H𝑚𝑡 = R𝑚𝑡 + 𝛼
2
I 𝑟

a𝑡 = (H𝑚𝑡)−1w𝑡 O(𝑟 2)
u𝑚𝑡 = u𝑚𝑡−1

+ 𝜂𝑡𝜉𝑡 P̃𝑡 (𝑚,𝑚) (xre𝑡 (𝑚) −w⊤𝑡 u𝑚𝑡−1
)a𝑡 𝑟

end for

Output: U𝑡 ∈ R𝑛×𝑟

Algorithm 3: Improved PETRELS for updating U𝑡

where 𝜖abs > 0 and 𝜖rel > 0 are predefined tolerances for absolute and rela-

tive part respectively. A reasonable range for the absolute tolerance may be

[10
−6, 10

−3], while [10
−4, 10

−2] is good for the relative tolerance, see [114]

for further details of the stopping criterion. The main steps of the outlier

detection are summarized as Algorithm 2.

3.3.2 Improved PETRELS for Subspace Estimation

Having estimated s𝑡 , we optimize the following minimization

U𝑡 := argmin

U

[
𝑔𝑡 (U) =

1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖
tr(P̃𝑖)
𝑛

P̃𝑖 (x𝑖 − Uw𝑖)

2

2
+ 𝛼

2𝑡
∥U∥2

2,∞

]
,

(3.31)

where the observation mask P̃𝑖 is computed by (3.10).

Thanks to the parallel scheme of PETRELS [73], the optimal solution of

the problem (3.31) can be obtained by solving its subproblems at each row u𝑚

of U, 1 ≤ 𝑚 ≤ 𝑛:

u𝑚𝑡 = argmin

u𝑚

1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖𝜉𝑖 P̃𝑖 (𝑚,𝑚)
(
x𝑖 (𝑚) −w⊤𝑖 u𝑚

)
2 + 𝛼

2𝑡
∥u𝑚 ∥2

2
, (3.32)

CHAPTER 3. ROBUST SUBSPACE TRACKING 47

where 𝜉𝑖 =
tr(P̃𝑖)
𝑛

. In this way, we can speed up the subspace update by

ignoring the u𝑚 if the 𝑚-th entry of x𝑡 is labeled as missing observation or

outlier.

Thanks to Newton’s method, we can update each row of U𝑡 by the fol-

lowing rule:

u𝑚𝑡 = u𝑚𝑡−1
−

[
H𝑡 (u𝑚)

]−1 𝜕𝑔𝑡 (U)
𝜕u𝑚

����
u𝑚=u𝑚

𝑡−1

, (3.33)

where the first derivative of 𝑔𝑡 is given by

𝜕𝑔𝑡 (U)
𝜕u𝑚

=
−2

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖𝜉𝑖 P̃𝑖 (𝑚,𝑚)
(
x𝑖 (𝑚) −w⊤𝑖 u𝑚

)
w⊤𝑖 +

𝛼

𝑡
u𝑚, (3.34)

and the second derivative of 𝑔𝑡 , Hessian matrix, is given by

H𝑡 (u𝑚) =
2

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖𝜉𝑖 P̃𝑖 (𝑚,𝑚)w𝑖w⊤𝑖 +
𝛼

𝑡
I. (3.35)

Specifically, the partial derivative
𝜕𝑔𝑡 (U)
𝜕u𝑚 at u𝑚𝑡−1

can be expressed by

𝜕𝑔𝑡 (U)
𝜕u𝑚

����
u𝑚=u𝑚

𝑡−1

=
𝜕𝑔𝑡−1(U)
𝜕u𝑚

����
u𝑚=u𝑚

𝑡−1

+ 𝛼
𝑡

(
u𝑚𝑡−1
− u𝑚𝑡−2

)
− 2

𝑡
𝜉𝑡 P̃𝑡 (𝑚,𝑚)

(
x𝑡 (𝑚) −w⊤𝑡 u𝑚𝑡−1

)
w⊤𝑡 . (3.36)

Since u𝑚𝑡−1
= argmin

𝜕𝑔𝑡−1 (U)
𝜕u𝑚 and the parameter𝛼/𝑡 is small, so

𝜕𝑔𝑡−1 (U)
𝜕u𝑚

��
u𝑚=u𝑚

𝑡−1

= 0 and then

𝜕𝑔𝑡 (U)
𝜕u𝑚

����
u𝑚=u𝑚

𝑡−1

≈ −2

𝑡
𝜉𝑡 P̃𝑡 (𝑚,𝑚)

(
x𝑡 (𝑚) −w⊤𝑡 u𝑚𝑡−1

)
w⊤𝑡 . (3.37)

Let us denote R𝑚𝑡 =
∑𝑡
𝑖=1
𝛽𝑡−𝑖𝑖 𝜉𝑖 P̃𝑡 (𝑚,𝑚)w𝑖w⊤𝑖 , the Hessian matrix can be

rewritten by

H𝑚𝑡
Δ
= H ˜𝑓𝑡 (u𝑚𝑡−1

) = 2

𝑡

(
R𝑚𝑡 +

𝛼

2

I
)
. (3.38)

Therefore, a relaxed approximation of the recursive update (3.33) is given by

u𝑚𝑡 ≈ u𝑚𝑡−1
+ 𝜂𝑡𝜉𝑡 P̃𝑡 (𝑚,𝑚)

(
x𝑡 (𝑚) −w⊤𝑡 u𝑚𝑡−1

)
a⊤𝑡 , (3.39)

CHAPTER 3. ROBUST SUBSPACE TRACKING 48

∥e𝑡 ∥2
∥w𝑡 ∥2

√︃(∥e𝑡 ∥2
∥w𝑡 ∥2

)
2 + 1

1

𝜃𝑡

Figure 3.1: Adaptive step size 𝜂𝑡 .

where H𝑚𝑡 = R𝑚𝑡 + 𝛼
2
I6, a𝑡 = (H𝑚𝑡)−1w𝑡 and 𝜂𝑡 denotes the adaptive step

size 𝜂𝑡 ∈ [0, 1] at each time instant 𝑡 , instead of a constant as in the original

PETRELS [73]. We here determine the adaptive step size 𝜂𝑡 as follows

𝜂𝑡 =
𝑥𝑡√︃
𝑥2

𝑡 + 1

with 𝑥𝑡 =
∥e𝑡 ∥2
∥w𝑡 ∥2

, (3.40)

where the residual error e𝑡 is computed by e𝑡 = P̃𝑡x𝑡 − P̃𝑡U𝑡−1w𝑡 . Note that,

the adaptive step size 𝜂𝑡 can be expressed by 𝜂𝑡 = sin(𝜃𝑡), see Fig. 3.1. The
smaller angle 𝜃𝑡 is, the closer to the true subspace we are, the smaller step

size is needed. The update is summarized in Algorithm 3.

3.3.3 Computational Complexity Analysis

The number of floating-point operations (flop) is used to measure the compu-

tational complexity of the proposed PETRELS-ADMM. At the 𝑘-th iteration

in the outlier detection phase, our method requires O(Ω𝑟 2) flops where Ω
is average number of observed entries at each time instant (Ω ≤ 𝑛). It is

practically stated that the ADMM solver can converge within a few tens of

iterations [114] (also see Fig. 3.3). Therefore, the removal of outliers costs the

averaged O(Ω𝑟 2). The complexity of the subspace estimation phase is also

O(Ω𝑟 2) as the original PETRELS [73]. The overall computational complexity

of PETRELS-ADMM is of order O(Ω𝑟 2) flops.

3.4 Performance Analysis

In this section, we provide a convergence analysis for the proposed PETRELS-

ADMM algorithm. Inspired by the results of convergence of empirical pro-

cesses for online sparse coding in [120] and online robust PCA in [121, 122],

we derive a theoretical approach to analyze the convergence of values of the

6H𝑚𝑡 ∈ R𝑟×𝑟 is a matrix of rank-one updates, so its inverse matrix can be efficiently com-

puted recursively, thanks to Sherman–Morrison formula [119]. Also, the small regularization

parameter 𝛼 > 0 can help the recursive update having a better numerical stability. The com-

putational complexity is of order O(𝑟2).

CHAPTER 3. ROBUST SUBSPACE TRACKING 49

objective function {𝑓𝑡 (U𝑡)}∞𝑡=1
as well as the solutions {U𝑡 }∞𝑡=1

generated by

PETRELS-ADMM.

Given assumptions defined in Section 3.2.2, our main theoretical result

can be stated by the following theorem:

Theorem 2 (Convergence of PETRELS-ADMM) In the stationary
context, let {U𝑡 }∞𝑡=1

be the sequence of solutions generated by PETRELS-
ADMM, then the sequence converges to a stationary point of the expected
loss function 𝑓 (U) when 𝑡 →∞.

Proof Sketch. Our proof can be divided into three main stages as fol-

lows: We first prove that the solutions {U𝑡 , s𝑡 }𝑡≥1 generated by the PETRELS-

ADMM algorithm are optimal w.r.t. the cost function in (3.6). We then prove

that a nonnegative sequence {𝑔𝑡 (U𝑡)}∞𝑡=1
converges almost surelywhere {U𝑡 }∞𝑡=1

is the sequence of optimal solutions generated by the PETRELS-ADMM algo-

rithm. After that, we prove that the surrogate {𝑔𝑡 (U𝑡)}∞𝑡=1
converges almost

surely to the empirical loss function {𝑓𝑡 (U𝑡)}∞𝑡=1
as well as the true loss func-

tion, i.e., 𝑔𝑡 (U𝑡)
𝑎.𝑠.→ 𝑓𝑡 (U𝑡)

𝑎.𝑠.→ 𝑓 (U𝑡), thanks to the central limit theorem.

Due to space limitation, we here present key results and report their proof

sketch. The details of their proofs are provided in our appendix.

Lemma 1 (Convergence of Algorithm 2) At each time 𝑡 , let
{s𝑘 , u𝑘 , r𝑘 ,w𝑘 , e𝑘 }∞

𝑘=1
be a sequence generated by Algorithm 2 for outlier

detection, there always exists a set of positive numbers {𝑐𝑢, 𝑐𝑠 , 𝑐𝑟 , 𝑐𝑤, 𝑐𝑒 }
such that, at each iteration, the minimizers satisfy

L
(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘+1, e𝑘+1

)
≤ L

(
s𝑘 , u𝑘 , r𝑘 ,w𝑘 , e𝑘

)
− 𝑐𝑢

u𝑘 − u𝑘+1

2

2

− 𝑐𝑠

s𝑘 − s𝑘+1

2

2
− 𝑐𝑟

r𝑘 − r𝑘+1

2

2

− 𝑐𝑤

w𝑘 −w𝑘+1

2

2
− 𝑐𝑒

e𝑘 − e𝑘+1

2

2
,

(3.41)

where the Lagrangian L(s, u, r,w, e) for updating these variables is a
combination of two functions (3.13) and (3.23), as

L
(
s, u, r,w, e

)
= 𝑞(s) + ℎ(u) + 𝜌1r⊤(u − s) +

𝜌1

2

∥u − s∥2
2

+ 𝑓 Hub(e) + 𝜌2

2

P𝑡 (U𝑡−1w + s − x𝑡
)
− e

2

2
. (3.42)

The asymptotic variation of s𝑘 (i.e., outliers) is then given by

lim

𝑘→∞

s𝑘+1 − s𝑘

2

2

= 0. (3.43)

CHAPTER 3. ROBUST SUBSPACE TRACKING 50

Proof Sketch. We state the following proposition, which is in the same line

as in previous convergence analysis of ADMM algorithms [123, 124], used to

prove the first part of lemma 1.

Proposition 1 Let {s𝑘 , u𝑘 , r𝑘 ,w𝑘 , e𝑘 }∞
𝑘=1

be a sequence generated by
Algorithm 2 and denote q𝑘 be one of these variables, the minimizer q𝑘+1

of (3.13) satisfies

L
(
q𝑘+1, .

)
≤ L

(
q𝑘 , .

)
− 𝑐𝑞

q𝑘 − q𝑘+1

2

2
, (3.44)

where 𝑐𝑞 is a positive number.

As a result, the cluster {s𝑘 , u𝑘 , r𝑘 ,w𝑘 , e𝑘 } converges to stationary point of
L(s, u, r,w, e) when 𝑘 → ∞ and it also implies that the sequence {s𝑘 }∞𝑘=0

is

convergent, i.e.,

lim

𝑘→∞

s𝑘+1 − s𝑘

2

2

= 0. (3.45)

Proposition 2 (Convexity of the surrogate functions 𝑔𝑡 (U))
Given assumptions in Section 3.2.2, the surrogate function 𝑔𝑡 (U) defined
in Eq. (3.6) is not only strongly convex, but also Lipschitz function, i.e.,
there always exists two positive numbers𝑚1 and𝑚2 such that

𝑚1 ∥U𝑡+1 − U𝑡 ∥2𝐹 ≤
��𝑔𝑡 (U𝑡+1) − 𝑔𝑡 (U𝑡)��, (3.46)

𝑚2 ∥U𝑡+1 − U𝑡 ∥𝐹 ≥
��𝑔𝑡 (U𝑡+1) − 𝑔𝑡 (U𝑡)��. (3.47)

Proof Sketch. To prove that 𝑔𝑡 (U) is strongly convex, we state the follow-

ing facts: 𝑔𝑡 (U) is continuous and differentiable; its second derivative is a

positive semi-definite matrix (i.e., ∇2

U𝑔𝑡 (U) ⪰ 𝑚I); and the domain of 𝑔𝑡 (U)
is convex. In order to satisfy the Lipschitz condition, we show that the first

derivative of 𝑔𝑡 (U) is bounded.

Lemma 2 (Convergence of Algorithm 3) Given an outlier vector s𝑡
generated by Algorithm 2 at each time instant 𝑡 , Algorithm 3 can pro-
vide a local optimal solution U𝑡 for minimizing 𝑔𝑡 (U). Moreover, the
asymptotic variation of estimated subspaces {U𝑡 }𝑡≥1 is given by

∥U𝑡 − U𝑡+1∥𝐹
𝑎.𝑠.→ O

(
1

𝑡

)
. (3.48)

CHAPTER 3. ROBUST SUBSPACE TRACKING 51

Proof Sketch. To establish the convergence, we exploit the fact that our

modification can be seen as an approximate of the Newton method,

U𝑡 � U𝑡−1 − 𝜂𝑡
[
H ˜𝑓𝑡 (U𝑡−1)

]−1∇𝑔𝑡 (U𝑡−1), (3.49)

where H ˜𝑓𝑡 (U𝑡−1) and ∇𝑔𝑡 (U𝑡−1) are the Hessian matrix and gradient of the

function 𝑔𝑡 (U) atU𝑡−1, as shown in Section 3.3.2. It implies that the estimated

U𝑡 converges to the stationary point of 𝑔𝑡 (U).
Furthermore, since 𝑔𝑡 (U) is strongly convex and Lipschitz function w.r.t

the variable U as shown in Proposition 2, we have the following inequality

𝑚1 ∥U𝑡+1 − U𝑡 ∥2𝐹 ≤
��𝑔𝑡 (U𝑡+1) − 𝑔𝑡 (U𝑡)�� ≤ 𝑚2 ∥U𝑡+1 − U𝑡 ∥𝐹 (3.50)

⇔ ∥U𝑡 − U𝑡+1∥𝐹 ≤
𝑚2

𝑚1

= O
(
1

𝑡

)
. (3.51)

Note that the positive number𝑚2 = O(1/𝑡) is already given in the proof of

Proposition 2 in the supplemental material, while𝑚1 is a constant.

Lemma 3 (Convergence of the surrogate function 𝑔𝑡 (U))
Without discounting past observations, let {U𝑡 }∞𝑡=1

be a sequence of
solutions generated by Algorithm 1 at each time instant 𝑡 , the sequence
{𝑔𝑡 (U𝑡)}∞𝑡=1

converges almost surely, i.e.,

∞∑︁
𝑡=1

���E[𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡)��F𝑡] ��� < +∞ 𝑎.𝑠 ., (3.52)

where {F𝑡 }𝑡>0 is the filtration of the past estimations at time instant 𝑡 .

Proof Sketch. Let us define the indicator function 𝛿𝑡 as follows

𝛿𝑡
Δ
=

{
1 if E

[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡)

��F𝑡] > 0,

0 otherwise.

(3.53)

According to the quasi-martingale convergence theorem [125, Section 4.4], in

order to show the convergence of the nonnegative stochastic process {𝑔𝑡 (U𝑡)}∞𝑡=1
,

we will prove

∞∑︁
𝑡=0

E
[
𝛿𝑡E

[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡)

��F𝑡]] < ∞. (3.54)

In particular, we first indicate the following inequality:

𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) ≤
ℓ (U𝑡 , P𝑡+1, x𝑡+1) − 𝑓𝑡 (U𝑡)

𝑡 + 1

. (3.55)

CHAPTER 3. ROBUST SUBSPACE TRACKING 52

Since E
[
ℓ (U𝑡 , P𝑡+1, x𝑡)

]
= 𝑓 (U𝑡), we have a nice property:

E
[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡)

��F𝑡] ≤ E[ℓ (U𝑡 , P𝑡+1, x𝑡+1) − 𝑓𝑡 (U𝑡)��F𝑡]
𝑡 + 1

=
𝑓 (U𝑡) − 𝑓𝑡 (U𝑡)

𝑡 + 1

. (3.56)

We then have

E
[
𝛿𝑡E

[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡)

��F𝑡]] ≤ E[√𝑡 (𝑓 (U𝑡) − 𝑓𝑡 (U𝑡))] 1

√
𝑡 (𝑡 + 1)

. (3.57)

Under the given assumptions, we exploit the fact that the set of measurable

functions {ℓ (U𝑖 , P, x)}𝑖≥1 defined in (3.2) is P-Donsker. Therefore, the cen-

tered and scaled version of the empirical function 𝑓𝑡 (U𝑡) satisfies the follow-
ing proposition:

E
[√
𝑡
(
𝑓 (U𝑡) − 𝑓𝑡 (U𝑡)

)]
= O(1), (3.58)

thanks to Donsker theorem [126, Sec 19.2]. Furthermore, we also indicate that

the sum

∑∞
𝑡=1

1/(
√
𝑡 (𝑡 + 1)) converges. The two facts result in

∞∑︁
𝑡=0

E
[
𝛿E

[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡)

��F𝑡]] < ∞. (3.59)

Since 𝑔𝑡 (U𝑡) > 0, we can conclude that {𝑔𝑡 (U𝑡)}𝑡>0 is quasi-martingale and

converges almost surely.

Lemma 4 (Convergence of the empirical loss function 𝑓𝑡 (U))
The empirical loss functions 𝑓𝑡 (U𝑡) and its surrogate 𝑔𝑡 (U𝑡) converge to
the same limit, i.e.,

𝑔𝑡 (U𝑡)
𝑎.𝑠.−→ 𝑓𝑡 (U𝑡) . (3.60)

Proof Sketch. We begin the proof with providing the following inequality:

𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)
𝑡 + 1

≤ 𝑢𝑡 − 𝑢𝑡+1︸ ︷︷ ︸
(S-1)

+ ℓ (U𝑡 , P𝑡+1, x𝑡+1) − 𝑓𝑡 (U𝑡)
𝑡 + 1︸ ︷︷ ︸
(S-2)

, (3.61)

where 𝑢𝑡
Δ
= 𝑔𝑡 (U𝑡). We then prove that the two sequences (S-1)-(S-2) con-

verge almost surely. As a result, the sequence

{
(𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)) 1

𝑡+1
}
also

convergence almost surely, i.e.,

∞∑︁
𝑡=0

(
𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)

)
1

𝑡 + 1

< ∞. (3.62)

CHAPTER 3. ROBUST SUBSPACE TRACKING 53

In parallel, we exploit that the real sequence { 1

𝑡+1 }𝑡≥0 diverges, i.e.,

∑∞
𝑡=1

1

𝑡+1 =

∞. It implies that 𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡) converges.

Corollary 1 The expected loss function {𝑓 (U𝑡)}∞𝑡=1
converges almost

surely when 𝑡 →∞.

Proof. Since 𝑓𝑡 (U𝑡)
𝑎.𝑠.→ 𝑓 (U𝑡) and𝑔𝑡 (U𝑡)

𝑎.𝑠.→ 𝑓𝑡 (U𝑡), then𝑔𝑡 (U𝑡)
𝑎.𝑠.→ 𝑓 (U𝑡).

Since 𝑔𝑡 (U𝑡) converges almost surely, 𝑓 (U𝑡) also converges almost surely

when 𝑡 →∞.

Corollary 2 When 𝑡 →∞, let U𝑡 = argminU∈R𝑛×𝑟 𝑔𝑡 (U), we have

𝑓𝑡 (U𝑡) ≤ 𝑓𝑡 (U) +
𝐿

2

∥U − U𝑡 ∥2𝐹 ,∀ U ∈ R𝑛×𝑟 , (3.63)

where 𝐿 is a positive constant. In other words, U𝑡 is the minimum point
of 𝑓 (U).

Proof. Let us denote the error function 𝑒𝑡 (U) = 𝑔𝑡 (U) − 𝑓𝑡 (U). Due to

𝑔𝑡 (U𝑡)
𝑎.𝑠.→ 𝑓𝑡 (U𝑡) when 𝑡 →∞, we have ∇𝑒𝑡 (U𝑡) = 0 and hence the following

inequality

∥∇𝑒𝑡 (U)∥ ≤
𝐿

2

∥U − U𝑡 ∥𝐹 . (3.64)

It is therefore that

|𝑒𝑡 (U) − 𝑒𝑡 (U𝑡) |
∥U − U𝑡 ∥𝐹

≤ 𝐿
2

∥U − U𝑡 ∥𝐹 , (3.65)

thanks to the mean value theorem. In other word, we have |𝑒𝑡 (U) | ≤ 𝐿
2
∥U −

U𝑡 ∥2𝐹 because of 𝑒𝑡 (U𝑡)
𝑎.𝑠.→ 0.

In addition, for all U ∈ R𝑛×𝑟 , we always have 𝑓𝑡 (U𝑡) ≤ 𝑔𝑡 (U). Therefore,
we can conclude the corollary as follows

𝑓𝑡 (U𝑡) ≤ 𝑔𝑡 (U𝑡) = 𝑓𝑡 (U) + 𝑒𝑡 (U) ≤ 𝑓𝑡 (U) +
𝐿

2

U − U𝑡

2

𝐹
. (3.66)

It ends the proof.

3.5 Experiments

In this section, we evaluate the performance of the proposed algorithm by

comparing it to the state-of-the-art in three scenarios relative to: robust sub-

space tracking, robust matrix completion and video background-foreground

CHAPTER 3. ROBUST SUBSPACE TRACKING 54

separation respectively. In particular, extensive experiments on simulated

data are conducted to demonstrate the convergence and robustness of our

PETRELS-ADMM algorithm for subspace tracking and matrix completion.

While four real video sequences are used to illustrate the effectiveness of

PETRELS-ADMM for background-foreground separation.

3.5.1 Robust Subspace Tracking

In the following experiments, data x𝑡 at each time 𝑡 is generated randomly

using the standard signal model as in (3.1)

x𝑡 = P𝑡 (U𝝎𝑡 + n𝑡 + s𝑡), (3.67)

where U ∈ R𝑛×𝑟 denotes a mixing matrix, 𝝎𝑡 is a random vector living on R𝑟

space (i.e., ℓ𝑡 = U𝝎𝑡) and they are Gaussian i.i.d. of pdfN(0, 1); n𝑡 represents
the white Gaussian noiseN(0, 𝜎2), with SNR = −10 log

10
(𝜎2) is the signal-to-

noise ratio to control the impact of noise on algorithm performance; and s𝑡 is
uniform i.i.d. over [0, fac-outlier] given the magnitude fac-outlier of outliers

that aim to create a space for outliers. Indices of missing entries and out-

liers are generated randomly using the Bernoulli model with the probability

𝜔missing and 𝜔outlier respectively. The two probabilities represent the density

of missing entries and outliers in the data.

In order to evaluate the subspace estimation accuracy, we use the sub-

space estimation performance (SEP) [62] metric

SEP =
1

𝐿

𝐿∑︁
𝑖=1

tr
{
U#

es-i
(I − UexU#

ex
)Ues-i

}
tr

{
U#

es-i
(UexU#

ex
)Ues-i

} , (3.68)

where 𝐿 is the number of independent runs, Uex and Ues-i are the true and

the estimated subspaces at the 𝑖-th run respectively. Particularly, the denom-

inator measures the sum of the squares of the cosines of the principal angles

between Ues-i and Uex, while the numerator evaluates the similar sum but for

the two subspacesUes-i and the orthogonal complementU⊥
ex
. Accordingly, the

lower SEP is, the better the algorithm performance is.

The state-of-the-art RST algorithms for comparison are: GRASTA [50],

ROSETA [55] and PETRELS-CFAR [62], ReProCS [63] and NORST [64]. In

our experiments, their algorithm parameters are set by default as mentioned

in the algorithms. In particular, we set a penalty parameter 𝜌 = 1.8 and a

constant step-size scale 𝐶 = 2 in GRASTA. An adaptive step size of ROSETA

is initialized at 𝜇0 = 𝐶
1+𝜂0

with 𝐶 = 8 and 𝜂0 = 99, while two thresholds for

controlling the step size are set at 𝜂low = 50 and 𝜂high = 100. PETRELS-CFAR

includes a forgetting factor set at 𝜆 = 0.999, a window size 𝑁𝑤 = 150 and

a false alarm probability 𝑃fa varied from [0.1, 0.7] depended on the outlier

CHAPTER 3. ROBUST SUBSPACE TRACKING 55

0 100 200 300 400 500

10
-15

10
-10

10
-5

10
0

(a) SNR = 0 dB.

0 100 200 300 400 500

10
-15

10
-10

10
-5

10
0

(b) SNR = 10 dB.

Figure 3.2: Convergence of PETRELS-ADMM in terms of the variation

∥s𝑘+1 − s𝑘 ∥2: 𝑛 = 50, 𝑟 = 2, 90% entries observed and outlier density𝜔outlier = 0.1.

intensity. Both ReProCS and NORST require several predefined parameters,

including 𝑡train = 200 data samples, 𝛼 = 60, 𝐾 = 33 and 𝜔𝑒𝑣𝑎𝑙 = 7.8× 10
−4
. For

our algorithm, we set the penalty parameters at 1.5, the regularization param-

eter 𝛼 = 0.1 and the step-size threshold 𝜂 = sin(𝜋/3), while the maximum

number of iterations for outlier detection phase is fixed at 𝐾 = 50. Matlab

codes are available online
7
. The experimental results are averaged over 100

independent runs.

3.5.1.1 Convergence of PETRELS-ADMM

To demonstrate the convergence of our algorithm, we use a synthetic data

whose number of row 𝑛 = 50, rank 𝑟 = 2, and 5000 vector samples with 90%

entries observed on average. Specifically, the outlier density 𝜔outlier is varied

from 0.05 to 0.4, while the outlier intensity is set at three values representing

a low, medium and high level (i.e., fac-outlier = 0.1, 1 and 10 respectively).
The penalty parameter 𝜌 varies in the range [0.1, 1.5]. Also, two noise levels

are considered, with SNR ∈ {0, 10} dB. The results are shown as in Fig. 3.2

and Fig. 3.3.

Fig. 3.2 shows the convergence behavior of PETRELS-ADMM w.r.t the

two variables: fac-outlier and the weight 𝜌 . We can see that, the variation of

{s𝑘 }𝑘≥1 always converges in all testing cases. When the penalty parameter

7
GRASTA: https://sites.google.com/site/hejunzz/grasta

ROSETA: http://www.merl.com/research/license#ROSETA

ReProCS: https://github.com/praneethmurthy/ReProCS

Our code: https://github.com/thanhtbt/RST

CHAPTER 3. ROBUST SUBSPACE TRACKING 56

0 1000 2000 3000 4000 5000
10

-8

10
-6

10
-4

10
-2

10
0

10
2

(a) Outlier density 𝜔
outlier

= 0.05.

0 1000 2000 3000 4000 5000
10

-8

10
-6

10
-4

10
-2

10
0

10
2

(b) Outlier density 𝜔
outlier

= 0.4.

Figure 3.3: Convergence of PETRELS-ADMM in terms of the variation

∥U𝑡+1 − U𝑡 ∥𝐹 : 𝑛 = 50, 𝑟 = 2, 90% entries observed and outlier intensity

fac-outlier = 10.

𝜌 ≥ 0.5, the convergence rate is fast, i.e. the variation

s𝑘+1 − s𝑘

2
can con-

verge in 50 iterations in both low- and high-noise cases. The results are practi-

cal evidences of Lemma 1. Similarly, Fig. 3.3 shows that the convergence of the

variations of the sequence {U𝑡 }𝑡≥0, generated by PETRELS- ADMM follows

the theoretical behavior proved in Lemma 2, that is, ∥U𝑡 − U𝑡+1∥𝐹
𝑎.𝑠.→ O(1/𝑡)

almost surely.

3.5.1.2 Outlier Detection

Following the above experiment, we next assess the ability of PETRELS-ADMM

for outlier detection against the noise level. The three statistical metrics in-

cluding Sensitivity (SEN) and Specificity (SEP) and Accuracy (ACC) are used

to evaluate its outlier detection performance [127]. Particularly, SEN mea-

sures the percentage of outliers detected correctly over the total outliers in the

measurement data. SEP is similar to SEN, but for normal entries and ACC in-

dicates how the estimator makes the correct detection. We use the same data

above, but 20% of the observations are missing. The outlier density 𝜔outlier is

set at 0.2, while two intensity levels are considered, with fac-outlier ∈ {1, 10}.
Fig. 3.4 illustrates the outlier detection performance of PETRELS-ADMM

versus the noise level SNR. As can be seen that when we increase the value of

SNR from −20 dB to 20 dB, the detection accuracy goes up first and then con-

verges towards a constant level. At very low SNRs (i.e., < 0 dB), the proposed

algorithm does not work well in which many normal entries are labeled as

outliers, although the number of correctly detected outliers are high. When

CHAPTER 3. ROBUST SUBSPACE TRACKING 57

-20 -10 0 10 20
0

20

40

60

80

100

(a) fac-outlier = 1.

-20 -10 0 10 20
0

20

40

60

80

100

(b) fac-outlier = 10.

Figure 3.4: Outlier detection accuracy versus the noise level: 𝑛 = 50, 𝑟 = 2, 80%

entries observed and 20% outliers.

SNR > 0 dB, PETRELS-ADMM achieves a competitive prediction accuracy

with respect to all three evaluation metrics.

Fig. 3.5 providesmore practical evidences to demonstrate the effectiveness

of PETRELS-ADMM for the outlier detection. Particularly, the locations of

outliers s𝑡 are well detected even when the measurement data is corrupted by

noisewith amoderate SNR value (e.g. 10 dB). Also, amplitude of the outliers is

recovered nearly correctly with a small relative error (RE =
∥s𝑡−s̃𝑡 ∥2
∥s𝑡 ∥2) in both

cases (e.g. RE = 0.0616 at the 20 dB noise level). As a result, the corrupted

signals are also well reconstructed, as illustrated in Fig. 3.5(b) and (d).

3.5.1.3 Robustness of PETRELS-ADMM

To investigate the robustness of PETRELS-ADMM, we vary the outlier inten-

sity, density and missing density and then measure the SEP metric. Moreover,

we also demonstrate the effectiveness of PETRELS-ADMM against noisy and

time-varying environments.

Impact of outlier intensity on algorithm performance

We fix 𝑛 = 50, 𝑟 = 2, 90% entries observed, outlier density 𝜔outlier = 0.1,

SNR= 20 dB while varying fac-outlier in the range [0.1, 10]. We can see from

Fig. 3.6 that PETRELS-ADMM always outperforms other state-of-the-art al-

gorithms in all testing cases with different fac-outlier values. At low out-

lier intensity (i.e., fac-outlier ≤ 1), all algorithms yield good accuracy with

fast convergences, though ROSETA and ReProCS obtain the higher SEP (i.e.,

≈ 10
−3
) as compared to that of the four remaining algorithms. In partic-

CHAPTER 3. ROBUST SUBSPACE TRACKING 58

0

5

0 10 20 30 40 50

0

5

0 10 20 30 40 50

(a) Outlier detection: SNR = 20 dB.

-4

-2

0

2

4

0 10 20 30 40 50

-4

-2

0

2

4

0 10 20 30 40 50

(b) Data recovery: SNR = 20 dB.

0

5

10

0 10 20 30 40 50

0

5

10

0 10 20 30 40 50

(c) Outlier detection: SNR = 10 dB.

-2

0

2

0 10 20 30 40 50

-2

0

2

0 10 20 30 40 50

(d) Data recovery: SNR = 10 dB.

Figure 3.5: Outlier detection and data reconstruction: 𝑛 = 50, 𝑟 = 2, 90% entries

observed, outlier intensity fac-outlier = 1, and outlier density 𝜔outlier = 0.1.

ular, PETRELS-ADMM provides the best subspace estimation accuracy, i.e.,

SEP ≈ 10
−5

in both cases (see Fig. 3.6(a)-(b)). At a high intensity level (e.g.

fac-outlier = 5 or 10), PETRELS-ADMM again provides the best performance

in terms of both convergence rate and accuracy. GRASTA performs similarly

to ReProCS and slightly worse than PETRELS-CFAR (i.e., their SEP values are

around 10
−4
). While ROSETA and NORST fail to recover the underlying sub-

space in the presence of strong outliers. Note that, in all four experiments

above, PETRELS-ADMM always obtains the best SEP value of around 10
−5

and hence is robust to outlier intensity.

CHAPTER 3. ROBUST SUBSPACE TRACKING 59

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) fac-outlier = 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) fac-outlier = 1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) fac-outlier = 5.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) fac-outlier = 10.

Figure 3.6: Impact of outlier intensity on algorithm performance: 𝑛 = 50,

𝑟 = 2, 90% entries observed, outlier density 𝜔outlier = 0.1 and SNR = 20 dB.

Impact of outlier density on algorithm performance

We fix 𝑛 = 50, 𝑟 = 2, 90% entries observed, outlier intensity fac-outlier = 5,

SNR = 20 dB while varying the outlier density 𝜔outlier in the range [0.05, 0.4].

The results are shown as in Fig. 3.7. PETRELS-ADMM outperforms the four

remaining algorithms in this context. In particular, our algorithm performs

very well even when the fraction of outliers is high (e.g. 𝜔outlier = 0.4). By

contrast, four algorithms including GRASTA, ROSETA, ReProCS and NORST

may fail to track subspace in the case of a high outlier density (see Fig. 3.7(d)).

The PETRELS-CFAR works well but has a lower convergence rate and accu-

racy in terms of SEP metric as compared to PETRELS-ADMM.When the mea-

surement data is corrupted by a smaller number of outliers, PETRELS-ADMM

CHAPTER 3. ROBUST SUBSPACE TRACKING 60

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) 𝜔
outlier

= 0.05.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) 𝜔
outlier

= 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) 𝜔
outlier

= 0.2.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) 𝜔
outlier

= 0.4.

Figure 3.7: Impact of outlier density on algorithm performance: 𝑛 = 50, 𝑟 = 2,

90% entries observed, outlier intensity fac-outlier = 10 and SNR = 20 dB.

still provides better performance than the others, as shown in Fig. 3.7 (a)-(c).

Impact of the density of missing entries on algorithm performance

Following the above experiments, we change the number of missing entries

in the measurement data by varying the probability 𝜔missing while fixing the

other attributes. The results are reported in Fig. 7.13 and Fig. 3.9. In particular,

the effect of 𝜔missing on algorithm performance is presented in Fig. 7.13. Sim-

ilarly, PETRELS-ADMM yields the best performance in four cases of missing

observations. Three algorithms including PETRELS-CFAR, GRASTA and Re-

ProCS provide good performance but with slower convergence rate and accu-

racy, while ROSETA and NORST have failed again in this task due to the high

CHAPTER 3. ROBUST SUBSPACE TRACKING 61

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) 𝜔missing = 0.05.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) 𝜔missing = 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) 𝜔missing = 0.2.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) 𝜔missing = 0.4.

Figure 3.8: Impact of the density of missing entries on algorithm perfor-

mance: 𝑛 = 50, 𝑟 = 2, outlier density𝜔outlier = 0.1, outlier intensity fac-outlier =

10 and SNR = 20 dB.

outlier intensity (i.e., fac-outlier = 10). As can be seen from Fig. 3.9(a)-(c) that

the state-of-the-art algorithms only perform well when the number of cor-

ruptions is smaller than half the number of entries in the data measurement.

While PETRELS-ADMM still obtains the reasonable subspace estimation per-

formance in terms of SEP (i.e., ≈ 10
−3
) in the case of very high corruptions,

see Fig. 3.9(d).

CHAPTER 3. ROBUST SUBSPACE TRACKING 62

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) 𝜔missing, 𝜔outlier
= 0.05.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) 𝜔missing, 𝜔outlier
= 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) 𝜔missing, 𝜔outlier
= 0.2.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) 𝜔missing, 𝜔outlier
= 0.3.

Figure 3.9: Impact of the corruption fraction by missing data and outliers on

algorithm performance: 𝑛 = 50, 𝑟 = 2 and fac-outlier = 10 and SNR = 20 dB.

Noisy and Time-Varying Environments

We first investigate the effect of the noise on the performance of PETRELS-

ADMM in comparisonwith the state-of-the-art algorithms. We vary the value

of SNR in the range from 0 dB to 20 dB and assess their performance on the

same data above. Experimental results are illustrated in Fig. 3.10. As can be

seen that the convergence rate of PETRELS-ADMM is not affected by SNR,

but only its estimation accuracy, as shown in Fig. 3.10(a). Specifically, when

we decrease the value of SNR, the estimation error between the true subspace

and the estimation increases gradually. At a high SNR level (e.g. 20 dB), previ-

ous experiments indicate that PETRELS-ADMM outperforms state-of-the-art

CHAPTER 3. ROBUST SUBSPACE TRACKING 63

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) PETRELS-ADMM.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) SNR = 5 dB.

Figure 3.10: Impact of the additive noise on algorithm performance: 𝑛 =

50, 𝑟 = 2, 90% entries observed and 10% outliers with intensity fac-outlier = 10.

algorithms, see Fig. 3.6-3.9. At a low SNR level (e.g. 5 dB), PETRELS-ADMM

yields the best estimation accuracy as well as convergence rate again, as illus-

trated in Fig. 3.10(b). Similar outstanding performance of PETRELS-ADMM

were also observed at lower SNR levels of 10, 5 or 0 dB (please see Figs. 8-10

of the supplementary material).

The robustness of PETRELS-ADMM is next investigated against nonsta-

tionary and time-varying environments. Particularly, the true subspace U is

supposed to be varying with time under the model U𝑡 = (1 − 𝜀)U𝑡−1 + 𝜀N𝑡 ,
where N𝑡 ∈ R𝑛×𝑟 is a Gaussian noise matrix (zero-mean and unit-variance)

and 𝜀 is to control the subspace change which is chosen among {10
−1, 10

−2,

10
−3}. We use the same signal model as in the previous tasks and 1000 vector

samples. Also, we create an abrupt change at 𝑡 = 500 to see how fast the pro-

posed algorithm can converge. We measure the performance of PETRELS-

ADMM at two noise levels (SNR = 5 and 10 dB) with different corruption

fractions. Experimental results are illustrated in Fig. 7.12(a)-(d). In the same

manner to the effect of the noise, the time-varying factor 𝜀 does not affect

the convergence rate of PETRELS-ADMM, but only its subspace estimation.

Fig. 7.12 shows that the estimation accuracy of the proposed algorithm will

decrease if the time-varying factor 𝜀 increases. When the underlying sub-

space varies slowly (e.g. 𝜀 ≤ 10
−2
), the resulting values of SEP, which always

converge towards an error floor, indicate that PETRELS-ADMM can be robust

to slowly time-varying scenarios.

CHAPTER 3. ROBUST SUBSPACE TRACKING 64

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

(a) SNR = 10 dB,𝜔missing = 0.05 and𝜔
outlier

=

0.05.

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

(b) SNR = 5 dB, 𝜔missing = 0.05 and 𝜔
outlier

=

0.05.

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

(c) SNR = 10 dB, 𝜔missing = 0.2 and 𝜔
outlier

=

0.2.

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

(d) SNR = 5 dB, 𝜔missing = 0.2 and 𝜔
outlier

=

0.2.

Figure 3.11: PETRELS-ADMM in time-varying scenarios.

3.5.2 Robust Matrix Completion

We compare here the robust matrix completion (RMC) performance using

PETRELS-ADMMwith GRASTA [50], LRGeomGC [128] and RPCA-GD [129].

Themeasurement dataX = P⊛ (UW+S+N) used for this task corresponds
to the rank-2 matrices of size of 400 × 400, where the operator ⊛ denotes

the Hadamard product. Particularly, we generated the mixing matrix U ∈
R400×2

and the coefficient matrix W ∈ R2×400
at random. Their entries were

random variables that follow Gaussian distribution with zero mean and unit

variance. The measurement data X was corrupted by a white Gaussian noise

N ∈ R400×400
whose SNR is fixed at 40 dB. In the literature, the SNR value

of around 40 dB is used for performance evaluation of completion algorithms

CHAPTER 3. ROBUST SUBSPACE TRACKING 65

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

PETRELS-ADMM

0 20 40 60 80

0

20

40

60

80

GRASTA

0 20 40 60 80

0

20

40

60

80

RPCA-GD

0 20 40 60 80

0

20

40

60

80

LRGeomGC

Figure 3.12: Effect of outlier intensity on robust matrix completion perfor-

mance. White color denotes perfect recovery, black color denotes failure and

gray colour is in between.

due tomissing observations and/or outliers at low-noise conditions [130]. The

data matrix was affected by different percentages of missing (P) and outliers

(S) from 0% − 90%. The location and value of corrupted entries (including

missing and outliers) were uniformly distributed.

Fig. 3.12 shows that the proposed algorithm of PETRELS-ADMM based

RMC outperforms GRASTA, LRGeomGC and RPCA-GD. At low outlier in-

tensity (i.e., fac-outlier = 0.1), PETRELS-ADMM based RMC, LRGeomGC and

RCPA-GD provide excellent performance even when the data is corrupted by

a very high corruption fraction. At high outlier intensity (i.e., fac-outlier ≥ 1),

PETRELS-ADMM based RMC provides the best matrix reconstruction error

performance, GRASTA still retain good performance, while RPCA-GD and

LRGeomGC fail to recover corrupted entries.

CHAPTER 3. ROBUST SUBSPACE TRACKING 66

3.5.3 Video Background/Foreground Separation

We further illustrate the effectiveness of the proposed PETRELS-ADMM al-

gorithm in the application of RST for video background/foreground separa-

tion, and compare with GRASTA and PETRELS-CFAR. We use four real video

sequences for this task, including Hall, Lobby, Sidewalk and Highway
datasets. In particular, the two former datasets are from GRASTA’s home-

page
8
, while the two latter datasets are from CD.net20129 [131]. The Hall

dataset consists of 3584 frames of size 174 × 144 pixels, while the Lobby
dataset has 1546 frames of size 144 × 176 pixels. The Sidewalk dataset in-

cludes 1200 frames of size 240 × 352 pixels. Highway dataset has 1700

frames of size 240×320 pixels. We can see from Fig. 3.13, PETRELS-ADMM is

capable of detecting objects in video and provides competitive performance

as compared to GRASTA and PETRELS-CFAR.

3.6 Conclusions

In this chapter, we have proposed an efficient algorithm, namely PETRELS-

ADMM, for the robust subspace tracking problem to handle missing data in

the presence of outliers. By converting the original RST problem to a sur-

rogate one, which facilitates the tracking ability, we have derived an online

implementation for outlier rejection with a low computational complexity

and a fast convergence rate while still retaining a high subspace estimation

performance. We have established a theoretical convergence which guar-

antees that the solutions generated by PETRELS-ADMM will converge to a

stationary point asymptotically. The simulation results have suggested that

our algorithm is more effective than the state-of-the-art algorithms for ro-

bust subspace tracking and robust matrix completion. The effectiveness of

PETRELS-ADMM was also verified for the problem of video background-

foreground separation.

3.7 Appendix

3.7.1 Proof of Lemma 1

Follow the line as in previous convergence analysis of ADMMalgorithms [123,

124], we can derive the proof of Lemma 1 as follows

8
https://sites.google.com/site/hejunzz/grasta

9
http://jacarini.dinf.usherbrooke.ca/dataset2012

CHAPTER 3. ROBUST SUBSPACE TRACKING 67

Video Frame PETRELS-ADMM PETRELS-CFAR GRASTA

Figure 3.13: Qualitative illustration of video background-foreground separa-

tion application.

3.7.1.1 Proof of Proposition (P-1)

The minimizer u𝑘+1 defined in (3.15) satisfies

L
(
s𝑘 , u𝑘+1, r𝑘 ,w𝑘 , e𝑘

)
≤ L(s𝑘 , u𝑘 , r𝑘 ,w𝑘 , e𝑘) − 𝑐𝑢

u𝑘 − u𝑘+1

2

2
. (P-1)

At the 𝑘-th iteration, the u-update in fact minimizes the objective function

in (3.14), as

u𝑘+1 = argmin

u

[
Lu,𝑘 (u, .) =

1 + 𝜌1

2

∥u∥2
2
−

[
P𝑡

(
x𝑡 − U𝑡−1w

)
− 𝜌1

(
s𝑘 − r𝑘

)]⊤
u
]
.

(3.69)

The function Lu,𝑘 (u, .) is strongly convex with a positive constant (1 + 𝜌1),
i.e., the Hessian of Lu,𝑘 (u, .) is given by ∇2Lu,𝑘 (u, .) = (1 + 𝜌1)I. Since u𝑘+1 =

CHAPTER 3. ROBUST SUBSPACE TRACKING 68

argminu Lu,𝑘 (u, .), we have the fact Lu,𝑘 (u𝑘+1, .) ≤ Lu,𝑘 (u𝑘 , .). Therefore, we
obtain the following inequality

Lu,𝑘
(
u𝑘 , .

)
− Lu,𝑘

(
u𝑘+1, .

)
≥ 1 + 𝜌1

2

u𝑘+1 − u𝑘

2

2
, (3.70)

thanks to Proposition 19. It results in the Proposition (P-1).

3.7.1.2 Proof of Proposition (P-2)

The minimizer s𝑘+1 defined in (3.18) satisfies

L
(
s𝑘+1, u𝑘+1, r𝑘 ,w𝑘 , e𝑘

)
≤ L

(
s𝑘 , u𝑘+1, r𝑘 ,w𝑘 , e𝑘

)
− 𝑐𝑠

s𝑘 − s𝑘+1

2

2
. (P-2)

At the 𝑘-th iteration, the variable s is updated by minimizing the objective

function Ls,𝑘 (s, .) in Eq. (3.15), as

s𝑘+1 = argmin

s

[
Ls,𝑘 (s, .) = 𝜌 ∥s∥1 +

𝜌1

2

s − (
u𝑘+1 + r𝑘

)

2

2

]
. (3.71)

We exploit that if given u𝑘+1 and r𝑘 , then both functions of the ℓ1-norm ∥s∥1
and ℓ2-norm

s − (u𝑘+1 + r𝑘)

2

2
are convex, so the Ls,𝑘 (s, .) w.r.t. s is also con-

vex. It is therefore that for any s𝑘 , s𝑘+1 ∈ S, we always have

Ls,𝑘
(
s𝑘 , .

)
≥ Ls,𝑘

(
s𝑘+1, .

)
+

〈
s𝑘 − s𝑘+1,∇Ls,𝑘

(
s𝑘+1, .

)〉
+ 1

2

s𝑘+1 − s𝑘

2

2
, (3.72)

thanks to the Proposition 3.

Since s𝑘+1 = argmins Ls,𝑘 (s, .), the first derivative ∇Ls,𝑘 (s𝑘+1, .) = 0 and

hence

Ls,𝑘
(
s𝑘 , .

)
≥ Ls,𝑘

(
s𝑘+1, .

)
. (3.73)

In other word, there always exists a nonnegative number 𝑐𝑠 ≥ 0 such that

Ls,𝑘
(
s𝑘 , .

)
≥ Ls,𝑘

(
s𝑘+1, .

)
+ 1

2

s𝑘+1 − s𝑘

2

2
. (3.74)

As a result, we have

𝐾∑︁
𝑘=1

1

2

s𝑘+1 − s𝑘

2

2
≤

𝐾∑︁
𝑖=1

Ls,𝑘
(
s𝑘 , .

)
− Ls,𝑘

(
s𝑘+1, .

)
= Ls,𝑘

(
s1, .

)
− Ls,𝑘

(
s𝐾+1, .

)
.

(3.75)

Let 𝐾 → ∞, we then have

∑∞
𝑘=1
∥s𝑘+1 − s𝑘 ∥2

2
< ∞. It ends the proof of (P-2)

and the second part of Lemma 1.

CHAPTER 3. ROBUST SUBSPACE TRACKING 69

3.7.1.3 Proof of Proposition (P-3)

The minimizer r𝑘+1 defined in (3.16) satisfies

L
(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘 , e𝑘

)
≤ L

(
s𝑘+1, u𝑘+1, r𝑘 ,w𝑘 , e𝑘

)
− 𝑐𝑟

r𝑘 − r𝑘+1

2

2
. (P-3)

Follow the r-update in Eq. (3.16), it is easy to verify that

L
(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘 , e𝑘

)
= 𝜌1

(
r𝑘 + s𝑘+1 − u𝑘+1

)⊤ (u𝑘+1 − s𝑘+1) +𝐴
= 𝜌1(r𝑘)⊤

(
u𝑘+1 − s𝑘+1

)
− 𝜌1

u𝑘+1 − s𝑘+1

2

2
+𝐴

= L
(
s𝑘+1, u𝑘+1, r𝑘 ,w𝑘 , e𝑘

)
− 𝜌1

r𝑘+1 − r𝑘

2

2
, (3.76)

where𝐴 = 𝑔(s𝑘+1) +ℎ(u𝑘+1) + 𝜌1

2
∥u𝑘+1−s𝑘+1∥. It implies the proposition (P-3).

3.7.1.4 Proof of Proposition (P-4)

The minimizer w𝑘+1
defined in (3.27) satisfies

L
(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘+1, e𝑘

)
≤ L

(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘 , e𝑘

)
− 𝑐𝑤

w𝑘 −w𝑘+1

2

2
.

(P-4)

Denote z = P𝑡 (U𝑡w + s𝑘+1 − x𝑡). In fact, the w-update minimizes the smooth

version of the objective function (3.23), as follows

Lz,𝑘 (z, .) =
𝑛∑︁
𝑖=1

[((
z(𝑖)2 + 1

)
1/2 − 1

)
+ 𝜌2

2

((
z(𝑖) − e𝑘 (𝑖)

)
2 + 1)1/2 − 1

)]
.

(3.77)

The first two derivatives of Lz,𝑘 (z, .) are given by

∇Lz,𝑘 (z, .) =
[
z(1) (z(1)2 + 1)−1/2, . . . , z(𝑛) (z(𝑛)2 + 1)−1/2

]⊤
+ 𝜌2

[
(z(1) − e𝑘 (1)) ((z(1) − e𝑘 (1))2 + 1)−1/2, . . . ,

....(z(𝑛) − e𝑘 (𝑛)) ((z(1) − e𝑘 (1))2 + 1)−1/2
]⊤
, (3.78)

and

∇2Lz,𝑘 (z, .) = diag

([
(z(1)2 + 1)−3/2, . . . , (z(𝑛)2 + 1)−3/2

])
+ 𝜌2diag

([
((z(1) − e𝑘 (1))2 + 1)−3/2, . . . , (z(𝑛) − e𝑘 (𝑛))2 + 1)−3/2

])
.

(3.79)

CHAPTER 3. ROBUST SUBSPACE TRACKING 70

The Hessian matrix ∇2Lz,𝑘 (z, .) then satisfies 𝜌2I < ∇2Lz,𝑘 (z, .) ≤ (𝜌2 + 1)I.
It is therefore that Lz,𝑘 (w, .) is strongly convex and Lipschitz continuous. In

other word, it implies that

L
(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘 , e𝑘

)
− L

(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘+1, e𝑘

)
>
𝜌2

2

w𝑘 −w𝑘+1

2

2
.

(3.80)

which results in the Proposition (P-4), thanks to Proposition 19.

3.7.1.5 Proof of Proposition (P-5)

The minimizer e𝑘+1 defined in (3.29) satisfies

L
(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘+1, e𝑘+1

)
≤ L

(
s𝑘+1, u𝑘+1, r𝑘+1,w𝑘+1, e𝑘

)
− 𝑐𝑒

e𝑘 − e𝑘+1

2

2
.

(P-5)

Similarly, we also have Le,𝑘 (e, .) is strongly convex, i.e.,

∇2Le,𝑘 (e, .) = 𝜌2 diag

([(
(z𝑘 (1) − e(1))2 + 1

)−3/2
, . . . ,(

z𝑘 (𝑛) − e(𝑛))2 + 1

)−3/2
])
. (3.81)

Therefore we have

Le,𝑘
(
e𝑘 , .

)
− Le,𝑘

(
e𝑘+1, .

)
≥ 𝜌2

2

e𝑘+1 − e𝑘

2

2

. (3.82)

It ends the proof.

3.7.2 Proof of Proposition 2

To prove that 𝑔𝑡 (U) is strongly convex, we state the following facts: 𝑔𝑡 (U) is
continuous and differentiable; its second derivative is a positive semi-definite

matrix (i.e., ∇2

U𝑔𝑡 (U) ⪰ 𝑚I); and the domain of 𝑔𝑡 (U) is convex. In order to

satisfy the Lipschitz condition, we show that the first derivative of 𝑔𝑡 (U) is
bounded.

Stage I: Prove that 𝑔𝑡 is a strong convex function

We show that there exists a positive number𝑚 such that��𝑔𝑡 (U𝑡+1) − 𝑔𝑡 (U𝑡)�� ≥ 𝑚1 ∥U𝑡+1 − U𝑡 ∥2𝐹 . (3.83)

In particular, we state the two claims as follows:

CHAPTER 3. ROBUST SUBSPACE TRACKING 71

(C-1): 𝑔𝑡 (U) is continuous and differentiable.

Proof. Given two variables A,B ∈ U such that ∥A − B∥2𝐹 < 𝛾 for some

positive constant 𝛾 . It is easy to verify that there exists a positive num-

ber 𝜃 such that |𝑔𝑡 (A) − 𝑔𝑡 (B) | < 𝜃 .
Thanks to the triangle inequality, we have the following inequality:��𝑔𝑡 (A) − 𝑔𝑡 (B)��

=
1

𝑡

���� 𝑡∑︁
𝑖=1

𝛽𝑡−𝑖 ∥P𝑖 (Aw𝑖 + s𝑖 − x𝑖)∥22 −
𝑡∑︁
𝑖=1

𝛽𝑡−𝑖 ∥P𝑖 (Bw𝑖 + s𝑖 − x𝑖)∥22
����

≤ 1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖 ∥P𝑖 (A − B)w𝑖 ∥22 ≤
1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖 ∥P𝑖 (A − B)∥2𝐹 ∥w𝑖 ∥22

≤ 1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖 ∥A − B∥2𝐹 ∥w𝑖 ∥22 =
𝛾

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖 ∥w𝑖 ∥22 = 𝜃, (3.84)

Therefore, the set of functions {𝑔𝑡 (U)}∞𝑡=1
is equicontinuous onU.

Furthermore, for any U∗,H ∈ U, we show that the following limit ex-

ists:

lim

𝑎→0

𝑔𝑡 (U∗ + 𝑎H) − 𝑔𝑡 (U∗)
𝑎

= lim

𝑎→0

1

𝑡𝑎

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖
(

P𝑖 ((U∗ + 𝑎H)w𝑖 + s𝑖 − x𝑖

)

2

2

−

P𝑖 (U∗w𝑖 + s𝑖 − x𝑖

)

2

2

)
. (3.85)

Specifically, let us denote y𝑖 = P𝑖 (U∗w𝑖+s𝑖−x𝑖), the limit can be written

as follows:

lim

𝑎→0

𝑔𝑡 (U∗ + 𝑎H) − 𝑔𝑡 (U∗)
𝑎

= lim

𝑎→0

1

𝑡𝑎

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖
(
∥y𝑖 − 𝑎P𝑖Hw𝑖 ∥22 − ∥y𝑖 ∥22

)
= lim

𝑎→0

1

𝑡𝑎

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖
(
∥𝑎P𝑖Hw𝑖 ∥22 − 2𝑎⟨u𝑖 , P𝑖Hw𝑖⟩

)
=
−2

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖 ⟨y𝑖 , P𝑖Hw𝑖⟩ < ∞. (3.86)

As a result, the function 𝑔𝑡 (U) is differentiable and its first derivative

∇U𝑔𝑡 (U) can be given by

∇U𝑔𝑡 (U) =
2

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖 (Uw𝑖 + s𝑖 − x𝑖)w⊤𝑖 . (3.87)

CHAPTER 3. ROBUST SUBSPACE TRACKING 72

In the similar way, it is easy to verify that ∇U𝑔𝑡 (U) is also continuous

and the second derivative ∇2

U𝑔𝑡 (U) is given by

∇2

U𝑔𝑡 (U) =
2

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖w𝑖w⊤𝑖 . (3.88)

(C-2): The second derivative ∇2

U𝑔𝑡 (U) is a positive-define matrix. For all x ∈
R𝑝×1

, we have

x⊤∇2

U𝑔𝑡 (U)x =
2

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖 (w⊤𝑖 x)⊤(w⊤𝑖 x)

=
2

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖 (w⊤𝑖 x)2 > 0, ∀𝛽, 𝑡 > 0. (3.89)

It implies that there always exist a positive constant𝑚 such that∇2

U𝑔𝑡 (U) ≥
𝑚I.

It follows to the claims (C-1), (C-2) and the assumptions showing that the

domain of 𝑔𝑡 (U) is a convex set that 𝑔𝑡 (U𝑡) is strongly convex [132, Section

3.1.4].

Stage II: Prove that 𝑔𝑡 is a Lipschitz function��𝑔𝑡 (U𝑡+1) − 𝑔𝑡 (U𝑡)�� ≤ 𝑚2

U𝑡+1 − U𝑡

𝐹 . (3.90)

Let us denote 𝑑𝑡 (U) = 𝑔𝑡 (U) − 𝑔𝑡+1(U). Since U𝑡 = argmin

U∈U
𝑔𝑡 (U), we exploit

that 𝑔𝑡+1(U𝑡+1) ≤ 𝑔𝑡+1(U𝑡) and hence

𝑔𝑡 (U𝑡+1) − 𝑔𝑡 (U𝑡) = 𝑔𝑡 (U𝑡+1) − 𝑔𝑡+1(U𝑡) + 𝑔𝑡+1(U𝑡) − 𝑔𝑡 (U𝑡)

≤
(
𝑔𝑡 (U𝑡+1) − 𝑔𝑡+1(U𝑡+1)︸ ︷︷ ︸

𝑑𝑡 (U𝑡+1)

)
−

(
𝑔𝑡 (U𝑡) − 𝑔𝑡+1(U𝑡)︸ ︷︷ ︸

𝑑𝑡 (U𝑡)

)
. (3.91)

The first derivative of 𝑑𝑡 (U) = 𝑔𝑡 (U) − 𝑔𝑡+1(U) is given by

∇U𝑑𝑡 (U) = ∇U𝑔𝑡 (U) − ∇U𝑔𝑡+1(U)

=
1

𝑡

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖 (Uw𝑖 + s𝑖 − x𝑖)w⊤𝑖

− 1

𝑡 + 1

𝑡+1∑︁
𝑖=1

𝛽𝑡+1−𝑖P𝑖 (Uw𝑖 + s𝑖 − x𝑖)w⊤𝑖 . (3.92)

CHAPTER 3. ROBUST SUBSPACE TRACKING 73

Let A𝑡 =

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖Uw𝑖w⊤𝑖 and B𝑡 =

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖 (s𝑖 − x𝑖), we can rewrite

∇U𝑑𝑡 (U) as

∇U𝑑𝑡 (U) =
(
A𝑡
𝑡
− A𝑡+1
𝑡 + 1

)
+

(
B𝑡
𝑡
− B𝑡+1
𝑡 + 1

)
. (3.93)

Under the assumptions in Section 3.2.2, the subspace U, outlier {s𝑡 }, signal
{x𝑡 } and coefficients {w𝑡 } are bounded, then both A𝑡 and B𝑡 are bounded. It
is therefore that

∥∇U𝑑𝑡 (U)∥𝐹 ≤

A𝑡𝑡 − A𝑡+1

𝑡 + 1

𝐹

+

B𝑡𝑡 − B𝑡+1

𝑡 + 1

𝐹

≤ 𝑚2 = O(1/𝑡). (3.94)

Therefore 𝑑𝑡 (U) is Lipschiz with the constant𝑚2,

|𝑑𝑡 (U𝑡+1) − 𝑑𝑡 (U𝑡) |
∥U𝑡+1 − U𝑡 ∥𝐹

≤ 𝑚2, hence
|𝑔𝑡 (U𝑡+1) − 𝑔𝑡 (U𝑡) |
∥U𝑡+1 − U𝑡 ∥𝐹

≤ 𝑚2. (3.95)

This ends the proof.

3.7.3 Proof of Lemma 2

We prove that our update rule is an approximate interpretation of Newton’s

method. Since the objective function 𝑔𝑡 is strongly convex with respect to the

variable U, our algorithm can guarantee that the solution converges to the

stationary point of the problem.

In order to estimate subspace, at each time instant 𝑡 , we optimize the

following minimization

u𝑚 = argmin

u𝑚∈R𝑟×1

[
˜𝑓𝑡 (u𝑚) =

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖 (𝑚,𝑚)
(
xre𝑖 (𝑚) −w⊤𝑖 u𝑚

)
2 + 𝛼

2𝑡
∥u𝑚 ∥2

2

]
.

(3.96)

The first derivative of the objective function
˜𝑓𝑡 (u𝑚) can be determined by

∇ ˜𝑓𝑡 (u𝑚𝑡−1
) = −2

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖 (𝑚,𝑚)
(
xre𝑖 (𝑚) −w⊤𝑖 u𝑚𝑡−1

)
w⊤𝑖 +

𝛼

𝑡
u𝑚𝑡−1

= ∇ ˜𝑓𝑡−1(u𝑚𝑡−1
) − 2P𝑡 (𝑚,𝑚)

(
xre𝑡 (𝑚) −w⊤𝑡 u𝑚𝑡−1

)
w⊤𝑡 +

𝛼

𝑡

(
u𝑚𝑡−1
− u𝑚𝑡−2

)
. (3.97)

Since u𝑚𝑡−1
= argmin

u𝑚
˜𝑓𝑡−1(u𝑚), the derivative∇ ˜𝑓𝑡−1(u𝑚𝑡−1

) = 0 and the Hessian

at u𝑚𝑡−1
is then given by

H ˜𝑓𝑡 (u𝑚𝑡−1
) = ∇2 ˜𝑓𝑡 (u𝑚𝑡−1

) = 2

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖P𝑖 (𝑚,𝑚)w𝑖w⊤𝑖 +
𝛼

𝑡
I. (3.98)

CHAPTER 3. ROBUST SUBSPACE TRACKING 74

Thanks to Newton’s method [132], a rule for subspace update can be obtained

as

u𝑚𝑡 = u𝑚𝑡−1
− 𝜂𝑡

(
H ˜𝑓𝑡 (u𝑚𝑡−1

)
)−1∇ ˜𝑓𝑡 (u𝑚𝑡−1

) . (3.99)

Let us denote R𝑚𝑡 =
∑𝑡
𝑖=1
𝛽𝑡−𝑖P𝑡 (𝑚,𝑚)w𝑖w⊤𝑖 + 𝛼

(
1

2𝑡
− 𝛽𝑡

2(𝑡−1)
)
I, we have

H ˜𝑓𝑡 (u𝑚𝑡−1
) = 2R𝑚𝑡 + 𝛼

(
𝛽𝑡

2(𝑡 − 1) −
1

2𝑡

)
I. (3.100)

As a result, we can derive the inverse Hessian matrix easily as follows(
H ˜𝑓𝑡 (u𝑚𝑡−1

)
)−1

=
1

2

(
R𝑚𝑡

)−1

(
O(1/𝑡)

2

(
R𝑚𝑡

)−1 + I
)−1

. (3.101)

When 𝑡 is large enough, the term
(O(1/𝑡)

2
(R𝑚𝑡)−1 + I

)−1 ≈ I+O
(

1

𝑡

)
. It is there-

fore that the step size can be approximated by[
H ˜𝑓𝑡 (u𝑚𝑡−1

)
]−1∇ ˜𝑓𝑡 (u𝑚𝑡−1

) = −P𝑡 (𝑚,𝑚)
(
xre𝑡 (𝑚) −w⊤𝑡 u𝑚𝑡−1

) (
R𝑚𝑡

)−1w𝑡 + O
(
1/𝑡

)
.

(3.102)

It implies that u𝑚𝑡 can be updated by the following recursive update rule

u𝑚𝑡 = u𝑚𝑡−1
+ 𝜂𝑡P𝑡 (𝑚,𝑚)

(
xre𝑡 (𝑚) −w⊤𝑡 u𝑚𝑡−1

) (
R𝑚𝑡

)−1w𝑡 , (3.103)

which is already defined in Eq. (3.14). In other word, the u𝑚𝑡 generated by our

algorithm can converge to the stationary point of
˜𝑓𝑡 (u𝑚).

Note that, the properties of the objective functions and assumptions we

made in Section 3.2.2 can guarantee the method will converge in practice.

In particular, the objective functions 𝑔𝑡 (U) as well as
˜𝑓𝑡 (u) and their first

derivatives are continuously differentiable which can avoid derivative issues

in Newton’s method. In addition, the starting points in our algorithm are

always chosen at random. Further, since the objective functions {𝑔𝑡 (U)}∞𝑡=1

are always positive, PETRELS-ADMM can ignore the cases when their roots

approach to zero asymptotically. To sum up, the solution U𝑡 generated by

PETRELS-ADMMwill converge to the stationary point of the function 𝑔𝑡 (U).
The second part of the Lemma 3.7.3 can be easy to verify. Since 𝑔𝑡 (U𝑡) is

strongly convex and Lipschitz function as proved in Proposition 2, we have

the following inequality

𝑚1 ∥U𝑡+1 − U𝑡 ∥2𝐹 ≤
��𝑔𝑡 (U𝑡+1) − 𝑔𝑡 (U𝑡)�� ≤ 𝑚2 ∥U𝑡+1 − U𝑡 ∥𝐹

⇔ ∥U𝑡+1 − U𝑡 ∥𝐹
(
∥U𝑡+1 − U𝑡 ∥𝐹 −

𝑚2

𝑚1

)
≤ 0⇔ ∥U𝑡 − U𝑡+1∥𝐹 ≤

𝑚2

𝑚1

.

(3.104)

Note that the positive number 𝑚2 = O(1/𝑡) is already given in the Ap-

pendix 3.7.2, so it ends the proof .

CHAPTER 3. ROBUST SUBSPACE TRACKING 75

3.7.4 Proof of Lemma 3

Inspired of the result of convergence analysis for online sparse coding frame-

work in [120, Proposition 2], we derive the convergence of 𝑔𝑡 (U𝑡) in the simi-

lar way. In particular, we first denote the nonnegative stochastic process {𝑢𝑡 }
as follows

𝑢𝑡
Δ
= 𝑔𝑡 (U𝑡) ≥ 0, (3.105)

and then prove that it is a quasi-martingale, i.e., we have to prove the sum of

the positive difference of {𝑢𝑡 }∞𝑡=1
is bounded,

∞∑︁
𝑡=1

��E[𝑢𝑡+1 − 𝑢𝑡]�� < +∞ 𝑎.𝑠 . (3.106)

We can express 𝑔𝑡+1(U𝑡) with respect to 𝑔𝑡 (U𝑡) as follows

𝑔𝑡+1(U𝑡) =
1

𝑡 + 1

𝑡+1∑︁
𝑖=1

𝛽𝑡+1−𝑖 ∥P𝑖 (U𝑡w𝑖 + s𝑖 − x𝑖)∥22 + 𝜌 ∥s𝑖 ∥1

=

(
𝛽

𝑡 + 1

𝑡∑︁
𝑖=1

𝛽𝑡−𝑖 ∥P𝑖 (U𝑡w𝑖 + s𝑖 − x𝑖)∥22 + 𝜌 ∥s𝑖 ∥1
)

+
(

1

𝑡 + 1

(
∥P𝑡+1U𝑡 + s𝑡+1 − x𝑡+1∥22 + 𝜌 ∥s𝑡+1∥1

))
=

𝛽𝑡

𝑡 + 1

𝑔𝑡 (U𝑡) +
1

𝑡 + 1

ℓ (U𝑡 , P𝑡+1, x𝑡+1) . (3.107)

Since U𝑡+1 = argminU 𝑔𝑡+1(U), we have the fact 𝑔𝑡+1(U𝑡+1) − 𝑔𝑡+1(U𝑡) ≤ 0,

𝑓𝑡 (U𝑡) ≤ 𝑔𝑡 (U𝑡), and hence

𝑢𝑡+1 − 𝑢𝑡 = 𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) = 𝑔𝑡+1(U𝑡+1) − 𝑔𝑡+1(U𝑡)︸ ︷︷ ︸
≤0

+ 𝑔𝑡+1(U𝑡) − 𝑔𝑡 (U𝑡)

≤ 𝑔𝑡+1(U𝑡) − 𝑔𝑡 (U𝑡) =
1

𝑡 + 1

ℓ (U𝑡 , P𝑡+1, x𝑡+1) −
𝑡 (1 − 𝛽) + 1

𝑡 + 1

𝑔𝑡 (U𝑡) . (3.108)

It is therefore that

E[𝑢𝑡+1 − 𝑢𝑡] ≤
E
[
ℓ (U𝑡 , P𝑡+1, x𝑡+1) − (𝑡 (1 − 𝛽) + 1)𝑔𝑡 (U𝑡)

]
𝑡 + 1

≤
E
[
ℓ (U𝑡 , P𝑡+1, x𝑡+1) − 𝑔𝑡 (U𝑡)

]
𝑡 + 1

≤
E
[
ℓ (U𝑡 , P𝑡+1, x𝑡+1)

]
− 𝑓𝑡 (U𝑡)

𝑡 + 1

=
E
[
𝑓 (U𝑡) − 𝑓𝑡 (U𝑡)

]
𝑡 + 1

=

(
E
[√
𝑡
(
𝑓 (U𝑡) − 𝑓𝑡 (U𝑡)

)])
︸ ︷︷ ︸

E[𝐺𝑡 (U𝑡)]

(
1

√
𝑡 (𝑡 + 1)

)
︸ ︷︷ ︸

𝑎𝑡

, (3.109)

CHAPTER 3. ROBUST SUBSPACE TRACKING 76

because of 𝑓𝑡 (U𝑡) ≤ 𝑔𝑡 (U𝑡) and E[ℓ (U𝑡 , P𝑡+1, x𝑡)] = 𝑓 (U𝑡). In parallel, we

exploit that 𝐺𝑡 (U𝑡) =
√
𝑡 (𝑓 (U𝑡) − 𝑓𝑡 (U𝑡)) is the scaled and centered version

of the empirical measure, which converges in distribution to a normal random

variable, thanks to the center limit theorem. Hence E[
√
𝑡 (𝑓 (U𝑡) − 𝑓𝑡 (U𝑡))] is

bounded with a constant 𝛼 . Then, the sum of the positive difference of u𝑡
becomes

∞∑︁
𝑡=1

��E[𝑢𝑡+1 − 𝑢𝑡]�� < ∞∑︁
𝑡=1

𝛼
√
𝑡 (𝑡 + 1)

. (3.110)

Furthermore, let us consider the convergence of the sum

+∞∑︁
𝑡=1

𝛼
√
𝑡 (𝑡 + 1)

. We

use the Cauchy-MacLaurin integral test [133] for convergence, as∫ +∞

𝑡=1

𝛼
√
𝑡 (𝑡 + 1)

𝑑𝑡 =

∫ +∞

𝑥=1

𝛼

(𝑥2 + 1)𝑑𝑥

= 𝛼arctan(𝑥) |+∞
1

= 𝛼
(
arctan(∞) − arctan(1)

)
< ∞. (3.111)

In other words, since the sum of a𝑡 convergences, hence
∑∞
𝑡=1
E[𝑢𝑡+1 − 𝑢𝑡] <

∞.We complete the proof.

3.7.5 Proof of Lemma 4

We investigate the convergence of a surrogate sequence

{
(𝑔𝑡 (U𝑡)−𝑓𝑡 (U𝑡)) 1

𝑡+1
}

as follows

𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)
𝑡 + 1

= 𝑢𝑡 − 𝑢𝑡+1 + 𝑔𝑡+1(U𝑡+1) − 𝑔𝑡+1(U𝑡)︸ ︷︷ ︸
≤0

+ 𝑡 (𝛽 − 1)
𝑡 + 1

𝑔𝑡 (U𝑡)︸ ︷︷ ︸
≤0

+ ℓ (U𝑡 , P𝑡+1, x𝑡+1) − 𝑓𝑡 (U𝑡)
𝑡 + 1

≤ 𝑢𝑡 − 𝑢𝑡+1︸ ︷︷ ︸
(S-1)

+ ℓ (U𝑡 , P𝑡+1, x𝑡+1) − 𝑓𝑡 (U𝑡)
𝑡 + 1︸ ︷︷ ︸
(S-2)

, (3.112)

because of 𝑢𝑡 = 𝑔𝑡 (U𝑡) and 𝜆 ≤ 1. Note that, (S-1) − (S-2) converge almost

surely:

■ The sequenceE[𝑢𝑡−𝑢𝑡+1] converges almost surely as proved in Lemma 3.

■ The sequence (S-2) also converges, thanks to the factE
[
ℓ (U𝑡 , P𝑡+1, x𝑡+1)

]
= 𝑓 (U𝑡) and the convergence of

E
[
𝑓 (U𝑡)−𝑓𝑡 (U𝑡)

]
𝑡+1 as mentioned in the ap-

pendix 3.7.4.

CHAPTER 3. ROBUST SUBSPACE TRACKING 77

It is therefore that the sequence

{
(𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)) 1

𝑡+1
}
converges almost

surely, i.e.,

+∞∑︁
𝑡=0

(
𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)

)
1

𝑡 + 1

< +∞. (3.113)

On the other hand, the real sequence { 1

𝑡+1 } diverges,
∑+∞
𝑡=0

1

𝑡+1 = ∞. It implies

that 𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡) convergences, thanks to the Proposition 7.

Technical Propositions

Here, we provide the following propositions which help us to derive several

important results in our proofs.

Proposition 3 ([134]) The function 𝑓 is strongly convex if and only if for all
u, v ∈ dom(𝑓) we always have

𝑓 (v) − 𝑓 (u) − 1

2

∥v − u∥2
2
≥ ⟨v − u, 𝜽 ⟩, ∀𝜽 ∈ 𝜕𝑓 (u) .

Proposition 4 ([132]) The function 𝑓 is𝑚-strongly convex, with a constant
𝑚 if and only if for all u, v ∈ dom(𝑓) we always have��𝑓 (v) − 𝑓 (u)�� ≥ 𝑚

2

∥v − u∥2
2
.

Proposition 5 ([132]) Every norm on R𝑛 is convex and the sum of convex
functions is convex.

Proposition 6 ([135]) TheHuber penalty function replaces the ℓ1-norm ∥x∥1 , x ∈
R𝑛 is given by the sum

∑𝑛
𝑖=1

𝑓 Hub𝜇 (𝑥 (𝑖)), where

𝑓 Hub𝜇

(
𝑥 (𝑖)

)
=

{
𝑥 (𝑖)2

2𝜇
, |𝑥 (𝑖) | ≤ 𝜇,

|𝑥 (𝑖) | − 𝜇/2, |𝑥 | > 𝜇.

There exists a smooth version of the Huber function 𝑓 Hub𝜇 , which has derivatives
of all degrees,

𝜓𝜇 (x) =
𝑛∑︁
𝑖=1

(
(𝑥 (𝑖)2 + 𝜇2)1/2 − 𝜇

)
.

and the first derivative of the pseudo-Huber function𝜓𝜇 is defined by

∇𝜓𝜇 (x) =
[
𝑥 (1)

(
𝑥 (1)2 + 𝜇2

)−1/2
, . . . , 𝑥 (𝑛)

(
𝑥 (𝑛)2 + 𝜇2

)−1/2
]⊤
.

CHAPTER 3. ROBUST SUBSPACE TRACKING 78

Proposition 7 ([136, Proposition 1.2.4]) Let {𝑎𝑡 }∞𝑡=1
and {𝑏𝑡 }∞𝑡=1

be two
nonnegative sequences such that

∑∞
𝑖=1
𝑎𝑖 = ∞ and

∑∞
𝑖=1
𝑎𝑖𝑏𝑖 < ∞, |𝑏𝑡+1 − 𝑏𝑡 | <

𝐾𝑎𝑡 with some constant 𝐾 , then lim

𝑡→∞
𝑏𝑡 = 0 or

∑∞
𝑖=1
𝑏𝑖 < ∞.

Proposition 8 If {𝑓𝑡 }𝑡≥1 and {𝑔𝑡 }𝑡≥1 are sequences of bounded functions which
converge uniformly on a set E, then {𝑓𝑡 + 𝑔𝑡 }𝑡≥1 and {𝑓𝑡𝑔𝑡 }𝑡≥1 converge uni-
formly on E.

Sparse Subspace Tracking

in High Dimensions 4

4.1 Introduction . 80

4.1.1 Related Works . 81

4.1.2 Contribution and Significance 82

4.1.3 Organization and Notations 83

4.2 Problem Formulation . 84

4.3 Proposed Methods . 85

4.3.1 OPIT Algorithm . 85

4.3.2 OPIT with Deflation 88

4.3.3 Discussions . 90

4.4 Convergence Analysis . 93

4.5 Experiments . 96

4.5.1 Experiments with Synthetic Data 96

4.5.1.1 Experiment Setup 97

4.5.1.2 Effect of the forgetting factor 𝛽 97

4.5.1.3 OPIT in Noisy and Dynamic Environments . 98

4.5.1.4 OPIT versus Other SST Methods 98

4.5.1.5 OPITd versus OPIT 102

4.5.2 Experiments with Real Video Data 103

4.6 Conclusions . 105

4.7 Appendix . 106

4.7.1 Appendix A: Proof of Lemma 1 106

4.7.2 Appendix B: Proof of Lemma 2 107

4.7.3 Appendix C: Proof of Lemma 3 109

4.7.4 Appendix D: Proof of Lemma 4 110

In recent years, sparse subspace tracking has attracted increasing attention in
the signal processing community. In this chapter, we propose a new provable
effective method called OPIT for tracking the sparse principal subspace of data
streams over time. Particularly, OPIT introduces a new adaptive variant of
power iteration with space and computational complexity linear to the data di-
mension. In addition, a new column-based thresholding operator is developed

79

CHAPTER 4. SPARSE SUBSPACE TRACKING 80

to regularize the subspace sparsity. Utilizing both advantages of power iter-
ation and thresholding operation, OPIT is capable of tracking the underlying
subspace in both classical regime and high dimensional regime. We also present
a theoretical result on its convergence to verify its consistency in high dimen-
sions. Several experiments are carried out on both synthetic and real data to
demonstrate the tracking ability of OPIT.

4.1 Introduction

Subspace tracking (ST) is an essential and fundamental problem in signal pro-

cessing with various applications to sensor array processing, wireless com-

munication, and image/video processing, to name a few [20]. It corresponds

to the problem of tracking a low-rank subspace that can represent data streams.

Most of subspace tracking methods are designed to estimate the underly-

ing subspace from the sample covariance matrix (SCM). We refer the reader

to [20, 21, 26] for good surveys on standard and robust ST algorithms.

Recently, many rigorous evidences and theoretical results in random ma-

trix theory (e.g. [22–24]) indicated that the SCM is not a good estimator of the

actual covariance matrix in high-dimension, low-sample-size (HDLSS) con-

texts where datasets are massive in both dimension 𝑛 and sample size 𝑇 , and

typically 𝑛/𝑇 → 𝑐 ∈ (0,∞]. In most online applications, this regime is in-

deed more realistic and relevant than the classical one where 𝑛 is fixed and

𝑇 →∞. It is mainly due to the time variation of (big) data streams in nonsta-

tionary environments where the underlying data distribution changes with

time.
1
Accordingly, the data covariance matrix and the principal subspace

are time varying too, and thus, the “effective" window length which defines

actual data samples under processing is limited. Meanwhile, modern data

streams are originally associated with high dimensionality [2]. This leads to

the case in which the data dimension 𝑛 is comparable or even larger than the

actual number of snapshots under consideration 𝑇 .

Without further structural knowledge about the data, subspace tracking

algorithms turn out to be inconsistent in such a regime. Interestingly, the

consistency of covariance estimation can be guaranteed under suitably struc-

tured sparsity regularizations [138–142]. Therefore, sparse subspace estima-

tion and tracking have recently gained much attention in the signal process-

ing community. In the literature, several good methods have been proposed

for sparse subspace estimation, see [101, 143–145] for examples and [49, 146]

for comprehensive surveys. However, in an adaptive (online) setting, there

have been only few studies on sparse subspace tracking (SST) so far.

1
This phenomenon is often referred to as concept drift or dataset shift in data mining and

machine learning [137].

CHAPTER 4. SPARSE SUBSPACE TRACKING 81

4.1.1 Related Works

Asmentioned before, some online algorithms have been introduced for sparse

subspace tracking [26]. A few of them are based on a two-stage approach in

which one first utilizes a standard ST algorithm to estimate the underlying

subspace and then seek a sparse basis of the estimation under some sparsity

criteria. Particularly in [97, 98, 104], several variants of OPAST and FAPI were

proposed to track the sparse principal subspace. Another good approach is to

regularize the objective function that aims at accounting for the sparse basis.

In [95], the authors modified the objective function of PAST by adding a ℓ1-

norm regularization term on the subspace matrix and then proposed a new

robust variant of PAST called ℓ1-PAST to optimize it. Similar to ℓ1-PAST, the

authors in [147] also introduced another adaptive algorithm using ℓ1-norm

minimization called SPCAur for sparse subspace tracking. SPCAur adopts the

stochastic gradient descent onGrassmannmanifolds and it is capable of track-

ing the underlying sparse subspace from incomplete observations. In [96], a

Bayesian-based algorithm called OVBSL was proposed to deal with the spar-

sity constraint on the subspace matrix. An advantage of OVBSL is that it is

fully automated, i.e., no finetuning parameter is required. However, these al-

gorithms are only effective in the classical regime where the sample size is

much larger than the dimension, i.e., 𝑛/𝑇 → 0 asymptotically.

Through the lens of machine learning and statistics, SST is generally re-

ferred to as the problem of online sparse PCA which often emphasizes the

leading eigenvectors. In [93], the authors proposed an extended version of the

Oja algorithm for online sparse PCA, namely OIST. Its convergence, steady-

state, and phase transition were also derived to investigate the use of OIST

in high dimensions. OIST is, however, designed only for rank-1 sparse sub-

spaces. In [94], another online sparse PCA algorithm (SSPCA) was proposed

and could deal with rank-𝑟 subspaces. Specifically, this algorithm uses a sim-

ple row truncation operator, which sets rows whose scores are smaller than a

threshold to zero, for tracking the sparse principal subspace over time. How-

ever, this truncation operator is only designed for subspaces with a row-

sparse support (i.e. all eigenvectors must share the same sparsity patterns)

which may not always meet in practice. Indeed, it turns out to be ineffec-

tive for a sparse subspace with another support (e.g. elementwise sparsity).

Its performance in terms of estimation accuracy is typically lower than other

SST algorithms, see Fig. 4.4 and Fig. 4.5 for illustration.

It is worth noting that algorithms in [98,104], OIST [93], and SSPCA [94]

can be viewed as online variants of a classical method for principal subspace

estimation, namely power iteration (PI). In the literature, there exist other

power-based subspace trackers and they can be broadly categorized into the

following classes: Oja-types [148, 149], Natural Power (NP)-types [150, 151],

CHAPTER 4. SPARSE SUBSPACE TRACKING 82

Data Projection Method (DPM)-types [152, 153], and Approximated PI (API)-

types [154, 155]. Specifically, all of them are designed for tracking the princi-

pal subspace of the SCM which is, however, not a good estimator of the true

data covariance matrix in high dimensions. Accordingly, they turn out to be

inconsistent estimators in the HDLSS regime.

In parallel, recent years have also witnessed considerable research ad-

vances on robust ST (RST) which aims to track the underlying subspace in

the presence of data corruption [21, 26, 156]. For example, several RST al-

gorithms were developed to handle sparse outliers, such as Grassmannian

Robust Adaptive Subspace Tracking Algorithm (GRASTA) [157], Parallel Sub-

space Estimation and Tracking by Recursive Least Squares (PETRELS)-types

[25, 62], and Recursive Projected Compressive Sensing (ReProCS)-types [63,

64]. To deal with impulsive noises, three potential approaches are robust

statistics [82, 158], adaptive Kalman filtering [84, 87], and weighted RLS [62,

159]. Very recently, 𝛼-divergence was specifically exploited to bolster the

tracking ability of the well-known PAST and FAPI trackers in noisy and con-

taminated environments [160, 161]. However, none of them is designed for

subspace tracking in the HDLSS context.

4.1.2 Contribution and Significance

In this chapter, we introduce a new provable adaptive algorithm called OPIT

(OPIT stands for Online Power Iteration via Thresholding) for sparse sub-

space tracking. OPIT takes both advantages of power iteration and thresh-

olding methods, and hence offers several appealing features over the state-

of-the-art SST/online sparse PCA algorithms.

First, OPIT belongs to the class of power methods, and thus its conver-

gence rate is highly competitive compared to other SST algorithms, espe-

cially in the high SNR regime. Unlike the two SST algorithms based on power

methods (i.e. OIST and SSPCA), OPIT utilizes old observations efficiently in

a recursive way and still operates with linear space complexity. Accordingly,

OPIT could obtain not only a faster convergence rate but also a better sub-

space estimation accuracy than OIST and SSPCA. Compared to OIST which

is limited to tracking rank-1 sparse subspaces, OPIT has the capability of

tracking rank-𝑟 subspaces over time. Compared to SSPCA which is useful for

only subspaces with row-sparse supports, OPIT offers an effective subspace

tracker which can deal with more generalized sparsity supports than SSPCA,

thanks to a new thresholding operator to deal with subspace sparsity. In par-

ticular, we propose to apply column-based thresholding instead of row-based

thresholding as in SSPCA. With this operator, OPIT has a great potential for

handling several sparsity supports such as row-sparse, elementwise-sparse,

and local region-sparse.

CHAPTER 4. SPARSE SUBSPACE TRACKING 83

Different from the existing two-stage SST algorithms, OPIT has ability

to track the sparse principal subspace with high accuracy in both the classi-

cal regime and the HDLSS regime. Theoretically, the subspaces derived from

the two-stage algorithms are identical to those obtained by the correspond-

ing standard ST algorithms (e.g. OPAST and FAPI) used in their first stage.

It is due to the fact that the subspace spanned by a full rank matrix remains

unchanged after any rotation. Accordingly, they still suffer the limitation of

the SCM in the HDLSS regime. By contrast, our OPIT algorithm aims to track

the underlying sparse subspace from a thresholded SCM. Simulation results

indicate that OPIT provides a much better subspace estimation accuracy than

the two-stage SST algorithms in high dimensions. More importantly, as in-

dicated later in our theoretical analysis, the convergence of OPIT with the

thresholding operation can be guaranteed under certain conditions.

In addition, OPIT is flexible and very adaptable for different scenarios.

In particular, we can adjust its procedure for dealing with multiple incom-

ing data streams. This feature is useful for application areas wherein block

processing is required, i.e., a block of data samples is processed and anal-

ysed at one time. Next, it is easy to introduce regularization parameters into

OPIT in order to regularize its performance in non-standard environments.

Specifically, we can use a forgetting factor to discount the impact of distant

observations as well as facilitate the tracking ability of OPIT in dynamic envi-

ronments. Moreover, we can recast its update rule into a column-wise update.

Thanks to the deflation transformation, we particularly derive a fast variant of

OPIT called OPITd with lower complexity of both computation and memory

storage. This variant is fast and useful for tracking high-dimension and large-

scale data streams residing in a low-dimensional space. Last but not least,

OPIT belongs to the class of provable subspace tracking algorithms in which

its convergence is guaranteed. Under certain conditions, OPIT can achieve

an 𝜖-relative-error approximation with high probability when the number of

observations is large enough.

4.1.3 Organization and Notations

The rest of the chapter is organized as follows. Section 4.2 formulates the SST

problem. Section 7.3.2 presents the proposed OPIT algorithm and its vari-

ant OPITd while Section 4.4 establishes its convergence analysis. Section 4.5

provides several experiments to demonstrate performance of the proposed

algorithms in comparison with the state-of-the-art algorithms. Section 4.6

concludes the chapter.

CHAPTER 4. SPARSE SUBSPACE TRACKING 84

4.2 Problem Formulation

Assume that at time 𝑡 , we collect a data sample x𝑡 ∈ R𝑛×1
satisfying the signal

model

x𝑡 = ℓ𝑡 + n𝑡 . (4.1)

Here, ℓ𝑡 ∈ R𝑛×1
is a low-rank signal living in a subspace

2
spanned by a sparse

matrix A𝑛×𝑟 with 𝑟 < 𝑛 (i.e. ℓ𝑡 = Aw𝑡 , where w𝑡 ∈ R𝑟×1
is a weight vector)

and n𝑡 ∈ R𝑛×1
is an additive spatially white noise vector independent of ℓ𝑡 .

Sparse subspace tracking problem can be stated as follows:

Sparse Subspace Tracking: Given a set of data streams {x𝑡 }𝑇𝑡=1
, we

aim to estimate a sparse principle subspace A𝑡 that compactly represents
the span of signals {ℓ𝑡 }𝑇𝑡=1

.

Generally, the underlying subspace can be estimated from the spectral

analysis of the actual covariance matrix

C = E
{
x𝑡x⊤𝑡

}
= AE

{
w𝑡w⊤𝑡

}
A⊤ + E

{
n𝑡n⊤𝑡

}
. (4.2)

Without loss of generality, we suppose that C has the form C = 𝜎2

𝑥AA⊤ +
𝜎2

𝑛I𝑛 where E{w𝑡w⊤𝑡 } = 𝜎2

𝑥 I𝑟 and E{n𝑡n⊤𝑡 } = 𝜎2

𝑛I𝑛 . Applying eigenvalue

decomposition (EVD) on C yields

C EVD

= U𝚲U⊤ =

[
U𝑠 U𝑛

] [
𝚲𝑠 0
0 𝚲𝑛

] [
U⊤𝑠
U⊤𝑛

]
. (4.3)

Here, 𝚲 ∈ R𝑛×𝑛 is a diagonal matrix whose diagonal elements are eigenval-

ues of C sorted in decreasing order and U ∈ R𝑛×𝑛 contains the corresponding
eigenvectors. Accordingly, U𝑠 ∈ R𝑛×𝑟 and U𝑛 ∈ R𝑛×(𝑛−𝑟) represent the prin-
cipal subspace and theminor subspace ofC, respectively. The orthogonal pro-
jection matrix of the sparse principal subspace is unique (i.e., U𝑠U⊤𝑠 = AA#

),

so A can be obtained as A = U𝑠Q∗ with

Q∗ = argmin

Q∈R𝑟×𝑟

U𝑠Q

0
s.t. Q is full-rank, (4.4)

where ∥.∥0 promotes the sparsity on A. In several applications, we often em-

phasize the principal subspace rather than its specific basis, such as dimen-

sionality reduction [162] and array processing [107]. In this work, our main

2
In an adaptive scheme, the matrix A may be slowly varying with time, i.e., A = A𝑡 . Our

algorithm is capable of successfully estimating the subspace as well as tracking its variation

along the time.

CHAPTER 4. SPARSE SUBSPACE TRACKING 85

objective is to track the principal (signal) subspace of A while the sparsifying

step (4.4) is optional.

Most state-of-the-art SST algorithms estimate the principal subspace of

the sample covariance matrix C𝑇 = 1/𝑇 ∑𝑇
𝑡=1

x𝑡x⊤𝑡 [26]. However, in a high-

dimensional regime where 𝑛/𝑇 ↛ 0 a.s., C𝑇 is not a good estimator of C. This
limitation in an adaptive scheme is not necessarily due to a data shortage but

to the time variation which forces us to use a limited window of time instead

of all the data. Particularly, it has been shown that C𝑇 is not a consistent

estimate of C in the HDLSS regime, e.g. [163–165]. As a result, most of SST

algorithms are not good in high dimensions, as illustrated in Fig. 4.5.

On the other hand, under certain conditions, it is proved in [138,166] that

C − 𝜏 (C𝑇)

2
→ 0 a. s. as 𝑇 →∞, (4.5)

where 𝜏 (.) is an appropriate thresholding operator. Thanks to (4.5), in the

next section, we derive a novel adaptive (online) algorithm based on power

iteration and thresholding technique that is capable of tracking the sparse

principal subspace in both the classical regime and the HDLSS regime.

4.3 Proposed Methods

In this section, a novel effective algorithm using thresholding is developed

for sparse subspace tracking. This algorithm is dubbed as OPIT which stands

for Online Power Iteration via Thresholding. We next derive a fast variant

of OPIT called OPITd with lower complexity, thanks to the deflation trans-

formation. Some remarks on OPIT and OPITd are discussed in the following

subsection.

4.3.1 OPIT Algorithm

We first recall the main steps of the standard power iteration (PI) method

on which we primarily leverage in order to develop our OPIT algorithm, for

computing the dominant eigenvectors of C𝑡 . At the ℓ-th iteration, PI partic-

ularly updates (i) Sℓ ← C𝑡Uℓ−1 and (ii) Uℓ ← QR(Sℓ) be the Q-factor of QR
factorization of Sℓ . PI starts from an initial matrix U0 ∈ R𝑛×𝑟 and returns an

orthonormal matrix U𝐿 where 𝐿 is the number of iterations [20].

In an adaptive scheme, the iteration step of PI can coincide with the data

collection in time. At time 𝑡 , the sample covariance matrix C𝑡 can be recur-

sively updated by: R𝑡 = R𝑡−1 + x𝑡x⊤𝑡 and C𝑡 = 𝑡−1R𝑡 . As streaming data can

vary with time, we propose to use a forgetting factor 𝛽 (0 < 𝛽 ≤ 1) to dis-

count the impact of old observations exponentially. The underlying subspace

CHAPTER 4. SPARSE SUBSPACE TRACKING 86

Input: {x𝑖 }𝑇𝑖=1
, x𝑖 ∈ R𝑛×1

, target rank 𝑟 , a forgetting factor 0 < 𝛽 ≤ 1, window of

length𝑊 ≥ 1, and a thresholding factor 𝑘

𝑘 =

{
⌊(1 − 𝜔𝑠𝑝𝑎𝑟𝑠𝑒)𝑛⌉ if 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 is given,

⌊10𝑟 log𝑛⌉ if 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 is unknown,

where 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 is the sparsity level of the sparse basis.

Initialization: U0 = randn(𝑛, 𝑟), S
0,F = 0𝑛×𝑟 , E0 = 0𝑟×𝑟

Main Program:

Procedure

for 𝑡 = 1, 2, . . . ,𝑇 /𝑊 do

X𝑡 = [x(𝑡−1)𝑊 +1, . . . , x𝑡𝑊] // Data collection

Z𝑡 = U⊤
𝑡−1

X𝑡

S𝑡 = 𝛽
(𝑡−1)𝑊
𝑡𝑊

S𝑡−1E𝑡−1 + 1

𝑡𝑊
X𝑡Z⊤𝑡

Ŝ𝑡 = 𝜏 (S𝑡 , 𝑘) // Thresholding

U𝑡 =

{
QR(Ŝ𝑡) // Promotes orthogonality

Ŝ𝑡/∥Ŝ𝑡 ∥2 // Promotes sparsity
E𝑡 = U⊤

𝑡−1
U𝑡

end for

Output: U𝑡 ∈ R𝑛×𝑟

// Thresholding Ŝ𝑡 = 𝜏 (S𝑡 , 𝑘)

Procedure

for 𝑖 = 1, 2, . . . , 𝑟 do

s𝑖 = S𝑡 (:, 𝑖)
Find the set T𝑡 ⊂ [1, 2, . . . , 𝑛] containing indices of 𝑘 strongest elements of s𝑖

Form Ŝ𝑡 (:, 𝑖) = ŝ𝑖 , where ŝ𝑖 (𝑗) =
{
s𝑖 (𝑗) if 𝑗 ∈ T𝑡
0 if 𝑗 ∉ T𝑡

end for

Output: Ŝ𝑡 ∈ R𝑛×𝑟

Algorithm 4: OPIT - Online Power Iteration via Thresholding

U𝑡 is then derived from spectral analysis of R𝑡 which is updated continuously

by

R𝑡 = 𝛽R𝑡−1 + x𝑡x⊤𝑡 . (4.6)

Together with the fact that QR(R𝑡U𝑡−1) = QR(C𝑡U𝑡−1), we can rewrite the

first step of PI as follows

S𝑡 = R𝑡U𝑡−1 = 𝛽R𝑡−1U𝑡−1 + x𝑡z⊤𝑡 , (4.7)

where z𝑡 = U⊤𝑡−1
x𝑡 .

Towards a fast subspace estimator, we can utilize the previous subspace

as a warm start in the tracking process. Hereby, a key step at each time 𝑡 is

CHAPTER 4. SPARSE SUBSPACE TRACKING 87

to project U𝑡 into the column space of U𝑡−1, i.e.,

U𝑡 = U𝑡−1E𝑡 + U𝑡−1,⊥F𝑡 , (4.8)

where U𝑡−1,⊥ is the orthogonal complement of U𝑡−1, E𝑡 = U⊤𝑡−1
U𝑡 and F𝑡 =

U⊤𝑡−1,⊥U𝑡 are coefficient matrices. Specifically, the first term of (4.8) repre-

sents the “old” information in U𝑡 , while the second one is its distinctive new

information. Substituting U𝑡−1 according to (4.8) (one time-step delayed) into

(4.7) results in

S𝑡 = 𝛽S𝑡−1E𝑡−1 + 𝛽R𝑡−1U𝑡−2,⊥F𝑡−1 + x𝑡z⊤𝑡 . (4.9)

The complement of projecting x𝑡 into the subspaceU𝑡−1 at time 𝑡 can be given

by

y𝑡 =
(
I − U𝑡−1U⊤𝑡−1

)
x𝑡 = x𝑡 − U𝑡−1z𝑡 . (4.10)

Here, y𝑡 is orthogonal to the column space of U𝑡−1. For short, we denote

𝚫U𝑡−1 = U𝑡−2,⊥F𝑡−1. Based on (4.10), we obtain another expression of 𝚫U𝑡−1

as follows

𝚫U𝑡−1 = y𝑡−1h⊤𝑡−1
where h𝑡−1 = U⊤𝑡−1

y𝑡−1. (4.11)

Under the assumption that the underlying subspace is fixed or slowly varying

with time (i.e., U𝑡−2U⊤𝑡−2
≃ U𝑡−1U⊤𝑡−1

), y𝑡−1 is nearly orthogonal to the sub-

spaceU𝑡−1. In other words, angles between y𝑡−1 and columns ofU𝑡−1 are very

close to 𝜋/2, and hence, the norm of h𝑡−1 in (4.11) is very small. Therefore,

𝚫U𝑡−1 and R𝑡−1𝚫U𝑡−1 are negligible and can be ignored during the tracking

process without any major performance degradation. It stems from the fact

that the presence of a small perturbation does not really affect the perfor-

mance of power methods [167]. Accordingly, a good approximation to (4.9)

can be given by

S𝑡 ≃ 𝛽S𝑡−1E𝑡−1 + x𝑡z⊤𝑡 . (4.12)

In this work, the update (4.12) is further followed by an appropriate pertur-

bation G𝑡 defined by the following thresholding operation 𝜏 (.) as:

Ŝ𝑡
Δ
= 𝜏 (S𝑡 , 𝑘) = C𝑡U𝑡−1 + G𝑡 , (4.13)

where the thresholding factor 𝑘 can be determined as in Algorithm 4. Here,

Ŝ𝑡 is particularly derived from S𝑡 by keeping the 𝑘 strongest (absolute value)

elements in each column of S𝑡 and setting the remaining elements to zero.

Then, the second step of PI is replaced with

U𝑡 =

{
QR(Ŝ𝑡) if orthonormalization,

Ŝ𝑡
/
∥Ŝ𝑡 ∥2 if normalization.

(4.14)

CHAPTER 4. SPARSE SUBSPACE TRACKING 88

In addition to the nice property (4.5), another main motivation for using the

thresholding operation 𝜏 (.) stems from the following proposition:

Proposition 9 Denote by {𝜆𝑖}𝑛𝑖=1
the set of singular values of C𝑡 in

descending order (i.e. 𝜆𝑖 ≥ 𝜆𝑖+1). When the perturbation G𝑡 satisfies:
∥G𝑡 ∥2 ≤ 𝜉 (𝜆𝑟 − 𝜆𝑟+1) and ∥A⊤𝑡 G𝑡 ∥2 ≤ 𝜉 (𝜆𝑟 − 𝜆𝑟+1) cos𝜃 (A𝑡 ,U𝑡−1) for
some 𝜉 < 1, we obtain

tan𝜃
(
A𝑡 ,C𝑡U𝑡−1 + G𝑡

)
≤ 𝛾 tan𝜃

(
A𝑡 ,U𝑡−1

)
,

where 0 < 𝛾 < 1 and 𝜃 (., .) denotes the canonical angle (the largest
principal angle) between two subspaces.

Proof. Its proof follows immediately Lemma 2.2 in [167].

As a corollary, the estimated U𝑡 will get closer to the true subspace A𝑡
with time.

The OPIT algorithm introduces the window parameter𝑊 . Here, the in-

clusion of𝑊 is useful in some applications where we often collect multiple

data samples instead of a single sample at each time 𝑡 . The main steps of OPIT

are summarized in Algorithm 4.

Complexity: For convenience of analysis, we suppose the window length

𝑊 = 1. Most of the steps in OPIT require a computational complexity of

O(𝑛𝑟 2) except the thresholding operator which costs O(𝑛𝑟 + 𝑟𝑘 log𝑘) opera-
tions. Thus, the overall computational complexity of OPIT isO(max{𝑛𝑟, 𝑘 log𝑘}𝑟).
In terms of memory storage, OPIT does not need to go back past observations

but utilizes their information in a recursive way. Hence, the proposed algo-

rithm requires a space of 𝑛𝑟 elements for saving the estimate U𝑡 , while two
buffer matrices S𝑡 and E𝑡 need only 𝑛𝑟 + 𝑟 2

elements in total. In conclusion,

the space complexity of OPIT is linear to the data dimension 𝑛.

4.3.2 OPIT with Deflation

A low cost subspace tracking algorithm with linear complexity of computa-

tion O(𝑛𝑟) is always preferable due to its fast implementation time, especially

for real-time applications.
3
Here, we derive a fast variant of OPIT using de-

flation called OPITd which can achieve such a complexity while preserving

the algorithm’s accuracy in most cases.

Our main motivation stems from the fact that if we apply the following

3
With respect to computational complexity, subspace tracking algorithms are categorized

into three groups: high complexity O(𝑛2𝑟) and O(𝑛2), moderate complexity O(𝑛𝑟2), and low
complexityO(𝑛𝑟). The last group, which is referred to as fast algorithms, is themost important

class for online processing [20].

CHAPTER 4. SPARSE SUBSPACE TRACKING 89

Input: {x𝑖 }𝑇𝑖=1
, x𝑖 ∈ R𝑛×1

, target rank 𝑟 , a forgetting factor 0 < 𝛽 ≤ 1, and a

thresholding factor 𝑘

𝑘 =

{
⌊(1 − 𝜔𝑠𝑝𝑎𝑟𝑠𝑒)𝑛⌉ if 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 is given,

⌊10𝑟 log𝑛⌉ if 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 is unknown,

where 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 is the sparsity level of the sparse basis.

Initialization: U0 = randn(𝑛, 𝑟), S0 = 0𝑛×𝑟 , e0 = 1𝑟×1.

// Denote u𝑡, 𝑗 = U𝑡 (:, 𝑗), s𝑡, 𝑗 = S𝑡 (:, 𝑗), and 𝑒𝑡, 𝑗 = e𝑡 (𝑗).

Main Program:

for 𝑡 = 1, 2, . . . ,𝑇 do

for 𝑗 = 1, 2, . . . , 𝑟 do

𝑧𝑡, 𝑗 = u⊤𝑡−1, 𝑗x𝑡
s𝑡, 𝑗 = 𝛽 𝑡−1

𝑡
𝑒𝑡−1, 𝑗 s𝑡−1, 𝑗 + 1

𝑡
𝑧𝑡, 𝑗x𝑡

ŝ𝑡, 𝑗 = 𝜏 (s𝑡, 𝑗 , 𝑘) // Thresholding

u𝑡, 𝑗 = ŝ𝑡, 𝑗/∥ŝ𝑡, 𝑗 ∥2
𝑒𝑡, 𝑗 = u⊤𝑡−1, 𝑗u𝑡, 𝑗
x𝑡 = x𝑡 − 𝑧𝑡, 𝑗u𝑡, 𝑗 // Deflation

end for

end for

Output: U𝑡 ∈ R𝑛×𝑟

Algorithm 5: OPITd - OPIT with Deflation

projection deflation

C̃𝑡 = (I − u1u⊤1)C𝑡 (I − u1u⊤1), (4.15)

where u1 is the most dominant eigenvector of C𝑡 , then the eigenvectors of C̃𝑡
are exactly the same as C𝑡 with eigenvalues {0, 𝜆2, . . . , 𝜆𝑛}. Here, 𝜆𝑖 is the 𝑖-th
strongest eigenvalue of C𝑡 . It demonstrates that the deflation (4.15) can elim-

inate the influence of u1 (i.e., by setting 𝜆1 to zero) and switches the second

dominant eigenvector up. As a result, once we estimated u1 by using a spe-

cific (online) method, the second dominant eigenvector of C𝑡 can be extracted
from C̃𝑡 in the same way as to u1. Moreover, repeating this procedure 𝑟 times

can result in 𝑟 leading eigenvectors ofC𝑡 . Interestingly, in the case even when
u1 is not a true eigenvector of C𝑡 , the projection deflation (4.15) still retains

desirable properties (e.g. positive semi-definiteness) that may be lost to other

deflation transformations [168]. In what follows, we describe the way how to

linearize the production of OPIT using the projection deflation (4.15).

To update the 𝑗-th column u𝑡, 𝑗 of U𝑡 , for 𝑗 = 1, 2, . . . , 𝑟 , we replace the

CHAPTER 4. SPARSE SUBSPACE TRACKING 90

recursive rule (4.12) with

s𝑡, 𝑗 = 𝛽
𝑡 − 1

𝑡
𝑒𝑡−1, 𝑗s𝑡−1, 𝑗 +

1

𝑡
𝑧𝑡, 𝑗x𝑡 , with (4.16a)

𝑧𝑡, 𝑗 = u⊤𝑡−1, 𝑗x𝑡 and 𝑒𝑡−1, 𝑗 = u⊤𝑡−2, 𝑗u𝑡−1, 𝑗 , (4.16b)

where s𝑡, 𝑗 , 𝑧𝑡, 𝑗 , and 𝑒𝑡−1, 𝑗 play the same role as S𝑡 , z𝑡 , and E𝑡 in (4.12), respec-

tively. Next, the thresholding operation (4.13) boils down to

ŝ𝑡, 𝑗 = 𝜏 (s𝑡, 𝑗 , 𝑘) . (4.17)

Then, the column u𝑡, 𝑗 is simply derived from normalizing (4.17) to unit length

as u𝑡, 𝑗 = ŝ𝑡, 𝑗/∥ŝ𝑡, 𝑗 ∥2. At the end of the column-wise update, we deflate the

component u𝑡, 𝑗 from x𝑡 as x𝑡 ← x𝑡 − 𝑧𝑡, 𝑗u𝑡, 𝑗 for the estimation of the next

component u𝑡, 𝑗+1. The main steps of OPITd are summarized in Algorithm 5.

Complexity: The most expensive computation comes from the threshold-

ing operation 𝜏 (s𝑡, 𝑗 , 𝑘) which requires a cost of O(𝑛+𝑘 log𝑘). The remaining

steps of OPITd require a computational complexity ofO(𝑛) only. Accordingly,
OPITd costs a complexity of O(𝑟 max{𝑛, 𝑘 log𝑘}) for updating the whole ma-

trix U𝑡 at each time 𝑡 . In practice, we often set the value of 𝑘 to O(𝑟 log𝑛) or
⌊(1−𝜔𝑠𝑝𝑎𝑟𝑠𝑒)𝑛⌉ which is much smaller than 𝑛, and thus, the overall complex-

ity of OPITd is approximately linear to 𝑛𝑟 . OPITd also requires a less memory

storage than OPIT. Specifically, its space complexity is 2𝑛𝑟 + 𝑟 for saving U𝑡 ,
S𝑡 = [s𝑡,1, s𝑡,2, . . . , s𝑡,𝑟] of size 𝑛 × 𝑟 and e𝑡 = [𝑒𝑡,1, 𝑒𝑡,2, . . . , 𝑒𝑡,𝑟]⊤ of size 𝑟 × 1 at

time 𝑡 .

4.3.3 Discussions

First, it is worth noting that both OPIT and OPITd cannot enforce orthogo-

nality and sparsity in the estimate at the same time. On the one hand, when

we adopt the orthonormalization step using the QR factorization, OPIT en-

sures orthogonality but lacks sparsity. Although performing the QR step

can increase the numerical stability of OPIT, it destroys the sparsity, espe-

cially when the target rank 𝑟 is not too small. In most cases, the Q-factor

of the thresholded Ŝ𝑡 is a dense (orthogonal) matrix. However, when the

columns of Ŝ𝑡 are sufficiently sparse and have mostly non-zero elements in

non-overlapping sets in its row support, then Ŝ𝑡 is almost orthogonal and its

Q-factor can be nearly sparse. We particularly meet such a case when data

streams are high-dimensional but of very low rank (i.e., 𝑟 ≪ 𝑛) and/or the

sparsity level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 is extremely high. In fact, we often emphasize the prin-

cipal subspace rather than its specific basis in subspace tracking, thus the lack

of sparsity of OPIT is not the issue. On the other hand, when the normaliza-

tion step (e.g. U𝑡 = Ŝ𝑡/∥Ŝ𝑡 ∥2) is taken into account instead of the QR step,

CHAPTER 4. SPARSE SUBSPACE TRACKING 91

OPIT results in a sparse but non-orthogonal mixing matrix U𝑡 . The oper-

ation requires only O(𝑛𝑟) while the QR step costs a complexity of O(𝑛𝑟 2).
Therefore, it helps speed up the computation of OPIT especially when 𝑟 is

reasonably high compared to the dimension 𝑛. More importantly, with this

simple normalization, OPIT can achieve excellent subspace estimation accu-

racy against the state-of-the-art SST algorithms, please see Figs. 4.4 and 4.5

for examples.

OPITd promotes sparsity but entails non-orthogonality and sub-optimality.

Thanks to the projection deflation, OPITd offers a fast column-wise update for

tracking the underlying subspace and successes in achieving the sparsity. The

deflation has the advantage to estimate the eigenvectors (which is referred to

as principal components) while the matrix U𝑡 in OPIT can be any basis of the

principal subspace (not necessarily the eigenvectors). Accordingly, OPITd has

benefits in some applications such as data whitening requiring the eigenvec-

tors. Specifically, the combination of the thresholding operation 𝜏 (s𝑡, 𝑗 , 𝑘) and
the column normalization results directly in sparse components in the esti-

mateU𝑡 at each time 𝑡 . However, the deflationmay cause loss of orthogonality

and introduces cumulative errors which can affect the successive estimation

of the next component. Accordingly, when the target rank 𝑟 is not too small

compared to the data dimension 𝑛, both convergence rate and estimation ac-

curacy of OPITd are less than that of OPIT, see Fig. 4.7(b) for an illustration. In

such a situation, we can re-orthonormalizeU𝑡 after a period of time to remedy

the issue at low cost as well as increase the numerical stability of OPITd.

Next, how to choose the value of 𝑘? Ideally, this factor must be a 𝑟 ×1 vec-

tor [𝑘1, 𝑘2, . . . , 𝑘𝑟] where 𝑘 𝑗 represents the threshold level for the 𝑗-th column

A𝑡 (:, 𝑗). Clearly, the value of 𝑘 𝑗 should be close to the number of non-zero

elements in A𝑡 (:, 𝑗). Without loss of generality, we can assume that sparse

patterns in A𝑡 are uniformly distributed, i.e., 𝑘𝑖 ≃ 𝑘 𝑗 ∀𝑖, 𝑗 . Accordingly, we
can set 𝑘 ≃ 𝑘 𝑗 ≃ ⌊(1 − 𝜔𝑠𝑝𝑎𝑟𝑠𝑒)𝑛⌉ when the prior knowledge of the sparsity

level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 – the percentage of non-zero elements in A𝑡 – is given. If this

information is not available, we can tune this factor through cross-validation

or simply chosen in O(log𝑛), e.g. 𝑘 = ⌊𝑚𝑟 log𝑛⌉ where𝑚 is a positive num-

ber. The former remedy is useful for batch sparse subspace estimation and

sparse PCA [169]. However, it requires a validation set – which we have

to pass a number of observations several times – and hence turns out to be

inefficient for tracking problems. The latter one is very simple and capable

of achieving reasonable performance in practice. It stems from the rigorous

evidence in [170–172] that sparse subspace/PCA algorithms can recover the

sparse principal components in polynomial time when the expected number

of non-zero elements in each component is at most O(
√︁
𝑇 /log𝑛). As indi-

cated later in Section IV, the number of observations𝑇 = O(𝑛) can guarantee

OPIT’s convergence, please see the condition (4.18). Furthermore, we have

CHAPTER 4. SPARSE SUBSPACE TRACKING 92

log𝑛 <
√︁
𝑇 /log𝑛 when 𝑇 = O(𝑛) for a large 𝑛, and thus, we can choose the

factor 𝑘 in the logarithmic regime O(log𝑛) to ensure the thresholded matrix

is sufficiently sparse. A natural question raised here is whether the tracking

ability of OPIT deteriorates or not when the number of selected elements is

smaller than the actual number of non-zeros inA𝑡? (e.g. it might occur due to

the low level of sparsity). Fortunately, Proposition 9 also suggests that if the

perturbation error caused by the choice of 𝑘 is small enough, OPIT still results

in a good estimate of A𝑡 when the number of observation is large enough.

Compared to the state-of-the-art power-based subspace tracking algo-

rithms, OPIT is more elegant, refined, and effective. Particularly upon the

arrival of new data x𝑡 , many power-based subspace trackers (e.g., Oja-types,

NP-types, and DPM-types) adopt the update rule U𝑡 = orthnorm(U𝑡−1 +
𝜂𝑡x𝑡z⊤𝑡) where 𝜂𝑡 is the step size and orthnorm(.) is an orthonormalization

procedure [20]. Therefore, the inclusion of E𝑡−1 in (4.12) not only makes OPIT

different from them, but also greatly bolsters its tracking ability. The matrix

E𝑡−1, which contains cosines of the principal angles between two successive

subspaces, plays the role of feedback in the tracking process. Accordingly,

it could help improve the adaptation rate and stability of OPIT, especially in

nonstationary environments. API-type subspace trackers, on the other hand,

exploit the projection approximationU𝑡 ≃ U𝑡−1𝚯𝑡 where𝚯𝑡 is nearly orthog-

onal and very close to an identitymatrix [154]. Hereby, theywould predict the

current tracking performance error and then use it for estimating the true sub-

space. More specifically, they follow the update rule U𝑡 = U𝑡−1𝚯𝑡 + y𝑡g⊤𝑡 𝚯𝑡
where y𝑡 is the complement (error) of projecting x𝑡 onto U𝑡−1 defined as

in (4.10), g𝑡 is a gain vector, and 𝚯𝑡 = (I𝑟 + ∥y𝑡 ∥2g𝑡g⊤𝑡)−1/2
. However, when

abrupt changes happen (e.g., due to impulsive noises and outliers or data

drift), the error y𝑡 would be very large. The state transition matrix 𝚯𝑡 would

be very far from ideal that could degrade their subspace estimation accuracy

as well as convergence rate, see Section E.1 in our supplementary document

for examples. By contrast, OPIT exploits the past tracking performance er-

ror (i.e., one time step delayed) caused by itself which is independent of the

current error y𝑡 . Thus, OPIT is less sensitive to such changes than API-types.

Together with the hard-thresholding operator 𝜏 (.) in (4.13), OPIT stands out

from all the rest. The tracking ability of OPIT is verified by several exper-

iments in Section V where the results indicate that OPIT outperforms com-

pletely the-state-of-the-art subspace trackers (including several power-based

methods) in both classical and high dimension regimes.

CHAPTER 4. SPARSE SUBSPACE TRACKING 93

4.4 Convergence Analysis

In this section, we provide a convergence analysis for the proposed OPIT

algorithm in Algorithm 4 under the assumption that A𝑡 = A is unchanged

over time and 𝛽 = 1.
4

We make the following assumptions to facilitate our convergence analy-

sis:

(A1) A is chosen in the set U = {U ∈ G𝑛,𝑟 , ∥U∥∗,0 ≤ (1 − 𝜔𝑠𝑝𝑎𝑟𝑠𝑒)𝑛,
and ∥U∥2 = 1}, where G𝑛,𝑟 denotes the class of 𝑛 × 𝑟 well-condition matri-

ces and ∥U∥∗,0 = max𝑗 ∥U(:, 𝑗)∥0. Here, the parameter 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 represents the

sparsity level of A. In addition, A is sparse enough in the sense that the aver-

age number of non-zero elements in each column is at most

√︁
𝑛/log𝑛.

(A2) Data samples {x𝑡 }𝑡≥1 are norm-bounded, i.e., ∥x𝑡 ∥2 ≤ 𝑀 < ∞ ∀𝑡 .
Low-rank signals {ℓ𝑡 }𝑡≥𝑡 are supposed to be deterministic and bounded. Noise

vectors {n𝑡 }𝑡≥1 are i.i.d. random variables of zero mean and their power is

lower than the signal power.

In (A1), the underlying subspace is supposed to be sparse in the sense of

column sparsity defined by Vu et al. in [173].
5
It is not a strict sparsity con-

straint as the setU covers several supports such as row-sparse, elementwise-

sparse, and local region-sparse. Besides, the unit-norm constraint of (A1) is

a very mild condition as we can rescale A by recasting its operator norm

into the signal power. The second constraint of (A1) ensures trackers to es-

timate the sparse subspace with high probability [170]. Meanwhile, (A2) is a

common assumption for subspace tracking problems and holds in many sit-

uations [25]. Together with (A1), they help prevent the ill-conditioned com-

putation and support the perturbation analysis of QR decomposition due to

the thresholding operation.

Given these assumptions, the main theoretical result of OPIT’s conver-

gence can be stated by the following theorem:

4
We limit our analysis in this work to a stationary case when A𝑡 = A ∀𝑡 and 𝛽 = 1. Estab-

lishing the 𝜖-relative-error approximation guarantee for OPIT in nonstationary environments

is non-trivial as data samples do not share the same population. Specifically, finding a tight up-

per bound on the error matrix 𝚫C𝑡 – which plays a key role in establishing the two necessary

conditions (4.18) and (4.19) as well as Lemmas 1 and 2 – is challenging. Instead of the normal

sample covariance matrix (SCM), an exponential weighted variant of the SCM is applied here

because of the forgetting factor 𝛽 < 1. It would make the theoretical convergence analysis

more complicated. We leave this challenge for future work.

5
With respect to the concept of subspace sparsity, Vu et al. in [173] introduced two no-

tions: column sparsity and row sparsity. Specifically, a subspace is said to be column sparse

if some orthonormal basis contains sparse vectors. Meanwhile, every orthonormal basis of a

row sparse subspace must consist of sparse vectors. Accordingly, row sparse subspaces also

belong to the class of column sparse subspaces. In this work, the proposed OPIT algorithm can

achieve an 𝜖-relative-error approximation guarantee for the class of column sparse subspaces,

and thus, its convergence guarantee also holds under the row sparsity.

CHAPTER 4. SPARSE SUBSPACE TRACKING 94

Theorem 3 Suppose thatA𝑡 = A, 𝛽 = 1, the true covariance matrix has
the form C = 𝜎2

𝑥AA⊤ +𝜎2

𝑛I, and two assumptions (A1)-(A2) are met. The
initialization matrixU0 and the number of observed (block) data samples
𝑡 satisfies the following conditions

𝑡 ≥ 𝐶 log(2/𝛿)
𝑊𝜖2

(√
𝑟 +

(𝜎2

𝑛

𝜎2

𝑥

+ 2

𝜎𝑛

𝜎𝑥

)√
𝑛

)
2

, (4.18)

max

{
sin𝜃 (A,U0), 𝜖

}
≤

(
3 − 2

√
2

𝑟 + 2

√
𝑟 (
√

2 − 1)

)
1/2
, (4.19)

where 𝜖 > 0 is a predefined accuracy, 𝐶 is a universal positive number
and 0 < 𝛿 ≪ 1 is a predefined error probability. At time 𝑡 , when U𝑡 is
generated by OPIT with the orthonormalization step using QR factoriza-
tion, then

𝑑𝑡
Δ
= sin𝜃 (A,U𝑡) ≤ 𝜖, (4.20)

with a probability at least 1 − 𝛿 .

Proof Sketch. First, let us denote the QR decomposition of S𝑡 by S𝑡 =

U𝑡,FR𝑡,F where “F ” stands for “full” entries. Here, we can express U𝑡 =

U𝑡,FW1+U𝑡,F,⊥W2 whereU𝑡,F,⊥ ∈ R𝑛×(𝑛−𝑟) is the orthogonal complement of

U𝑡,F (i.e., U⊤𝑡,FU𝑡,F,⊥ = 0), W1 ∈ R𝑟×𝑟 and W2 ∈ R(𝑛−𝑟)×𝑟 are coefficient ma-

trices. Specifically, it is easy to obtain that ∥W1∥2 = ∥U⊤𝑡,FU𝑡 ∥2 and ∥W2∥2 =
∥U⊤

𝑡,F,⊥U𝑡 ∥2. Accordingly, we can bound the distance 𝑑𝑡 = sin𝜃 (A,U𝑡) as
follows:

6

𝑑𝑡 =

A⊤⊥U𝑡

2

(𝑖)
=

A⊤⊥ (U𝑡,FW1 + U𝑡,F,⊥W2

)

2

(𝑖)
≤

A⊤⊥U𝑡,F

2

W1

2
+

A⊤⊥U𝑡,F,⊥

2

W2

2

(𝑖𝑖)
≤

A⊤⊥U𝑡,F

2
+

U⊤𝑡,⊥U𝑡,F

2
.

(4.21)

Here, (i) thanks to the standard inequalities ∥M + N∥2 ≤ ∥M∥2 + ∥N∥2 and

∥MN∥2 ≤ ∥M∥2∥N∥2; and (ii) is due to the following facts: ∥A⊥∥2 = ∥U𝑡 ∥2 =

∥U𝑡,F,⊥∥2 = 1, ∥W1∥2 ≤ ∥U⊤𝑡,F ∥2∥U𝑡 ∥2 ≤ 1, ∥A⊤⊥U𝑡,F,⊥∥2 ≤ ∥A⊤⊥∥2∥U𝑡,F,⊥∥2 ≤
1, and ∥U⊤

𝑡,F,⊥U𝑡 ∥2 = ∥U
⊤
𝑡,⊥U𝑡,F ∥2.

The two terms of the right hand side of (4.21) can be bounded by Lemma 5

and 6, respectively.

6
For any two orthonormal matricesA andU of the same size, we always have sin𝜃 (A,U) =

∥A⊤⊥U∥2 = ∥U⊤⊥A∥2 .

CHAPTER 4. SPARSE SUBSPACE TRACKING 95

Lemma 5 Let 𝚫C𝑡 = C𝑡 − C, we always have

A⊤⊥U𝑡,F

2
≤

𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2([(

𝜎2

𝑥 + 𝜎2

𝑛

)√︃
1 −

A⊤⊥U𝑡−1

2

2
−

𝚫C𝑡

2

]
2

+
[
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+

𝚫C𝑡

2

]
2

)
1/2

. (4.22)

Proof. See Appendix A.

Lemma 6 The distance between U𝑡 and U𝑡,F is bounded by

U⊤𝑡,⊥U𝑡,F

2
≤

√
𝑟
(
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+

𝚫C𝑡

2

)(
(𝜎2

𝑥 + 𝜎2

𝑛)
√︃

1 −

A⊤⊥U𝑡−1

2

2

−
(
1 +
√
𝑟 (1 +

√
2)

) (
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+

𝚫C𝑡

2

))
,

(4.23)

under the following condition

𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2

(𝜎2

𝑥 + 𝜎2

𝑛)
√︃

1 −

A⊤⊥U𝑡−1

2

2

≤
√

2 − 1

√
𝑟 − 1 +

√
2

. (4.24)

Proof. See Appendix B.
Next, Lemma 7 indicates an upper bound on ∥𝚫C𝑡 ∥2 which plays a crucial

role in Lemma 5 and 6 as well as establishing the two conditions (4.18) and

(4.19) for the convergence of OPIT.

Lemma 7 The error matrix 𝚫C𝑡 is bounded in the operator norm with
a probability at least 1 − 𝛿 :

𝚫C𝑡

2
≤ 𝑐𝛿

(
𝜎2

𝑥

√︂
𝑟

𝑡𝑊
+

(
2𝜎𝑛𝜎𝑥 + 𝜎2

𝑛

)√︂ 𝑛

𝑡𝑊

)
, (4.25)

where 𝛿 > 0 is a predefined error probability, and 𝑐𝛿 = 𝐶
√︁

log(2/𝛿) with
a universal positive number 𝐶 > 0.

Proof. See Appendix C.
Then, the necessary condition (4.24) for Lemma 6 is particularly satisfied

CHAPTER 4. SPARSE SUBSPACE TRACKING 96

when (4.18) is met and the following inequality holds

max

{
sin𝜃 (A,U0), 𝜖

}
≤

√︄
𝛼 (𝑟, 𝜌)

1 − 𝛼 (𝑟, 𝜌) , where (4.26)

𝛼 (𝑟, 𝜌) = (3 − 2

√
2) (𝜎2

𝑥 + 𝜎2

𝑛)2(
𝑟 + 2

√
𝑟 (
√

2 − 1) + 3 − 2

√
2

) (
𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥

)
2
, (4.27)

for any positive number 𝜌 in the range (0, 𝑟], please see Appendix D for de-

tails. Clearly, (4.19) provides a lower bound on

√︁
𝛼 (𝑟, 𝜌)/(1 − 𝛼 (𝑟, 𝜌)).

Accordingly, Lemma 6 is achieved under the two conditions (4.18) and

(4.19) while Lemma 1 holds for all 𝑡 . Now, given Lemma 5, 6, and 7, the dis-

tance 𝑑𝑡 can be bounded by Lemma 6.

Lemma 8 Let 𝑑0 = sin𝜃 (A,U0), 𝜔0 = max{𝑑0, 𝜖}, 𝛾 > 0 is any positive

number satisfying 𝜔0 ≤ 𝛾𝑟
√︃

1 − 𝜔2

0
and 𝜌𝛾 < 1. Suppose that 𝜔0 ≤√

2/2, the two conditions (4.19) and (4.18) are met, we obtain

𝑑𝑡 ≤
𝑟𝜎2

𝑛 + 𝜌𝜎2

𝑥

𝑟𝜉

√︃
1 − 𝜔2

0

max

{
𝑑𝑡−1, 𝜖

}
, where (4.28)

𝜉 = 0.5 max

{[
(1 + 𝛾2𝑟 2)𝜎4

𝑛 + (1 − 𝜌𝛾)2𝜎4

𝑥 + 2(1 + 𝛾2𝑟 2 − 𝜌𝛾)𝜎2

𝑛𝜎
2

𝑥

]
1/2
,

(𝜎2

𝑛 + 𝜎2

𝑥) (1 − 𝜚)/
√
𝑟

}
, (4.29)

with 𝜚 = 𝛾
(
1+
√
𝑟 (1+

√
2) (𝑟𝜎2

𝑛 + 𝜌𝜎2

𝑥)
) (
𝜎2

𝑛 +𝜎2

𝑥

)−1. Furthermore, 𝑑𝑡 ≤ 𝜖
also holds when 𝑡 satisfies the condition (4.18).

Proof. See Appendix D.

4.5 Experiments

In this section, we conduct several experiments on both synthetic and real

data to demonstrate the effectiveness and efficiency of OPIT and its variant

OPITd. Their performance is evaluated in comparison with state-of-the-art

algorithms. Our simulations are implemented using MATLAB on a laptop

of Intel core 𝑖7 and 16GB of RAM. Our codes are also available online at

https://github.com/thanhtbt/sst/ to facilitate replicability and re-

producibility.

4.5.1 Experiments with Synthetic Data

CHAPTER 4. SPARSE SUBSPACE TRACKING 97

4.5.1.1 Experiment Setup

Following the formulation in section 4.2, data samples {x𝑡 }𝑡≥1 are generated

at random under the standard model:

x𝑡 = A𝑡w𝑡 + 𝜎𝑛n𝑡 , (4.30)

where n𝑡 ∈ R𝑛×1
is a noise vector derived from N(0, I𝑛), 𝜎𝑛 > 0 is to control

the effect of the noise on algorithm’s performance,w𝑡 ∈ R𝑟×1
is an i.i.d. Gaus-

sian random vector of zero-mean and unit-variance to represent the subspace

coefficient. The sparse mixing matrix A𝑡 ∈ R𝑛×𝑟 at time 𝑡 is simulated as

A𝑡 = 𝛀 ⊛ (A𝑡−1 + 𝜀N𝑡), (4.31)

where ⊛ denotes the Hadamard product, 𝛀 ∈ R𝑛×𝑟 is a Bernoulli random

matrix with probability 1 − 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 , N𝑡 is a normalized Gaussian white noise

matrix, and 𝜀 > 0 is the time-varying factor aimed to control the subspace

variation with time.

In order to evaluate the subspace estimation performance, we measure

the following distance between two subspaces
7

𝑑𝑡
Δ
= sin𝜃 (A𝑡 ,U𝑡), (4.32)

where U𝑡 refers to the estimated subspace at time 𝑡 .

4.5.1.2 Effect of the forgetting factor 𝛽

The choice of the forgetting factor 𝛽 plays an essential role in the tracking

ability of OPIT.We investigated its effect by varying its value from 0.1 to 1 and

then evaluating the performance of OPIT. Here, the data dimension, the true

rank, the number of data samples were set at 𝑛 = 50, 𝑟 = 10, and𝑇 = 1000, re-

spectively. We fixed the noise factor at 𝜎𝑛 = 10
−3
, while two time-varying lev-

els were considered, namely 𝜀 = 0 (stationary) and 𝜀 = 10
−3

(nonstationary).

Results are illustrated in Fig. 4.1. In the stationary environment (Fig. 1(a)),

we can see that the higher the value of 𝛽 is, the better the performance OPIT

achieves, and 𝛽 = 1 offers the best tracking performance. In the time-varying

environment (Fig. 1(b)), 0 ≪ 𝛽 < 1 can provide reasonably high subspace es-

timation accuracy. When 𝛽 is close to 0, OPIT can track the underlying sub-

space over time but its accuracy is low. When 𝛽 = 1, OPIT’s performance

degrades as time passes.

7
Given two orthonormal matrices A and U of the same size, we always have sin𝜃 (A,U) =

∥A⊤⊥U∥2 = ∥U⊤⊥A∥2 = ∥AA⊤ − UU⊤∥2 where (.)⊥ denotes the orthogonal complement,

e.g., U⊤U⊥ = 0. In MATLAB, this distance can be easily computed by using the command

sin(subspace(A,U)).

CHAPTER 4. SPARSE SUBSPACE TRACKING 98

0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

(a) Stationary: 𝜖 = 0

0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

(b) Nonstationary: 𝜖 = 10
−3

Figure 4.1: Effect of the forgetting factor 𝛽 .

4.5.1.3 OPIT in Noisy and Dynamic Environments

In order to demonstrate the tracking ability of OPIT in nonstationary en-

vironments, we varied the value of the noise level 𝜎𝑛 and the time-varying

factor 𝜀 among {10
−1, 10

−2, 10
−3} and then evaluated its subspace estima-

tion accuracy. Two case studies were considered, including the small-scale

{𝑛 = 100, 𝑟 = 5} and the large-scale {𝑛 = 1000, 𝑟 = 50} in which the sparsity

level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 was set to 90% and an abrupt change was created at 𝑡 = 500.

The forgetting factor 𝛽 was fixed at 0.9 in both cases. We set the value of the

thresholding factor 𝑘 to ⌊10𝑟 log𝑛⌉.
Fig. 4.2 and Fig. 7.12 illustrate the effect of the noise level 𝜎𝑛 and the time-

varying factor 𝜀 on the performance of OPIT, respectively. We can see that

the value of 𝜎𝑛 and 𝜀 did not affect the convergence rate of OPIT but its es-

timation error. Despite the value of 𝜎𝑛 and 𝜀, OPIT still tracked successfully

the underlying sparse subspace even in the presence of a significant change

at 𝑡 = 500. The lower 𝜎𝑛 and 𝜀 are, the better subspace estimation accuracy

OPIT can achieve. Moreover, these experimental results indicate that the di-

mension 𝑛 and rank 𝑟 had in fact a small impact on how fast OPIT converges

in dynamic environments. Specifically, when dealing with the large-scale set-

ting, its convergence rate was faster than that when handling the small-scale

one.

4.5.1.4 OPIT versus Other SST Methods

In this task, we compare the performance of OPIT against the state-of-the-art

subspace tracking algorithms in different scenarios. These SST algorithms

CHAPTER 4. SPARSE SUBSPACE TRACKING 99

0 200 400 600 800 1000

10
-4

10
-2

10
0

(a) 𝑛 = 100, 𝑟 = 5

0 200 400 600 800 1000

10
-4

10
-2

10
0

(b) 𝑛 = 1000, 𝑟 = 50

Figure 4.2: Effect of the noise level 𝜎𝑛 on performance of OPIT: sparsity level

𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%, time-varying factor 𝜀 = 10
−4
, and forgetting factor 𝛽 = 0.9.

0 200 400 600 800 1000

10
-4

10
-2

10
0

(a) 𝑛 = 100, 𝑟 = 5

0 200 400 600 800 1000

10
-4

10
-2

10
0

(b) 𝑛 = 1000, 𝑟 = 50

Figure 4.3: Effect of the time-varying factor 𝜀 on performance of OPIT: spar-

sity level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%, noise level 𝜎 = 10
−4
, and forgetting factor 𝛽 = 0.9.

include ℓ1-PAST [95], SS-FAPI [98], SSPCA [94], and AdaOja [149].

We used 1000 snapshots derived from the model (4.30) in which the time-

varying factor 𝜀 was fixed at 10
−3

and the value of 𝜎𝑛 was set to two levels:

10
−1

and 10
−3
. Here, two sparsity levels were also investigated, including

50% and 90%. The length of window was set to𝑊 = ⌊log𝑛⌉ for the large-

scale settings and low noise levels, while we used𝑊 = 1 for others. We fixed

the forgetting factor 𝛽 at 0.97 for all simulations in this task. For OPIT, the

normalization step was used instead of the QR factorization. Parameters of

CHAPTER 4. SPARSE SUBSPACE TRACKING 100

0 200 400 600 800 1000
10

-4

10
-2

10
0

(a) 𝑟 = 2, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(b) 𝑟 = 2, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(c) 𝑟 = 10, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(d) 𝑟 = 10 , 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

Figure 4.4: Performance comparisons between OPIT and other SST algo-

rithms in the classical setting: dimension 𝑛 = 50, snapshots 𝑇 = 1000, and

time-varying factor 𝜀 = 10
−3
.

other SST algorithms were kept default to have a fair comparison.

Experimental results are shown as in Fig. 4.4 and Fig. 4.5. In the clas-

sical regime (see Fig. 4.4), OPIT was one of the two best effective SST algo-

rithms, together with SS-FAPI. In particular, the two algorithms outperformed

ℓ1-PAST, SSPCA, and AdaOja in all simulations. Indeed, the convergence rate

and estimation accuracy of OPIT were better than than of SS-FAPI, especially

in the case of𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%. When the target rank was set to a very low value

(𝑟 = 2), all SST algorithms were capable of tracking the underlying subspace

over time, see Fig. 4.4(a)-(b). When the target rank was reasonably high com-

pared to the dimension (𝑟 = 10 versus 𝑛 = 50), SSPCA failed while ℓ1-PAST

and AdaOja still worked, but their tracking ability was substantially lower

CHAPTER 4. SPARSE SUBSPACE TRACKING 101

0 200 400 600 800 1000

10
-4

10
-2

10
0

(a) 𝑛 = 1000, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

0 200 400 600 800 1000

10
-4

10
-2

10
0

(b) 𝑛 = 1000, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

0 200 400 600 800 1000

10
-4

10
-2

10
0

(c) 𝑟 = 10000, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

0 200 400 600 800 1000

10
-4

10
-2

10
0

(d) 𝑛 = 10000 , 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

Figure 4.5: Performance comparisons between OPIT and other SST algo-

rithms in high dimensions: target rank 𝑟 = 10, snapshots 𝑇 = 1000, and time-

varying factor 𝜀 = 10
−3
.

than SS-FAPI and OPIT, as illustrated in Fig. 4.4(c)-(d).

When dealing with high-dimensional and large-scale settings, OPIT com-

pletely outperformed other SST algorithms at both low and high levels of

noise as well as sparsity, as shown in Fig. 4.5. SSPCA failed to track the un-

derlying subspace while AdaOja, ℓ1-PAST, and SS-FAP could work in high di-

mensions. However, their performance in terms of estimation accuracy and

convergence rate were much less than that of OPIT.

CHAPTER 4. SPARSE SUBSPACE TRACKING 102

[1
0,

2]

[1
0,

5]

[2
0,

5]

[2
0,

10
]

[5
0,

5]

[5
0,

10
]

[1
00

,1
0]

[1
00

,2
0]

[5
00

,1
0]

[5
00

,1
0]

[1
00

0,
50

]

[1
00

0,
10

0]
0

100

200

300
OPIT

OPITd

[1
0,

2]

[1
0,

5]

[2
0,

5]

[2
0,

10
]

[5
0,

5]

[5
0,

10
]

[1
00

,1
0]

[1
00

,2
0]

10
-1

10
0

10
1

Figure 4.6: OPITd versus OPIT: Run time.

4.5.1.5 OPITd versus OPIT

Wehere investigate the tracking ability of OPITd in comparisonwith the orig-

inal OPIT with respect to aspects: runtime, estimation accuracy, and robust-

ness to abrupt changes.

To measure how fast OPITd is, we tested many configurations of {𝑛, 𝑟 }
and reported its run time. Most other parameters were kept fixed as in the

previous task except the number of snapshots 𝑇 , including the sparsity level

𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%, the noise level 𝜎𝑛 = 10
−3
, the time-varying factor 𝜀 = 10

−3
,

and the forgetting factor 𝛽 = 0.97. We used 3000 snapshots instead of 1000

for this task. The experimental results in Fig. 4.6 show that OPITd was faster

thanOPITwhen the dimension𝑛 and the target rank 𝑟 were set to large values

(𝑛 ≥ 100 and 𝑟 ≥ 10), especially when the dimension 𝑛 is actually high, e.g.

𝑛 = 1000.

We next investigate the tracking ability of OPITd in time-varying envi-

ronments with abrupt changes. We reused the experiment setup above and

created two abrupt changes at 𝑡 = 1000 and 𝑡 = 2000 to evaluate how fast

OPITd converges. Two noise levels were considered, including 𝜎𝑛 = 10
−1

and

𝜎𝑛 = 10
−3
. The results are illustrated in Fig. 4.7 and Fig. 4.8. When the un-

derlying model was of low rank, OPITd had almost the same performance to

OPIT, see Fig. 4.7(a). When the target rank 𝑟 was large, OPITd did not work

well, probably because the projection deflation might lead to a cumulative er-

ror between successive estimates. However, if the value of 𝑟 is not too large,

OPITd could track successfully the underlying subspace over time when the

sparsity level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 was not too high, as shown in Fig. 4.8.

CHAPTER 4. SPARSE SUBSPACE TRACKING 103

0 1000 2000 3000
10

-4

10
-2

10
0

(a) 𝑟 = 5

0 1000 2000 3000
10

-4

10
-2

10
0

(b) 𝑟 = 30

Figure 4.7: Effect of the target rank 𝑟 on performance of OPITd: dimension

𝑛 = 100, snapshots 𝑇 = 3000, time-varying factor 𝜀 = 10
−3
, sparsity level

𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%, forgetting factor 𝛽 = 0.97, and two abrupt changes at 𝑡 = 1000

and 𝑡 = 2000.

0 1000 2000 3000
10

-4

10
-2

10
0

(a) 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 10%

0 1000 2000 3000
10

-4

10
-2

10
0

(b) 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

Figure 4.8: Effect of the sparsity level 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 on performance of OPITd: di-

mension𝑛 = 100, rank 𝑟 = 20, snapshots𝑇 = 3000, time-varying factor 𝜀 = 10
−3
,

forgetting factor 𝛽 = 0.97, and two abrupt changes at 𝑡 = 1000 and 𝑡 = 2000.

4.5.2 Experiments with Real Video Data

In this task, four different video sequences are used to illustrate the effective-

ness and efficiency of OPIT for real data, including “Lobby”, “Hall”, “High-

way”, and “Park” whose details are reported in Tab. 1, (see Fig. 4.9 for an illus-

tration). We here compared the video tracking ability of OPIT with the state-

CHAPTER 4. SPARSE SUBSPACE TRACKING 104

b) Halla) Lobby c) Highway d) Park

Figure 4.9: Four video sequences used in this chapter.

0 375 750 1125 1500
10

-4

10
-2

10
0

10
2

(a) “Lobby”

0 350 700 1050 1400 1700
10

-4

10
-2

10
0

10
2

(b) “Highway”

Figure 4.10: Tracking ability of algorithms on the video datasets.

of-the-art subspace tracking algorithms (i.e., ℓ1-PAST, SS-FAPI, and PETRELS-

ADMM [25]) and tensor tracking algorithms (i.e., SOAP [174], OLCP [175],

OLSTEC [176], and ROLCP [33]). In order to apply these subspace tracking

algorithms to the video sequences, each video frame of size 𝐼× 𝐽 was reshaped
into a 𝐼 𝐽 × 1 vector. Following the studies on video tracking in [25] and [33],

the tensor rank and subspace rank were set to 10 for all simulations.

Simulation results are shown statistically in Tab. 7.1 and graphically in

CHAPTER 4. SPARSE SUBSPACE TRACKING 105

Dataset “Lobby” “Hall” “Highway” “Park”

S
i
z
e Tensor-based 128 × 160 × 1546 174 × 144 × 3584 320 × 240 × 1700 288 × 352 × 600

Matrix-based 20480 × 1546 25056 × 3584 76800 × 1700 101376 × 600

Evaluation metrics time(s) error time(s) error time(s) error time(s) error

T
e
n
s
o
r

SOAP 14.29 0.842 21.72 0.989 39.89 0.821 21.34 0.789

OLCP 10.50 0.161 19.98 0.154 27.07 0.219 14.19 0.096

OLSTEC 44.25 0.037 92.82 0.041 130.1 0.064 53.13 0.032

ROLCP 4.32 0.114 10.74 0.120 11.45 0.154 4.47 0.086

S
u
b
s
p
a
c
e

PETRELS-ADMM 118.4 0.015 305.5 0.018 452.6 0.009 203.6 0.032

ℓ1-PAST 14.11 0.031 33.73 0.101 46.78 0.159 19.21 0.058

SS-FAPI 12.99 0.023 32.72 0.100 46.37 0.160 17.56 0.056

OPIT (𝑊 = 1) 16.32 0.013 50.78 0.056 56.78 0.102 26.94 0.042

OPIT

(𝑊 = ⌊log(𝐼 𝐽)⌋) 1.89 0.021 5.62 0.086 6.05 0.141 2.83 0.057

Table 4.1: Runtime and averaged relative error of adaptive algorithms on

tracking the four video sequences.

Fig. 4.10. As can be seen that OPIT provided a competitive estimation accu-

racy as compared to PETRELS-ADMMwhile its runtimewasmuch faster than

that of the ADMM-based tracking algorithm. Indeed, OPIT had a better per-

formance than PETRELS-ADMM on the “Lobby” data, see Fig. 4.10(a). Also,

OPIT outperformed most tracking algorithms, apart from PETRELS-ADMM.

With respect to runtime, ROLCP was the fastest “one-pass" tracking algo-

rithm, several times faster than the second-best. Interestingly, our algorithm

is also designed for handling a block of multiple incoming samples at each

time (i.e. the length of window𝑊 > 1). When𝑊 = ⌊log(𝐼 𝐽)⌉, OPIT was

even faster than ROLCP while still retaining a reasonable video tracking ac-

curacy.

4.6 Conclusions

In this chapter, we have proposed a new provable OPIT algorithm which is

fully capable of tracking the sparse principal subspace over time in both clas-

sical regime and high-dimension, low-sample-size regime. OPIT provides a

competitive performance in terms of both subspace estimation accuracy and

convergence rate in the classical regime, especially when the SNR level is

high. In high dimensions, OPIT outperforms other sparse subspace tracking

algorithms, its estimation accuracy is much better than that of the second-

CHAPTER 4. SPARSE SUBSPACE TRACKING 106

best, SS-FAPI. Besides, a fast variant of OPIT has been obtained using deflation

called OPITd. Its computational complexity and memory storage are linear to

the input size and they are lower than that of OPIT. Simulations carried out

on real video sequences indicated that the proposed method has potential for

real applications.

4.7 Appendix

4.7.1 Appendix A: Proof of Lemma 1

Because U𝑡,F is the Q-factor of S𝑡 , we obtain 𝜃 (A,U𝑡,F) = 𝜃 (A, S𝑡) and hence

tan𝜃 (A,U𝑡,F) = max

∥v∥2=1

{
𝑓 (v) =

A⊤⊥S𝑡v

2

A⊤S𝑡v

2

}
. (4.33)

For any vector v ∈ R𝑟×1
and ∥v∥2 = 1, we can rewrite 𝑓 (v) in (4.33) as follows

𝑓 (v) =

A⊤⊥ (C + 𝚫C𝑡)U𝑡−1v

2

A⊤ (C + 𝚫C𝑡)U𝑡−1v

2

=

A⊤⊥ (𝜎2

𝑥AA⊤ + 𝜎2

𝑛I𝑁 + 𝚫C𝑡
)
U𝑡−1v

2

A⊤ (𝜎2

𝑥AA⊤ + 𝜎2

𝑛I𝑁 + 𝚫C𝑡
)
U𝑡−1v

2

(𝑖)
=

𝜎2

𝑛A⊤⊥U𝑡−1v + A⊤⊥𝚫C𝑡U𝑡−1v

2

(𝜎2

𝑥 + 𝜎2

𝑛

)
A⊤U𝑡−1v + A⊤𝚫C𝑡U𝑡−1v

2

(𝑖𝑖)
≤

𝜎2

𝑛

A⊤⊥U𝑡−1

2
+

A⊤⊥𝚫C𝑡U𝑡−1

2

(𝜎2

𝑥 + 𝜎2

𝑛)

A⊤U𝑡−1

2
−

A⊤𝚫C𝑡U𝑡−1

2

(𝑖𝑖𝑖)
≤

𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2

(𝜎2

𝑥 + 𝜎2

𝑛)
√︃

1 − ∥A⊤⊥U𝑡−1∥2
2
− ∥𝚫C𝑡 ∥2

. (4.34)

Here, (i) is due to A⊤⊥A = 0 (orthogonal complement); (ii) uses the inequality

∥P∥2 − ∥Q∥2 ≤ ∥P + Q∥2 ≤ ∥P∥2 + ∥Q∥2, ∀P,Q of the same size; and (iii) is

derived from the following facts: ∥P𝚫C𝑡 ∥2 ≤ ∥P∥2∥𝚫C𝑡 ∥2, ∥A∥2 = ∥A⊥∥2 =

∥U𝑡−1∥2 = 1, and

𝜆2

min
(A⊤U𝑡−1) + 𝜆2

max
(A⊤⊥U𝑡−1) = 1, (4.35)

where 𝜆max(P) and 𝜆min(P) represent the largest and smallest singular value

of P, respectively.
Indeed, the relation (4.35) leads to

A⊤U𝑡−1

2
= 𝜆max(A⊤U𝑡−1) ≥ 𝜆min(A⊤U𝑡−1)

=

√︃
1 − 𝜆2

max

(
A⊤⊥U𝑡−1

)
=

√︃
1 −

A⊤⊥U𝑡−1

2

2
, (4.36)

CHAPTER 4. SPARSE SUBSPACE TRACKING 107

and thus, (iii) follows.

In parallel, it is well known that sin𝜓 = 1

/√︁
1 + tan

−2𝜓 ∀𝜓 ∈ [0, 𝜋/2]
and ℎ(𝑥) = 1/

√
1 + 𝑥−2

is an increasing function in the domain (0,∞), i.e.
𝑥1 ≤ 𝑥2 implies ℎ(𝑥1) ≤ ℎ(𝑥2). Accordingly, we obtain

A⊤⊥U𝑡,F

2

≤ 1√︃
1 +

[
maxv 𝑓 (v)

]−2

=
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2([(

𝜎2

𝑥 + 𝜎2

𝑛

)√︃
1 −

A⊤⊥U𝑡−1

2 − ∥𝚫C𝑡 ∥2
]

2

+

+
[
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2

]
2

)
1/2

. (4.37)

It ends the proof.

4.7.2 Appendix B: Proof of Lemma 2

We first recast

U⊤𝑡,⊥U𝑡,F

2
into the following form

U⊤𝑡,⊥U𝑡,F

2

=

U⊤

𝑡,F,⊥U𝑡

2
=

U⊤
𝑡,F,⊥

(
U𝑡 − U𝑡,F

)

2
=

U⊤
𝑡,F,⊥𝚫U𝑡

2
. (4.38)

Under the following condition

(1 +
√

2)𝜅 (S𝑡)

S𝑡 − Ŝ𝑡

𝐹 <

S𝑡

2
, (4.39)

where 𝚫S𝑡 = S𝑡 − Ŝ𝑡 and 𝜅 (S𝑡) = ∥S#

𝑡 ∥2∥S𝑡 ∥2, we can bound this distance as

follows

U⊤
𝑡,F,⊥𝚫U𝑡

2
≤

U⊤
𝑡,F,⊥𝚫U𝑡

𝐹

(𝑖)
≤

𝜅 (S𝑡)
∥U⊤

𝑡,F,⊥𝚫S𝑡 ∥𝐹
∥S𝑡 ∥2

1 − (1 +
√

2)𝜅 (S𝑡)
∥𝚫S𝑡 ∥𝐹
∥S𝑡 ∥2

(𝑖𝑖)
≤ ∥𝚫S𝑡 ∥𝐹

𝜆min(S𝑡) − (1 +
√

2)∥𝚫S𝑡 ∥𝐹
. (4.40)

Here, (i) follows immediately the perturbation theory for QR decomposition

[177, Theorem 3.1] and (ii) is obtained from the facts that ∥U𝑡,F,⊥∥2 = 1,

∥PQ∥𝐹 ≤ ∥P∥2∥Q∥𝐹 , and ∥P#∥2 = 𝜆−1

min
(P) ∀P,Q of suitable sizes.

We also know that there always exists two coefficient matricesH𝑡 ∈ R𝑟×𝑟
and K𝑡 ∈ R(𝑛−𝑟)×𝑟 satisfying U𝑡−1 = AH𝑡 +A⊥K𝑡 (i.e. projection of U𝑡−1 onto

the subspace A) and

𝜆max(H𝑡) = ∥A⊤U𝑡−1∥2, 𝜆min(H𝑡) =
√︃

1 − ∥A⊤⊥U𝑡−1∥2
2
, (4.41)

𝜆max(K𝑡) = ∥A⊤⊥U𝑡−1∥2, 𝜆min(K𝑡) =
√︃

1 − ∥A⊤U𝑡−1∥2
2
.

CHAPTER 4. SPARSE SUBSPACE TRACKING 108

Accordingly, we can express S𝑡 by

S𝑡 = CU𝑡−1 + 𝚫C𝑡U𝑡−1 = (A𝚺𝑥A⊤ + 𝜎2

𝑛I𝑛) (AH𝑡 + A⊥K𝑡) + 𝚫C𝑡U𝑡−1

= A(𝜎2

𝑥 I𝑟 + 𝜎2

𝑛I𝑟)H𝑡 + 𝜎2

𝑛A⊥K𝑡 + 𝚫C𝑡U𝑡−1. (4.42)

Thanks to the fact that 𝜆𝑖 (P + Q) ≥ 𝜆𝑖 (P) − 𝜆max(Q) ∀P,Q of the same

size, the lower bound on 𝜆min(S𝑡) is given by

𝜆min(S𝑡) ≥ 𝜆min

(
(𝜎2

𝑥 + 𝜎2

𝑛)AH𝑡
)
− 𝜆max

(
𝜎2

𝑛A⊥K𝑡
)
− 𝜆max

(
𝚫C𝑡U𝑡−1

)
≥ (𝜎2

𝑥 + 𝜎2

𝑛)𝜆min(H𝑡) − 𝜎2

𝑛𝜆max(K𝑡) − ∥𝚫C𝑡 ∥2

= (𝜎2

𝑥 + 𝜎2

𝑛)
√︃

1 − ∥A⊤⊥U𝑡−1∥2
2
− 𝜎2

𝑛 ∥A⊤⊥U𝑡−1∥2 − ∥𝚫C𝑡 ∥2, (4.43)

In what follows, we derive an upper bound on ∥𝚫S𝑡 ∥𝐹 . For short, let us
denote the support of A, U𝑡−1, and U𝑡 by T𝐴, T𝑡−1, and T𝑡 , respectively, and
S𝑡 = T𝐴 ∪ T𝑡−1 ∪ T𝑡 . Here, it is easy to verify that S𝑡,S𝑡

= C𝑡,S𝑡×S𝑡
U𝑡−1 and

Ŝ𝑡 = S𝑡,T𝑡 = 𝜏 (S𝑡,S𝑡
, 𝑘). Accordingly, we can bound ∥𝚫S𝑡 ∥𝐹 as follows

𝚫S𝑡

𝐹
=

S𝑡,S𝑡
− S𝑡,T𝑡

𝐹

(𝑖)
≤ ∥S𝑡,S𝑡

− S𝑡,T𝐴

𝐹

=

𝜎2

𝑛A⊥K𝑡 + 𝚫C𝑡U𝑡−1

𝐹

≤
√
𝑟

𝜎2

𝑛A⊥K𝑡 + 𝚫C𝑡U𝑡−1

2
≤
√
𝑟
(
𝜎2

𝑛 ∥K𝑡 ∥2 + ∥𝚫C𝑡 ∥2
)

=
√
𝑟
(
𝜎2

𝑛 ∥A⊤⊥U𝑡−1∥2 + ∥𝚫C𝑡 ∥2
)
, (4.44)

where (i) is due to |T𝑡 | ≥ |T𝐴 | ∀𝑡 (i.e. |S𝑡 \ T𝑡 | ≤ |S𝑡 \ T𝐴 |), thanks the
thresholding operator 𝜏 (.) with 𝑘/𝑛 ≥ 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 .

In parallel, we can rewrite the sufficient and necessary condition (4.39) as

(1 +
√

2)

S#

𝑡

2

𝚫S𝑡

𝐹
≤ 1. (4.45)

Since ∥S#

𝑡 ∥2 = 𝜆−1

min
(S𝑡), substituting (4.43) for ∥S#

𝑡 ∥2 and (4.44) for ∥𝚫S𝑡 ∥𝐹
results in

𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2

(𝜎2

𝑥 + 𝜎2

𝑛)
√︃

1 −

A⊤⊥U𝑡−1

2

≤
√

2 − 1

√
𝑟 − 1 +

√
2

. (4.46)

CHAPTER 4. SPARSE SUBSPACE TRACKING 109

Under the condition (4.46), the upper bound on ∥U⊤𝑡,⊥U𝑡,F ∥2 is

U⊤𝑡,⊥U𝑡,F

2
≤

√
𝑟
(
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2

)((
𝜎2

𝑥 + 𝜎2

𝑛

)√︃
1 −

A⊤⊥U𝑡−1

2

2
− 𝜎2

𝑛

A⊤⊥U𝑡−1

2
−

− ∥𝚫C𝑡 ∥2 −
√
𝑟
(
1 +
√

2

) (
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2

))
=

√
𝑟
(
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2

)((
𝜎2

𝑥 + 𝜎2

𝑛

)√︃
1 −

A⊤⊥U𝑡−1

2

2
−

(
1 +
√
𝑟 (1 +

√
2)

)
×

×
(
𝜎2

𝑛

A⊤⊥U𝑡−1

2
+ ∥𝚫C𝑡 ∥2

))
, (4.47)

thanks to (4.40). It ends the proof.

4.7.3 Appendix C: Proof of Lemma 3

We begin the proof with the following proposition:

Proposition 10 Given two sets of random variable vectors {a𝑖}𝑁𝑖=1
and

{b𝑖}𝑁𝑖=1
where a𝑖

𝑖 .𝑖 .𝑑.∼ N(0, 𝜎2

𝑎I𝑛), b𝑖
𝑖 .𝑖 .𝑑.∼ N(0, 𝜎2

𝑏
I𝑚), and a𝑖 is indepen-

dent of b𝑗 ,∀𝑖, 𝑗 . The following inequality holds with a probability at least
1 − 𝛿 :

 1

𝑁

𝑁∑︁
𝑖=1

a𝑖b⊤𝑖

2

≤ 𝐶𝜎𝑎𝜎𝑏

√︂
log(2/𝛿)max{𝑛,𝑚}

𝑁
. (4.48)

where 0 < 𝛿 ≪ 1 and 𝐶 > 0 is a universal positive number.

Proof. Its proof follows immediately Lemma 15 in [178].

Since x𝑖 = Aw𝑖 + n𝑖 , we always have

𝚫C𝑡

2
=

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

x𝑖x⊤𝑖 − C

2

=

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

(
Aw𝑖w⊤𝑖 A

⊤ + n𝑖n⊤𝑖 + Aw𝑖n⊤𝑖 + n𝑖w⊤𝑖 A⊤
)
− 𝜎2

𝑥AA
⊤ − 𝜎2

𝑛I𝑛

2

CHAPTER 4. SPARSE SUBSPACE TRACKING 110

≤

A(

1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

w𝑖w⊤𝑖 − 𝜎2

𝑥 I𝑟

)
A⊤

2

+

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

n𝑖n⊤𝑖 − 𝜎2

𝑛I𝑁

2

+ 2

A(
1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

w𝑖n⊤𝑖

)

2

≤

A

2

2

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

w𝑖w⊤𝑖 − 𝜎2

𝑥 I𝑟

2

+

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

n𝑖n⊤𝑖 − 𝜎2

𝑛I𝑛

2

+ 2

A

2

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

w𝑖n⊤𝑖

2

, (4.49)

thanks to the inequality ∥PQ∥2 ≤ ∥P∥2∥Q∥2 for all P and Q of suitable sizes.

Accordingly, with a probability at least 1 − 𝛿 (0 < 𝛿 ≪ 1), three components

in the right hand side of (4.49) are respectively bounded by

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

w𝑖w⊤𝑖 − 𝜎2

𝑥 I𝑟

2

≤ 𝐶1

√︁
log(2/𝛿)𝜎2

𝑥

√︂
𝑟

𝑡𝑊
, (4.50)

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

n𝑖n⊤𝑖 − 𝜎2

𝑛I𝑛

2

≤ 𝐶2

√︁
log(2/𝛿)𝜎2

𝑛

√︂
𝑛

𝑡𝑊
, (4.51)

 1

𝑡𝑊

𝑡𝑊∑︁
𝑖=1

w𝑖n⊤𝑖

2

≤ 𝐶3

√︁
log(2/𝛿)𝜎𝑥𝜎𝑛

√︂
𝑛

𝑡𝑊
, (4.52)

where 𝐶1,𝐶2,𝐶3 are universal positive parameters, thanks to Proposition 10

and [24, Proposition 2.1]. As a result, we obtain

𝚫C𝑡

2
≤ 𝑐𝛿

(
𝜎2

𝑥

√︂
𝑟

𝑡𝑊
+

(
2𝜎𝑛𝜎𝑥 + 𝜎2

𝑛

)√︂ 𝑛

𝑡𝑊

)
, (4.53)

where 𝑐𝛿 = max

{
𝐶1,𝐶2,𝐶3

}√︁
log(2/𝛿). It ends the proof.

4.7.4 Appendix D: Proof of Lemma 4

We first use proof by induction to prove 𝑑𝑡 ≤ 𝜔0 = max{𝑑0, 𝜖}. Particularly,
we already have the base case of 𝑑0 ≤ 𝜔0. In the induction step, we suppose

𝑑𝑡−1 ≤ 𝜔0 and then prove 𝑑𝑡 ≤ 𝜔0 still holds. After that, we indicate that

𝑑𝑡 ≤ 𝜖 is achievable when the two conditions (4.18) and (4.19) are met.

Thanks to Lemma 3, when 𝑡 satisfies (4.18), i.e.,

𝑡 ≥ 𝐶 log(2/𝛿)𝑟 2

𝑊𝜖2𝜌2

(√
𝑟 +

(𝜎2

𝑛

𝜎2

𝑥

+ 2

𝜎𝑛

𝜎𝑥

)√
𝑛

)
2

, (4.54)

CHAPTER 4. SPARSE SUBSPACE TRACKING 111

we obtain ∥𝚫C𝑡 ∥2 ≤ 𝑟−1𝜌𝜎2

𝑥𝜖 with 0 < 𝜌 ≤ 𝑟 . In what follows, two case

studies 𝑑𝑡−1 ≥ 𝜖 and 𝑑𝑡−1 ≤ 𝜖 are investigated.
Case 1: When 𝑑𝑡−1 ≥ 𝜖 , i.e., ∥𝚫C𝑡 ∥2 ≤ 𝑟−1𝜌𝜎2

𝑥𝑑𝑡−1.

We can rewrite ∥A⊤⊥U𝑡,F ∥2 as follows

A⊤⊥U𝑡,F

2
≤ (𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥)𝑑𝑡−1([
(𝜎2

𝑛 + 𝜎2

𝑥)
√︃

1 − 𝑑2

𝑡−1
− 𝑟−1𝜌𝜎2

𝑥𝑑𝑡−1

]
2+

aaaaaaaaaaaa + (𝜎2

𝑛 + 𝜎2

𝑥𝜌/𝑟)2𝑑2

𝑡−1

)
1/2

(𝑖)
≤ (𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥)𝑑𝑡−1([
(𝜎2

𝑛 + 𝜎2

𝑥)
√︃

1 − 𝜔2

0
− 𝑟−1𝜌𝜎2

𝑥𝜔0

]
2+

aaaaaaaaaaaaaaaaaaaaa + (𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥)2𝜔2

0

)
1/2

(𝑖𝑖)
≤ (𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥)𝑑𝑡−1(
(1 + 𝛾2𝑟 2)𝜎4

𝑛 + (1 − 𝜌𝛾)2𝜎4

𝑥+
aaaaaaaa + 2(1 − 𝜌𝛾 + 𝛾2𝑟 2)𝜎2

𝑥𝜎
2

𝑛

)
1/2√︃

1 − 𝜔2

0

. (4.55)

Here, (i) is obtained from the fact that 𝑔(𝑥) =
(
(𝑎
√

1 − 𝑥2 − 𝑏𝑥)2 + 𝑐𝑥2
)−1/2

is an increasing function in the range [0,
√

2/2] where 𝑎, 𝑏, and 𝑐 are defined
therein

8
and (ii) is simple due to the fact that there always exists a small pa-

rameter 𝛾 > 0 such that 𝜌𝛾 < 1 and 𝜔0 ≤ 𝛾𝑟
√︃

1 − 𝜔2

0
.

In the similar way, we obtain the following upper bound on ∥U⊤𝑡,⊥U𝑡,F ∥2:

U⊤𝑡,⊥U𝑡,F

2
≤

√
𝑟
(
𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥

)
𝑑𝑡−1(

𝜎2

𝑥 + 𝜎2

𝑛

)√︃
1 − 𝑑2

𝑡 −
(
1 +
√
𝑟 (1 +

√
2)

)
×

×
(
𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥

)
𝑑𝑡−1

(𝑖)
≤

√
𝑟 (𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥)𝑑𝑡−1(
𝜎2

𝑥 + 𝜎2

𝑛

)√︃
1 − 𝜔2

0
−

(
1 +
√
𝑟 (1 +

√
2)

) (
𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥

)
𝜔0

(𝑖𝑖)
≤

√
𝑟 (𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥)

(𝜎2

𝑥 + 𝜎2

𝑛) (1 − 𝜚)
√︃

1 − 𝜔2

0

𝑑𝑡−1, (4.56)

8
Writing 𝑥 = sin𝑦, the domain of 𝑦 is [0, 𝜋/4]. Here, we can recast 𝑔(𝑥) into 𝑔(𝑦) =(

(𝑎 cos𝑦 − 𝑏 sin𝑦)2 + 𝑐 sin
2 𝑦

)−1/2
. The derivative 𝑔′ (𝑦) is given by

𝑔′ (𝑦) = 0.5
(
(𝑎 cos𝑦 − 𝑏 sin𝑦)2 + 𝑐 sin

2 𝑦
)−3/2 ((𝑎2 − 𝑏2 − 𝑐) sin(2𝑦) + 𝑎𝑏 cos(2𝑦)

)
.

Since 𝑎2 − 𝑏2 > 𝑐 by their definition, 𝑔′ (𝑦) > 0 ∀𝑦 ∈ [0, 𝜋/4] and hence 𝑔′ (𝑥) = 𝑔′ (𝑦)𝑑𝑦/𝑑𝑥 =

𝑔′ (𝑦)/
√

1 − 𝑥2 > 0 ∀𝑥 ∈ [0,
√

2/2]. Accordingly, 𝑑𝑡−1 ≤ 𝜔0 ≤
√

2/2 implies 𝑔(𝑑𝑡−1) ≤ 𝑔(𝜔0)
which (i) then follows.

CHAPTER 4. SPARSE SUBSPACE TRACKING 112

where 𝜚 = 𝛾
(
1 +
√
𝑟 (1 +

√
2) (𝑟𝜎2

𝑛 + 𝜌𝜎2

𝑥)
)
(𝜎2

𝑥 + 𝜎2

𝑛)−1
. Specifically, (i) is due

to the increasing property of 𝑧 (𝑥) = (𝑎
√

1 − 𝑥2 − 𝑏𝑥)−1
, and (ii) thanks to

𝜔0 ≤ 𝛾𝑟
√︃

1 − 𝜔2

0
.

Thanks to (4.55) and (4.56), we obtain

𝑑𝑡 ≤

A⊤⊥U𝑡,F

2

+

U⊤𝑡,⊥U𝑡,F

2

≤ 𝑟𝜎2

𝑛 + 𝜌𝜎2

𝑥

𝑟𝜉

√︃
1 − 𝜔2

0

𝑑𝑡−1, (4.57)

where

𝜉 = 0.5 max

{(
(1 + 𝛾2𝑟 2)𝜎4

𝑛 + (1 − 𝜌𝛾)2𝜎4

𝑥 + 2(1 − 𝜌𝛾 + 𝛾2𝑟 2)𝜎2

𝑥𝜎
2

𝑛

)
1/2
,

(𝜎2

𝑥 + 𝜎2

𝑛) (1 − 𝜚)/
√
𝑟

}
. (4.58)

Note that in order to utilize the two bounds (6.189) and (4.56), the condi-

tion (4.46) must be satisfied which is equivalent to

(𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥)𝜔0

(𝜎2

𝑥 + 𝜎2

𝑛)
√︃

1 − 𝜔2

0

≤
√

2 − 1

√
𝑟 − 1 +

√
2

. (4.59)

Accordingly, we obtain 𝜔0 ≤
(
𝛼 (𝑟,𝜌)

1−𝛼 (𝑟,𝜌)

)
1/2

where

𝛼 (𝑟, 𝜌) = (3 − 2

√
2) (𝜎2

𝑥 + 𝜎2

𝑛)2(
𝑟 + 2

√
𝑟 (
√

2 − 1) + 3 − 2

√
2

) (
𝜎2

𝑛 + 𝑟−1𝜌𝜎2

𝑥

)
2
. (4.60)

In parallel, 𝛼 (𝑟, 𝜌) ≥ 3−2

√
2

𝑟+2
√
𝑟 (
√

2−1)+3−2

√
2

for every 0 < 𝜌 ≤ 𝑟 . Thus, we obtain

𝜔0 ≤
(

3 − 2

√
2

𝑟 + 2

√
𝑟 (
√

2 − 1)

)
1/2
, (4.61)

which is exactly the condition (4.19) in Theorem 1. Moreover, there are var-

ious options of 𝑝 ∈ (0, 𝑟] satisfying 𝜌𝜎2

𝑥 < 𝑟𝜉

√︃
1 − 𝜔2

0
− 𝑟𝜎2

𝑛 , e.g., when the

value of 𝜌 is very close to zero. In such cases, 𝑑𝑡 will decrease in each time 𝑡 ,

i.e., 𝑑𝑡 ≤ 𝑑𝑡−1 ≤ 𝜔0.

Case 2: When 𝑑𝑡−1 ≤ 𝜖 , applying the same arguments in Case 1, we also

obtain 𝑑𝑡 ≤ 𝑟𝜎2

𝑛+𝜌𝜎2

𝑥

𝑟𝜉
√

1−𝜔2

0

𝜖 ≤ 𝜖 ≤ 𝜔0.

To sum up, if the two conditions (4.18) and (4.19) are satisfied, then 𝑑𝑡 ≤
max{𝑑𝑡−1, 𝜖} = 𝜔0. As a result, the statement 𝑑𝑡 ≤ 𝜖 holds if and only if(

𝑟𝜎2

𝑛 + 𝜌𝜎2

𝑥

𝑟𝜉

√︃
1 − 𝜔2

0

)𝑡𝑊
𝜔0 ≤ 𝜖. (4.62)

CHAPTER 4. SPARSE SUBSPACE TRACKING 113

0 400 800 1200 1600 2000

10
-4

10
-2

10
0

(a) 𝜎𝑛 = 𝜖 = 10
−3
, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

0 400 800 1200 1600 2000

10
-4

10
-2

10
0

(b) 𝜎𝑛 = 𝜖 = 10
−2
, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

Figure 4.11: OPIT vs the best optimal power-based subspace tracker FAPI:

Data dimension 𝑛 = 100, true rank 10, number of snapshots 𝑇 = 2000, forget-

ting factor 𝛽 = 0.97, abrupt changes at 𝑡 = 500 and 𝑡 = 1500.

Specifically, (4.62) is equivalent to

𝑡 ≥ log(𝜖/𝜔0)

𝑊
(
log(𝑟𝜎2

𝑛 + 𝜌𝜎2

𝑥) − log(𝑟𝜉
√︃

1 − 𝜔2

0
)
) . (4.63)

which is lower than the bound (4.18). Therefore, we can conclude that 𝑑𝑡 ≤ 𝜖
holds and it ends the proof.

Appendix E: Additional Experimental Results

OPIT vs the best optimal power-based subspace tracker FAPI

Here, we illustrate that OPIT is more effective than the existing power-based

subspace trackers. As it is well-documented that FAPI is the best optimal

power-based subspace tracker w.r.t. both convergence rate and estimation

accuracy [154], we adopt FAPI in this work. We set the data dimension 𝑛 =

100, the true rank 𝑟 = 10, the number of data samples 𝑇 = 2000. Two levels

of noise and time-varying factors are considered, namely 𝜎𝑛 = 𝜖 = 10
−3

and

𝜎𝑛 = 𝜖 = 10
−2
. To assess how fast subspace trackers converge, we create

two abrupt changes at 𝑡 = 500 and 𝑡 = 1500. To have a fair comparison, the

forgetting factor 𝛽 is fixed at the same value 0.97 for both OPIT and FAPI

in all testing cases. Results are shown as in Fig. 4.11. We can see that OPIT

yields higher subspace estimation accuracy than FAPI. When abrupt changes

happen, OPIT also converges faster than FAPI.

CHAPTER 4. SPARSE SUBSPACE TRACKING 114

0 200 400 600 800 1000
10

-2

10
-1

10
0

(a) 𝑟 = 2, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

0 200 400 600 800 1000
10

-2

10
-1

10
0

(b) 𝑟 = 2, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

0 200 400 600 800 1000
10

-2

10
-1

10
0

(c) 𝑟 = 10, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

0 200 400 600 800 1000
10

-2

10
-1

10
0

(d) 𝑟 = 10 , 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

Figure 4.12: Performance comparisons between OPIT and other ST algo-

rithms in the classical setting: dimension 𝑛 = 50, snapshots 𝑇 = 1000, time-

varying factor 𝜀 = 10
−3
, and the noise level 𝜎𝑛 = 10

−1
.

OPIT vs State-of-the-art Subspace Trackers

In this subsection, we provide further performance comparison of OPIT against

the state-of-the-art subspace trackers addressed in Section V.4 in the main

text. Fig. 4.12 and Fig. 4.13 illustrate the experimental results in the classical

regime and high dimensions when the noise level is high, i.e., 𝜎𝑛 = 10
−1
. As

can be seen that OPIT outperform others completely in both regimes.

OPIT vs Data Dimension and Sample Size

This subsection provides additional experimental results of OPIT to demon-

strate the effectiveness of OPIT in many settings of data dimension and sam-

ple size. Please see Figs. 4-8 for details.

CHAPTER 4. SPARSE SUBSPACE TRACKING 115

0 200 400 600 800 1000

10
-2

10
-1

10
0

10
1

(a) 𝑛 = 1000, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

0 200 400 600 800 1000

10
-2

10
-1

10
0

10
1

(b) 𝑛 = 1000, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

0 200 400 600 800 1000

10
-2

10
-1

10
0

10
1

(c) 𝑛 = 10000, 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 50%

0 200 400 600 800 1000

10
-2

10
-1

10
0

10
1

(d) 𝑛 = 10000 , 𝜔𝑠𝑝𝑎𝑟𝑠𝑒 = 90%

Figure 4.13: Performance comparisons between OPIT and other SST algo-

rithms in high dimensions: target rank 𝑟 = 10, snapshots 𝑇 = 1000, time-

varying factor 𝜀 = 10
−3
, and the noise level 𝜎𝑛 = 10

−1
.

0 40 80 120 160 200
10

-2

10
-1

10
0

10
1

(a) 𝜎𝑛 = 10
−1

0 40 80 120 160 200
10

-4

10
-2

10
0

10
2

(b) 𝜎𝑛 = 10
−3

Figure 4.14: 𝑛 = 50,𝑇 = 200: rank 𝑟 = 10, time-varying 𝜖 = 10
−3
, sparsity 90%.

CHAPTER 4. SPARSE SUBSPACE TRACKING 116

0 100 200 300 400 500
10

-2

10
-1

10
0

10
1

(a) 𝜎𝑛 = 10
−1

0 100 200 300 400 500
10

-4

10
-2

10
0

10
2

(b) 𝜎𝑛 = 10
−3

Figure 4.15: 𝑛 = 1000,𝑇 = 500: rank 𝑟 = 10, time-varying 𝜖 = 10
−3
, sparsity 90%

0 500 1000 1500 2000
10

-2

10
-1

10
0

10
1

(a) 𝜎𝑛 = 10
−1

0 500 1000 1500 2000
10

-4

10
-2

10
0

10
2

(b) 𝜎𝑛 = 10
−3

Figure 4.16: 𝑛 = 2000,𝑇 = 2000: rank 𝑟 = 20, time-varying 𝜖 = 10
−3
, sparsity

90%

0 500 1000 1500 2000

10
-2

10
-1

10
0

10
1

(a) 𝜎𝑛 = 10
−1

0 500 1000 1500 2000
10

-4

10
-2

10
0

10
2

(b) 𝜎𝑛 = 10
−3

Figure 4.17: 𝑛 = 5000,𝑇 = 2000: rank 𝑟 = 20, time-varying 𝜖 = 10
−3
, sparsity

90%

An Overview of Tensor

Tracking 5

5.1 Introduction . 118

5.1.1 State-of-the-art Surveys 119

5.1.2 Main Contributions . 121

5.2 Tensor Decompositions . 122

5.2.1 CP/PARAFAC Decomposition 123

5.2.2 Tucker Decomposition 123

5.2.3 Block-Term Decomposition 124

5.2.4 Tensor-train Decomposition 124

5.2.5 T-SVD Decomposition 125

5.3 Tensor Tracking Formulation 125

5.3.1 Single-aspect Streaming Model 125

5.3.2 Multi-aspect Streaming Model 127

5.3.3 General Formulation of Optimization 128

5.4 Streaming CP Decomposition 128

5.4.1 Subspace-based Methods 128

5.4.2 Block-Coordinate Descent 131

5.4.3 Bayesian Inference . 134

5.4.4 Multi-aspect streaming CP decomposition 136

5.5 Streaming Tucker Decomposition 138

5.5.1 Online Tensor Dictionary Learning 140

5.5.2 Tensor Subspace Tracking 144

5.5.3 Multi-aspect streaming Tucker decomposition 147

5.6 Other Streaming Tensor Decompositions 149

5.6.1 Streaming Tensor-Train Decomposition 149

5.6.2 Streaming Block-Term Decomposition 150

5.6.3 Streaming t-SVD Decomposition 152

5.7 Applications . 153

5.7.1 Computer Vision . 153

5.7.2 Neuroscience . 154

5.7.3 Anomaly Detection . 155

5.7.4 Others . 156

5.8 Conclusions . 156

117

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 118

Tensor decomposition has been demonstrated to be successful in a wide range
of applications, from neuroscience and wireless communications to social net-
works. In an online setting, factorizing tensors derived from multidimensional
data streams is however non-trivial due to several inherent problems of real-
time stream processing. In recent years, many research efforts have been dedi-
cated to developing online techniques for decomposing such tensors, resulting
in significant advances in streaming tensor decomposition or tensor tracking.
This topic is emerging and enriches the literature on tensor decomposition, par-
ticularly from the data stream analystics perspective. Thus, it is imperative to
carry out an overview of tensor tracking to help researchers and practitioners
understand its development and achievements, summarise the current trends
and advances, and identify challenging problems. In this article, we provide a
contemporary and comprehensive survey on different types of tensor tracking
techniques. We particularly categorize the state-of-the-art methods into three
main groups: streaming CP decompositions, streaming Tucker decompositions,
and streaming decompositions under other tensor formats (i.e., tensor-train, t-
SVD, and BTD). In each group, we further divide the existing algorithms into
sub-categories based on their main optimization framework and model archi-
tectures. Finally, we present several research challenges, open problems, and
potential directions of tensor tracking in the future.

5.1 Introduction

Tensor decomposition (TD) has attracted much attention from the signal pro-

cessing and machine learning community [11]. As a tensor is a multiway ar-

ray, it provides a natural representation for multidimensional data. Accord-

ingly, TD which factorizes a tensor into a set of basis components (e.g., vec-

tors, matrices, or simpler tensors) has become a popular tool for multivariate

and high-dimensional data analysis. In particular, we have witnessed signifi-

cant advances in TD and a rapid growth in its applications over the last two

decades [13]. Several types of TD, such as CANDECOMP/PARAFAC (CP) [14],

high-order SVD (HOSVD)/Tucker [15], tensor train/network [16], t-SVD [17],

and block-term decomposition (BTD) [18], have been developed and success-

fully applied to various domains, from neuroscience [179, 180] wireless com-

munications [181, 182] to social networks [183, 184].

The demand for (near) real-time stream processing has been increasing

over the years since many modern applications (e.g., Internet-of-Things) gen-

erate massive amounts of streaming data over time and analytical insights

from such data can bring several benefits, e.g., for real-time decision mak-

ing [2]. As its name implies, (near) real-time stream processing needs to im-

mediately deliver and analyse data streams upon their arrival. Since stream-

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 119

ing data grow bigger, faster, and become more complex by the time, there

exist several inherent problems which are still challenging issues, such as (i)

the unbounded size of streaming data, (ii) time-varying model, concept drift,

or dataset shift, and (iii) uncertainty and imperfection, etc. We refer the read-

ers to [2, 3] for good surveys on data stream analysis.

When using tensors to represent data streams, TD is generally referred

to as tensor tracking or adaptive/online/ streaming tensor decomposition.

Specifically, factorizing a streaming tensor is nontrivial due to several com-

putational challenges. First, as tensor streams are continuously generated,

their volume grows significantly over time and possibly to infinity. Applying

the conventional batch TD methods to such tensors is not possible as they

require data to be stored and processed offline. Second, properties of stream-

ing tensors (e.g., the low-rank approximation model) can vary with time in

unforeseen ways. Moreover, tensor streams often happen in real-time, so re-

transmission of a stream is difficult, even impossible. Accordingly, batch ten-

sor estimation and decomposition become less accurate when time passes.

Last but not least, some modern applications require high-speed data acqui-

sition systems to rapidly acquire and process massive data streams. In such a

case, very fast and (near) real-time processing is highly important. However,

batch TDs are often of high complexity, and hence turn out to be inefficient.

These characteristics make tensor tracking much different from batch ten-

sor decomposition and lead to several distinguishing requirements for tensor

trackers, such as low latency andmemory storage, high scalability, adaptation

to time variation, and robustness, to name a few.

As the literature of tensor tracking has significantly expanded in recent

years, it is imperative to it is imperative to conduct an extensive overview of

the state-of-the-art tensor tracking algorithms to help researchers and prac-

titioners to identify: (i) which topics in tensor tracking are significant and

emerging, (ii) what kind of tracking models and related analysis techniques

have already been deployed to date and how to apply them in specific tasks,

and (iii) main research challenges, open problems, and potential directions of

tensor tracking in the future.

5.1.1 State-of-the-art Surveys

The very first and gentle introduction to tensor and tensor decompositionwas

provided by Rasmus in [185] two decades ago. This reference offered a tutorial

on CP/PAFRAFAC decomposition covering features, properties, methods, and

applications in chemometrics. Since then, there have been many published

survey papers which provided different points of view on tensor computation

in the literature. We can broadly divide them into three classes, including (i)

surveys on models, methods, and tools for factorizing tensors, (ii) surveys on

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 120

Table 5.1: The State-of-the-art Surveys on Tensor Decompositions and Ap-

plications

Class Review (Year) Objects & Topics Key Contribution

Su
rv

ey
so

n
te

ns
or

fa
ct

or
iz

at
io

n
m

od
el

s,
m

et
ho

ds
,a

nd
to

ol
s

[185] (1997) CP/PARAFAC
decomposition

An overview of CP decomposition with respect to aspects: features, properties,
methods, and applications in chemometrics.

[186] (2008) CP & Tucker
decomposition

A literature survey on unsupervised multiway data analysis: multiway models
(i.e., CP family and Tucker family), their workhorse algorithms and applications.

[10] (2009) CP & Tucker
decomposition

An extensive survey on main algorithms, properties and applications of CP,
Tucker decompositions and their variants.
A list of software and toolboxes for tensor processing.

[187] (2010) Tucker/HOSVD
decomposition

An overview on numerical methods for Tucker/HOSVD decomposition & its
applications in signal processing.

[188] (2013) Low-rank tensor
approximations A literature survey on low-rank tensor approximation models and algorithms.

[189] (2014) Incomplete tensor
decomposition

A survey on numerical methods for factorizing incomplete tensors and their
connections to signal processing applications.

[12] (2016) Tensor network
decomposition An extensive tutorial on tensor networks, their operations and algorithms.

[190] (2016) Big tensor
decomposition A brief review of methods for factorizing large-scale tensors.

[191] (2020) Tucker/HOSVD
decomposition A survey on randomized algorithms for computing Tucker/HOSVD decomposition.

[192] (2020) Structured tensor
decomposition

A unified nonconvex optimization perspective for computing large-scale matrix
and tensor decompositions with structured factors.

Su
rv

ey
so

n
ge

ne
ra

l
te

ns
or

pr
ob

le
m

s

[193] (2007) Tensor filtering A review of tensor signal algebraic filtering methods.

[194] (2009) CP & Tucker
decompositions

A review of theoretical results on the existence, uniqueness, degeneracies, and
numerical complexities of alternating least-squares and other tales.

[195] (2013) Complexity of
tensor problems

An in-depth survey on theoretical and complexity results of some tensor
problems: tensor rank, eigen/singular values, and the best rank-1 approximation.

[196] (2014) Tensor formats &
tensor ranks A brief introduction on different types of tensor formats and tensor ranks.

[11] (2017) Fundamentals &
backgrounds

An comprehensive overview of tensor decompositions w.r.t. aspects: uniqueness,
tensor ranks, algorithms, bounds, and applications.
A list of software and toolboxes for tensor processing.

[197] (2018) Connections to
PCA An introduction to tensors and tensor decompositions in the lens of PCA.

Su
rv

ey
so

n
te

ns
or

ap
pl

ic
at

io
ns

[198] (2011) Data analysis An overview of tensor decomposition applications for a wide variety of data
and problem domains.

[199] (2015) Signal processing A comprehensive survey on tensor decompositions for signal processing.
[180] (2015) EEG applications A brief survey on tensor decompositions of EEG signals.
[200] (2016) Anomaly detection An interdisciplinary survey on tensor-based anomaly detection.
[201] (2017) Data fusion A review of tensor decompositions with emphasis on data fusion applications.

[202] (2017) Machine learning
& data analysis

An tutorial on tensor network models for super-compressed representation of
data and their applications in machine learning and data analytics.

[203] (2019) Machine learning An overview of tensor techniques and applications in machine learning.

[204] (2021) Multisensor signal
processing A comprehensive survey on tensor methods for multisensor signal processing.

[182] (2021) Wireless
communications A comprehensive overview of tensor decompositions for wireless communications.

[184] (2021) Social networks A survey on tensor decomposition for analysing time-evolving social networks.

[205] (2021) Computer vision &
deep learning A practical overview of tensor methods for computer vision and deep learning

[206] (2022) Nonlinear system
identification A tutorial on tensor methods for nonlinear system identification.

[13] (2022) Data analysis A systematic and up-to-date overview of tensor decompositions from
the engineer’s point of view.

This work
Streaming tensor
decomposition

(Tensor tracking)

A contemporary and comprehensive survey on methods for factorizing
tensors derived from data streams under several tensors formats.
Research challenges, open problems, and future directions.

general tensor problems, e.g., tensor operations, uniqueness, ranks, filtering,

spectral analysis, and complexity, and (iii) surveys on tensor applications. We

refer the readers to Tab. 5.1 for the main contributions of the state-of-the-art

surveys on tensors.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 121

Among them, the most notable and highly-cited survey paper is the work

of Kolda et al. in [10] that was published in the SIAMReview journalmore than

a decade ago. The survey presented basicmultiwaymodels (i.e., CP family and

Tucker family) and workhorse algorithms for factorizing tensors under these

models. Some applications and software for tensors were alsomentioned. The

second key survey in the literature is the work of Sidiropoulos et al. in [11]

that appeared five years ago in the IEEE Transactions on Signal Processing jour-
nal. To fill some gaps in the existing surveys on CP and Tucker decomposi-

tions of that time, the authors provided an in-depth overview of tensors with

respect to the following aspects: uniqueness, ranks, bounds, algorithms, and

applications. Moreover, an up-to-date list of software and toolboxes for tensor

computation was provided therein. To extend beyond the two standard mul-

tiway models, Cichocki et al. conducted a comprehensive tutorial on tensor

networks in [12,202] that appeared in the Foundations and Trends in Machine
Learning journal. Particularly, its coverage includes tensor network models,

the associated operations and algorithms, and their applications. Besides, it

also highlighted connections of tensor networks to dimensionality reduction

and large-scale optimization problems. Very recently, Liu et al. provided a

general overview of tensors from the engineer’s point of view in the book

Tensor Computation for Data Analysis [13]. It covers various aspects of tensor
computations and decompositions, from operations and well-known multi-

way representations to tensor-based data analysis techniques and practical

applications.

However, to date, we are not aware of any survey paper specifically re-

viewing the problem of streaming tensor decomposition or tensor tracking.

Therefore, it is of great interest to carry out an overview of this topic to enrich

the tensor literature.

5.1.2 Main Contributions

In this chapter, we present a contemporary and comprehensive survey on the

state-of-the-art online techniques which are capable of factorizing tensors

derived from data streams.

Our survey begins with basic coverage of five common tensor decom-

positions and their main features. They are CP/PARAFAC, HOSVD/Tucker,

BTD, tensor-train, and t-SVD. Two kinds of streaming models are then in-

troduced to represent streaming tensors, including single-aspect and multi-

aspect. Next, we review four main groups of streaming CP decomposition

algorithms: (i) subspace-based, (ii) block-coordinate descent, (iii) Bayesian in-

ference, and (iv) multi-aspect streaming CP decomposition. Under the Tucker

format, we categorize currently available single-aspect tensor tracking algo-

rithms into two main classes: online tensor dictionary learning and tensor

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 122

Subspace-based Methods

Tensor Tracking
Formulation

SECTION 3

Tensor
Decompositions

SECTION 2

Streaming Tucker
Decomposition

SECTION 5

Block-coordinate Descent

CP/PARAFAC Decomposition

Tucker Decomposition

Block-term Decomposition

Tensor-train Decomposition

T-SVD Decomposition

SECTION 6 Other Streaming
Decompositions

Streaming CP
Decomposition

SECTION 4

General Formulation of Optimization

Single-aspect Streaming Model

Multi-aspect Streaming Model

Bayesian Inference

Streaming TT Decomposition

Streaming t-SVD Decomposition

Streaming BTD Decomposition

Multi-aspect streaming methods

Tensor Subspace Tracking

Online Tensor Dictionary Learning

Multi-aspect streaming methods

Figure 5.1: Structure of this chapter.

subspace tracking. Multi-aspect streaming Tucker decomposition algorithms

are then overviewed. In addition, we provide a short survey on other online

techniques for tracking tensors under tensor-train, t-SVD, and BTD formats.

Finally, we discuss a number of important challenges and open problems as

well as highlight potential directions for the problem of tensor tracking in

the future. To the best of our knowledge, our survey offers for the first time

a thorough review of techniques for factorizing tensors in an online fashion.

Fig. 5.1 depicts depicts the organization of the thesis.

5.2 Tensor Decompositions

In this section, we briefly describe the background of the five popular ten-

sor decompositions which have already been deployed to factorize streaming

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 123

tensors in an online fashion. They are CP/PARAFAC, HOSVD/Tucker, BTD,

tensor-train, and t-SVD.

5.2.1 CP/PARAFAC Decomposition

Under the CP format [185], a tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 can be decomposed

into a set of 𝑁 matrices {U(𝑛) }𝑁𝑛=1
sharing the same number of columns as

follows

X
Δ
= J{U(𝑛) }𝑁𝑛=1

K =
𝑟∑︁
𝑖=1

U(1) (:, 𝑖) ◦ U(2) (:, 𝑖) ◦ · · · ◦ U(𝑁) (:, 𝑖), (5.1)

where the so-called tensor factor U(𝑛) is of size 𝐼𝑛 × 𝑟 with 1 ≤ 𝑛 ≤ 𝑁 . The

smallest 𝑟 satisfying (5.1) is referred to as the CP-rank of X.

This decomposition has its advantages and disadvantages. On the one

hand, CP is the best memory-saving format for representing high-order ten-

sors, and hence, it can overcome the curse of dimensionality which particu-

larly limits the order of tensors to be analysed. Under certain conditions, CP

decomposition is essentially unique up to a permutation and scale which is

an useful property in many applications, e.g., to recover exact components or

individuals hidden in the underlying data. However, its main disadvantage is

that finding the true CP-rank 𝑟 is known as an NP-hard problem [195]. Even

though the CP-rank is given in advance, the best rank-𝑟 approximation of a

tensor may not exist [207]. To compute the CP decomposition, one of the

most widely-used approaches is based on the alternating least-squares (ALS)

technique [10].

5.2.2 Tucker Decomposition

Under the Tucker format [15], we can factorize X into a core tensor G of a

smaller size and 𝑁 factors {U(𝑛) }𝑁𝑛=1
as

X
Δ
= JG; {U(𝑛) }𝑁𝑛=1

K = G ×1 U(1) ×2 U(2) ×3 · · · ×𝑁 U(𝑁) , (5.2)

where G is of size 𝑟1 × 𝑟2 × · · · × 𝑟𝑁 with 𝑟𝑛 ≤ 𝐼𝑛 , and U(𝑛) ∈ R𝐼𝑛×𝑟𝑛 is an

orthogonal matrix. The vector r = [𝑟1, 𝑟2, . . . , 𝑟𝑁] is called the multilinear

rank or rank-(𝑟1, 𝑟2, . . . , 𝑟𝑁) of X.

Tucker decomposition is more flexible than CP in the sense that we can

write any tensor X in the form (5.2) and its computation can be done effec-

tively and stably. The two most popular algorithms for computing (5.2) are

HOSVD and Higher-order Orthogonal Iteration (HOOI) [208]. Both HOSVD

and HOOI offer a good rank-(𝑟1, 𝑟2, . . . , 𝑟𝑁) tensor approximation for X and

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 124

they can be efficiently implemented in practice. In general, the Tucker repre-

sentation is not unique but the subspace covering U(𝑛) is physically unique.

Therefore, the main interest in Tucker decomposition is for finding subspaces

of the tensor factors, and hence, for approximation, dimensionality reduction,

and feature extraction [11].

5.2.3 Block-Term Decomposition

Block-term decomposition (BTD) allows to representX as a sumof lowmultilinear-

rank tensors [18]:

X =

𝑅∑︁
𝑖=1

JG𝑖 ; {U
(𝑛)
𝑖
}𝑁𝑛=1

K, (5.3)

where {G𝑟 }𝑅𝑟=1
with G𝑖 ∈ R𝑟1×𝑟2×···×𝑟𝑁

is the set of core tensors, U(𝑛) =[
U(𝑛)

1
, . . . ,U(𝑛)

𝑅

]
withU(𝑛)

𝑖
∈ R𝐼𝑛×𝑟𝑛 is the 𝑛-th tensor factor, and 𝑟𝑛 ≤ 𝐼𝑛 ∀ 𝑖, 𝑛.

The BTD format (5.3) can be considered as a combination of CP and Tucker.

As its name reveals, the basic components in BTD are rank-(𝑟1, 𝑟2, . . . , 𝑟𝑁)
blocks while they are rank-1 terms in CP/PARAFAC and matrix decomposi-

tions. When these blocks are rank-1 tensors (i.e., 𝑟𝑛 = 1 ∀𝑛), it boils down
to CP. When it has only one block (i.e., 𝑅 = 1), BTD becomes the standard

Tucker decomposition. It is worth noting that the number of blocks 𝑅 relies

on the block’s size. Like CP, BTD is essentially unique [18]. The common

approach to find (5.3) is also based on the ALS technique [209].

5.2.4 Tensor-train Decomposition

Tensor-train (TT) decomposition expressesX as amultilinear product of third-

order tensors {G (𝑛) }𝑁𝑛=1
according to

X = G
(1) ×1

1
G
(2) ×1

2
· · · ×1

𝑁 G
(𝑁) , (5.4)

where G
(𝑛) ∈ R𝑟𝑛−1×𝐼𝑛×𝑟𝑛

is the 𝑛-th TT-core (aka tensor carriage) with 𝑛 =

1, 2, . . . , 𝑁 . Here, 𝑟0 = 𝑟𝑁 = 1 and the quantities {𝑟𝑛}𝑁−1

𝑛=1
are called TT-

ranks [16].

This type of TD offers several appealing benefits for representing tensors,

especially high-order tensors. For instance, given an arbitrary tensor X, we

always find a set of TT-cores {G (𝑛) }𝑁𝑛=1
satisfying (5.4) with suitable TT ranks.

Besides, its TT-ranks can be effectively estimated in a stable way in contrast to

the CP-rank determination [195]. Moreover, TT also offers a memory-saving

representation for tensors and can break the curse of dimensionality like CP.

With respect to the implementation, the workhorse algorithm to compute TT

is TT-SVD [16].

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 125

5.2.5 T-SVD Decomposition

Tensor SVD (t-SVD) is another multiway extension of SVD for decomposing

tensors in which X is factorized into three tensors U, G, and V of the same

order:

X = U ∗ G ∗ V𝐻 , (5.5)

where “ ∗ ” denotes the t-product, U and V are unitary tensors, and G is a

rectangle 𝑓 -diagonal tensor whose frontal slices are diagonal matrices [17].

To define the low-rank tensor approximation under the t-SVD format, the so-

called tubal-rank 𝑟t is determined as the number of non-zero tubes in G, (e.g.,

when the tensor X is of order 3, 𝑟t(X) =
∑
𝑖 1[G(𝑖, 𝑖, :) ≠ 0] where 1 is an

indicator function).

The t-SVD algebraic framework is quite different from the classical mul-

tilinear algebra in other types of TD. Thanks to the t-product and Fourier

transform, several linear, multilinear operators and other transformations are

successfully extended from matrices to tensors, such as transpose, orthogo-

nality, and inverse. In particular, t-SVD can be effectively obtained by com-

puting SVDs in Fourier domain and its performance (i.e., exact recovery with

high probability) can be guaranteed under mild conditions [17].

5.3 Tensor Tracking Formulation

In this section, the problem of tensor tracking is formulated. Specifically,

we first divide streaming tensor models into two classes and then construct

some terminologies to support the problem statement. They are single-aspect

and multi-aspect streaming models, see Fig. 5.2 for an illustration. After that,

we formulate a general formulation of the tensor tracking problem which is

suitable for many applications.

5.3.1 Single-aspect Streaming Model

In the classical online setting, we are interested in the decomposition of an

𝑁 -order streaming tensor X𝑡 fixing all but one dimension (mode). Without

loss of generality, we suppose the last dimension is temporal, and hence, we

can write X𝑡 ∈ R𝐼1×···×𝐼𝑁 −1×𝐼𝑡𝑁 where 𝐼 𝑡
𝑁
is increasing with time.

The following definition of temporal slices is useful to formulate the prob-

lem of single-aspect tensor tracking.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 126

t 1t 2t

Single-aspect

Multi-aspect

Figure 5.2: Single-aspect and multi-aspect streaming models.

Definition 1 (Temporal slice) Given a streaming tensor X𝑡 ∈
R𝐼1×···×𝐼𝑁 −1×𝐼𝑡𝑁 , we say Y𝜏 = X𝑡 (:, . . . , :, 𝜏) ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1 is the 𝜏-th
temporal slice of X𝑡 for 1 ≤ 𝜏 ≤ 𝐼 𝑡

𝑁
.

Without loss of generality, we assume that 𝐼 𝑡
𝑁

= 𝑡 meaning that at each

time instant one new slice of the tensor is observed. Accordingly, the stream-

ing tensor X𝑡 can be viewed as a set of temporal slices {Y𝜏 }𝑡𝜏=1
. In other

word, X𝑡 is derived from appending the new comming temporal slice Y𝑡 to

the previous observations X𝑡−1 along the time dimension, i.e.,

X𝑡 = X𝑡−1 ⊞𝑁 Y𝑡 and 𝐼 𝑡𝑁 = 𝐼 𝑡−1

𝑁 + 1 = 𝑡 . (5.6)

Generally, Y𝑡 has the form

Y𝑡 = P𝑡 ⊛
(
L𝑡 + N𝑡 + O𝑡

)
, (5.7)

where “ ⊛ ” denotes the Hadamard product, L𝑡 is a low-rank component, P𝑡

is a binary tensor, N𝑡 is a noise tensor, and O𝑡 is a sparse tensor. The data

model (5.7) is a general form which is suitable for many scenarios. For ex-

ample, P𝑡 represents missing and observed entries of Y𝑡 ; N𝑡 is an additive

white Gaussian noise; and O𝑡 denotes the sparse outliers. Meanwhile, the

low-rank L𝑡 , which can be formulated by CP, Tucker, BTD, TT, or t-SVD for-

mat, can be static or time-varying. Based on these terminologies, the problem

of single-aspect tensor tracking can be formally stated as follows:

Single-aspect Tensor Tracking: At time 𝑡 , given a temporal slice

Y𝑡 and old estimates of X𝑡−1 (e.g., core tensors and tensor factors),
we want to track the new estimates of X𝑡 = X𝑡−1 ⊞𝑁 Y𝑡 in time.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 127

5.3.2 Multi-aspect Streaming Model

In some modern online applications, tensor data may evolve in multiple di-

mensions/modes over time, and thus, the single-aspect streamingmodel is not

useful for modelling such streaming data. In [210], Fanaee-T et al. for the first
time introduced the concept of multi-aspect streaming tensors to represent

streaming data having more than one dimension increasing with time. Since

then, some online algorithms have been developed to deal with the problem

of multi-aspect streaming tensor decomposition.

For convenience, we first introduce the definitions ofmulti-aspect stream-

ing tensors and temporal tubes.

Definition 2 (Multi-aspect streaming tensor) A set of𝑁 -order ten-
sors {X𝑡 }𝑡≥1 is called a multi-aspect streaming tensor sequence denoted
as {X} when X𝑡 ∈ R𝐼

𝑡
1
×𝐼𝑡

2
×···×𝐼𝑡

𝑁 , 𝐼 𝑡𝑛 = 𝐼 𝑡−1

𝑛 +𝑊 𝑡
𝑛 where𝑊 𝑡

𝑛 ≥ 0, 1 ≤ 𝑛 ≤
𝑁 , and X𝑡−1 is a sub-tensor of X𝑡 . If X𝑡 belongs to such a sequence {X},
we say that X𝑡 is a multi-aspect streaming tensor.

Definition 3 (Temporal tube) Given two successive tensors X𝑡−1 and
X𝑡 derived from the same multi-aspect streaming tensor sequence {X},
the coming data stream at time 𝑡 can be represented by Y𝑡 = X𝑡\X𝑡−1

of the same size as X𝑡 with entries

[
Y𝑡

]
𝑖1,...,𝑖𝑁

=

{[
X𝑡

]
𝑖1,...,𝑖𝑁

if 𝐼 𝑡−1

𝑛 < 𝑖𝑛 ≤ 𝐼 𝑡𝑛,
0 otherwise,

(5.8)

for 1 ≤ 𝑛 ≤ 𝑁 . We say that the non-zero entries in Y𝑡 are temporal

tubes.

Now, we can state the problem of multi-aspect tensor tracking as follows:

Multi-aspect Tensor Tracking: At time 𝑡 , given temporal tubes in

Y𝑡 , and old estimates of X𝑡−1 (e.g., core tensors and tensor factors),
we want to track the new estimates of X𝑡 = X𝑡−1 ∪ Y𝑡 in time.

It is worth noting that the single-aspect tensor tracking problem also be-

longs to the class of multi-aspect tensor tracking where most of the tensor

dimensions 𝐼𝑛 are constant by setting𝑊
𝑡
𝑛 = 0, except the last one 𝐼 𝑡

𝑁
. Besides,

temporal slices may be regarded as frontal slices of the tensor Y𝑡 defined as

in (5.8).

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 128

5.3.3 General Formulation of Optimization

We here provide a general formulation of tensor tracking which can be used

in many applications. In particular, the optimization problem can be written

as

argmin

{G},{U},O

[
𝑡∑︁
𝜏=1

𝛽𝜏 ℓ

(
Y𝜏 , P𝜏 , {G}, {U}, O

)
︸ ︷︷ ︸

Minimize residual errors

+ 𝜌𝐺R𝐺
(
{G}

)︸ ︷︷ ︸
Regularize cores

+ 𝜌𝑈R𝑈
(
{U}

)︸ ︷︷ ︸
Regularize factors

+ 𝜌𝑂R𝑂
(
O

)︸ ︷︷ ︸
Promote sparsity

+ 𝜆𝐺L𝐺
(
{G}

)
+ 𝜆𝑈L𝑈

(
{U}

)︸ ︷︷ ︸
Orientate applications

]
. (5.9)

Here, {G} and {U} denote the set of core tensors and tensor factors respec-
tively, while O is to represent data corruptions by impulsive noise or outliers.

Specifically, the three terms in the second line of (6.5) are used to present reg-

ularizations or penalty terms imposed on parameters of interest. The last two

penalty terms of (6.5) are for the application orientation. The main loss func-

tion ℓ (.) is defined to minimize the residual errors between the estimations

and observations.

5.4 Streaming CP Decomposition

The primary objective of this section is to provide technical descriptions of

the-state-of-the-art online techniques for factorizing streaming tensors un-

der the CP format. In the literature, there are many streaming CP algorithms

and they can be categorized into the following groups: (i) subspace-based

methods, (ii) block-coordinate descent methods, (iii) Bayesian inference, and

(iv) multi-aspect streaming CP decompositions. The three former groups are

particularly developed for single-aspect streaming models, while the latter

is dedicated to the factorization of tensors having more than one temporally

varying mode. The readers are referred to Tabs. 5.2 and 5.3 for quick com-

parisons of the existing streaming CP decomposition algorithms. In what

follows, we take each group into consideration.

5.4.1 Subspace-based Methods

The very first study addressing the problem of streaming CP decomposition is

of Nion and Sidiropoulos in [211]. Specifically, the authors introduced the two

novel adaptive CP algorithms called PARAFAC-SDT and PARAFAC-RLS ca-

pable of tracking third-order streaming tensors having one temporal dimen-

sion. Both algorithms are based on the subspace-based approach in which we

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 129

(1)

tU

1[]I r

2[]I r

3 3()[]I d r New Observations

I

(3)

tU

1tX
(2)

tU

(1)

tU


(1)

tU

1[]I r

2[]I r

I

(3)

1tU

(2)

1tU

(1)

1tU



3[]I r
(3)ˆ
tU

1tX

2I

1I

3I

3d



tX

(3)

tU

2I

1I

3I
3I

3d

Figure 5.3: Single-aspect streaming CP decomposition of a third-order ten-

sor.

first track a low-dimensional tensor subspace, and then recover the loading

matrices from exploiting its Khatri-Rao structure. Following the same line,

some other adaptive CP algorithms were proposed for tensor tracking such

as CP-PETRELS [215], 3D-OPAST [212], and SOAP [174]. In the following,

we describe their subspace-based framework for factorizing streaming ten-

sors with time.

First, we recall that the low-rank L𝑡 of Y𝑡 has the form L𝑡 = J{U(𝑛)𝑡 }𝑁−1

𝑛=1
,

u(𝑁)𝑡 K, where u(𝑁)𝑡 is the last row of U(𝑁)𝑡 . Thus, L𝑡 can be recast into the

following form:

ℓ𝑡
Δ
= vec(L𝑡) =

[𝑁−1⊙
𝑛=1

U(𝑛)𝑡

] (
u(𝑁)𝑡

)⊤
= H𝑡

(
u(𝑁)𝑡

)⊤
, (5.10)

where H𝑡 ∈ R𝐼1 ...𝐼𝑁 −1×𝑟
plays a role as a mixing matrix while u(𝑁)𝑡 can be

viewed as a coefficient vector in subspace tracking problems. Accordingly,

streaming CP decomposition can boil down to a constrained problem of sub-

space tracking where the basis matrix has a Khatri-Rao structure.

Particularly for 𝑁 = 3, the authors in [174,211,212,215] proposed to solve

the following objective function:{
U(𝑛)𝑡

}
3

𝑛=1
= argmin

{U(𝑛) }3
𝑛=1

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

p𝜏 ⊛ (

y𝜏 − H
(
u(3)𝜏

)⊤)

2

2

subject to H = U(1) ⊙ U(2) , (5.11)

where y𝜏 = vec(Y𝜏), p𝜏 = vec(P𝜏), and u𝜏 is the 𝜏-th row of the temporal

factor U(3)𝑡 , and 𝛽 is a forgetting factor aimed at discounting the impact of

distant observations. Specifically, (5.11) can be effectively solved by applying

the following procedure:

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 130

Table 5.2: Main features of the state-of-the-art single-aspect streaming CP

decomposition algorithms.

Algorithm

Missing

Data?

Sparse

Outliers?

High-order Convergence Warm Computational
Other Information(𝑁 ≥ 4)? Guarantee? Start? Complexity

PARAFAC-
✗ ✗ ✗ ✗ ✓ O

(
𝑟2𝐼2

) - Subspace-based
RLST/SDT [211] - Tracking using RLST/SDT

3D-OPAST [212] ✗ ✗ ✗ ✗ ✓ O
(
𝑟𝐼2

) - Subspace-based
- Tracking using OPAST

TeCPSGD [106] ✓ ✗ ✗ ✗ random O
(
𝑟2 |Ω |

)
- BCD + SGD

OLCP [175] ✗ ✗ ✓ ✗ ✓ O
(
𝑟2𝐼𝑁−1

)
- BCD + SGD

SOAP [174] ✗ ✗ ✗ ✗ ✓ O
(
𝑟𝐼2

) - Subspace-based + Second-
order estimation

- Supports nonnegativity

CP-NLS [213] ✗ ✗ ✗ ✗ ✓ O(𝑟2𝐼2) - Nonlinear least-squares

BRST [214] ✓ ✓ ✓ ✗ ✓ unavailable - Variational Bayesian

CP-PETRELS
✓ ✗ ✗ ✗ ✓ O

(
𝑟2 |Ω |

) - Subspace-based
[215] - Tracking using PETRELS

CP-stream [216] ✗ ✗ ✓ ✗ random O
(
𝑟2𝐼𝑁−1

) - ADMM + tuning-free
- Supports sparsity

POST [217] ✓ ✗ ✓ ✗ ✓ O
(
𝑟3𝑁𝐼𝑁−1

)
- Variational Bayesian

OLSTEC [176] ✓ ✗ ✗ ✓ random O
(
𝑟2𝐼2

)
- BCD + RLS

iPARAFAC
✗ ✗ ✗ ✗ ✓

O
(
𝑟2 |S|

)
- Apache Spark𝑎

[218] |S| : size of
the selected set - Randomized MTTKRP

TensorNOODL
✗ ✗ ✗ ✓ ✓ O(𝑟2𝐼2) - Online dictionary learning

[219] - Supports sparsity

SPADE [220] ✗ ✗ ✓ ✗ ✓ O(𝑟3𝐼𝑁−1) - Streaming PARAFAC2𝑏

SliceNStitch
✗ ✗ ✓ ✗ random

O
(
𝑟𝑁 |S| + (𝑟𝑁)2
+𝑁𝑟3

)
with |S| :

number of non-zeros
- Sparse decomposition[221]

SOFIA [222] ✓ ✓ ✓ ✗ ✓ O
(
𝑟3𝐼𝑁−1

) - Holt-Winters fitting𝑐
- Supports seasonality

STF [223] ✓ ✗ ✓ ✗ ✓
O

(
(𝑁 + 𝑟)𝑁𝑟 |Ω |
+𝑁𝐼𝑟3

) - BCD + SGD

ACP [30,33] ✓ ✗ ✓ ✓ random O
(
𝑟2 |S|

)
with |S| : size - Random sampling

of the selected set - BCD + RLS

RACP [27] ✓ ✓ ✓ ✓ random O
(
𝑟2𝐼𝑁−1

) - ADMM + RLS
- ℓ1-norm penalty

Online CPDL
✗ ✗ ✓ ✓ ✓ O

(
𝑟2𝐼𝑁−1

) - Nonnegative decomposition

[224] - Markovian data
- Online dictionary learning

★ Suppose that 𝐼1 = 𝐼2 = · · · = 𝐼𝑁 = 𝐼 , 𝑟𝐶𝑃 = 𝑟 , and |Ω | is the number of observed elements.
Abbreviations: RLS (recursive least-squares), SDT (simultaneous diagonalization tracking), BCD (block-coordinate descent), ADMM (al-
ternating direction method of multipliers), SGD (stochastic gradient descent), and MTTKRP (matricized-tensor times Khatri-Rao product).
𝑎 Apache Spark is a unified data analytics framework that supports distributed storage and large-scale processing: https://spark.apache.org/.
𝑏 PARAFAC2 is a flexible variant of CP [225]. While the classical CP model requires the tensor factors to be the same for all tensor slices,
PARAFAC2 only requires their cross product to be the same and these factors can be different in size slice by slice.
𝑐 Holt-Winters is an effective time series forecasting procedure [226].

■ Stage 1: Estimate H𝑡 and u(3)𝑡 , given old estimates of U(1)
𝑡−1

and U(2)
𝑡−1

;

■ Stage 2: Find U(1)𝑡 , U(2)𝑡 satisfying H𝑡 ≃ U(1)𝑡 ⊙U
(2)
𝑡 , and then re-update

H𝑡 ← U(1)𝑡 ⊙ U(2)𝑡 ;

■ Stage 3: Update U(3)𝑡 =

[(
U(3)
𝑡−1

)⊤ (u(3)𝑡)⊤]⊤
where u(3)𝑡 can be estimated

as in Step 1 (optional).

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 131

In stage 1, the authors in [211] proposed two solvers for estimatingH𝑡 and
u𝑡 , including recursive least-squares (RLS) and simultaneous diagonalization

tracking (SDT). Chinh et al. in [215] adopted a well-known subspace tracking

algorithm called PETRELS. Dung et al. in [212] applied another subspace

tracking algorithm for this task, namely OPAST. In [174], the same authors

also introduced another low-cost tracker to estimate H𝑡 with rank-1 updates.

In stage 2, all the existing subspace-based algorithms used the bi-SVD

procedure introduced in [227] to recover U(1)𝑡 and U(2)𝑡 from H𝑡 . Particularly,
we can represent each column of H𝑡 as H𝑡 (:, 𝑖) = vec

(
U(1)𝑡 (:, 𝑖) (U

(2)
𝑡 (:, 𝑖))⊤

)
.

Accordingly, the right and left singular vector of the reshaped matrix from

H𝑡 (:, 𝑖) can provide a good estimate of U(1)𝑡 (:, 𝑖) and U(2)𝑡 (:, 𝑖), respectively,

■
[
b𝑖 , 𝜆𝑖 , a𝑖

]
← SVD

(
reshape(H𝑡 (:, 𝑖), [𝐼2 𝐼1])

)
■ U(1)𝑡 (:, 𝑖)← a∗𝑖 and U(2)𝑡 (:, 𝑖) ← 𝜆𝑖b𝑖

Computation of SVDmay be expensive when dealingwith large-scale stream-

ing tensors, we can use the alternative update based on power iteration as

follows

■ H(𝑖)𝑡 ← reshape
(
H𝑡 (:, 𝑖), [𝐽 × 𝐼]

)
■ U(1)𝑡 (:, 𝑖) ←

(
H(𝑖)𝑡

)⊤U(2)
𝑡−1
(:, 𝑖)

■ U(2)𝑡 (:, 𝑖) ←
H(𝑖)𝑡 U(1)𝑡 (:, 𝑖)

H(𝑖)𝑡 U(1)𝑡 (:, 𝑖)

 .
As these algorithms are only designed for tracking third-order streaming ten-

sors, there are still rooms to develop subspace-based methods capable of han-

dling 𝑁 ≥ 4.

5.4.2 Block-Coordinate Descent

The second approach is based on the block-coordinate descent (BCD) frame-

work in which we decompose the main optimization into two main stages

at each time 𝑡 : (i) estimate the temporal factor U(𝑁)𝑡 given {U(𝑛)
𝑡−1
}𝑁−1

𝑛=1
, and

(ii) update the non-temporal factor U(𝑛)𝑡 with 1 ≤ 𝑛 ≤ 𝑁 − 1 in sequential

or parallel given U(𝑁)𝑡 and the remaining factors. Many tracking algorithms

adopt this approach for estimating the low-rank approximation of streaming

tensors over time in the literature. We can list here some: TeCPSGD [106],

OLCP [175], OLSTEC [176], CP-stream [216], SPADE [220], SOFIA [222],

iCP-AM [228], ACP [30], and RACP [27]. In what follows, we review their

strategy in each stage.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 132

In stage 1, the general formulation of the optimization to estimate the last

row u(𝑁)𝑡 of U(𝑁)𝑡 can be given by{
u(𝑁)𝑡 , O𝑡

}
= argmin

u(𝑁) ,O

P𝑡 ⊛
(
Y𝑡 − O −

r{
U(𝑛)
𝑡−1

}𝑁−1

𝑛=1
, u(𝑁)

z)

2

𝐹

+ 𝜌𝑢

u(𝑁)

2

2
+ 𝜌𝑂

O

1
, (5.12)

where 𝜌𝑢 ∥u∥22 is for avoiding the ill-posed computation and 𝜌𝑂 ∥O∥1 pro-

motes the sparsity in O. Then, the temporal factor U(𝑁)𝑡 is obtained by ap-

pending the recent updated u(𝑁)𝑡 to the old estimate U(𝑁)
𝑡−1

. Most of the ex-

isting BCD-based tracking algorithms suppose that observations are outlier-

free (i.e., without O), and hence, they apply the regularized/randomized least-

squaresmethods for solving (5.12). In the presence of sparse outliers, (5.12) can

be effectivelyminimized byADMMor shrinkage-thresholding solvers, as pre-

sented in SOFIA [222] and RACP [27].

In stage 2, the non-temporal factors {U(𝑛)𝑡 }𝑁−1

𝑛=1
can be derived from solv-

ing the following optimization

argmin

U(𝑛)

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P(𝑛)𝜏

⊛
(
U(𝑛)

(
W(𝑛)𝜏

)⊤ + O(𝑛)
𝜏
− Y(𝑛)

𝜏

)

2

𝐹
+ 𝜌𝑈R𝑈

(
U(𝑛)

)
,

(5.13)

where 𝜌𝑈R𝑈 (.) is a regularization term on U(𝑛) and

W(𝑛)𝜏 =



(𝑁−1⊙
𝑖=1,𝑖≠𝑛

U(𝑖)
𝑡−1

)
⊙ u⊤𝜏 [Jacobi],(𝑛−1⊙

𝑖=1

U(𝑖)𝑡

)
⊙

(𝑁−1⊙
𝑖=𝑛+1

U(𝑖)
𝑡−1

)
⊙ u⊤𝜏 [Gauss-Seidel] .

(5.14)

Here, we can apply one of the two iterative schemes to updateU(𝑛)𝑡 : the Jacobi

scheme supports the parallel and/or distributed processing while the Gauss-

Seidel scheme is useful for a sequential (serial) one. The regularization can be

∥U(𝑛) ∥2
𝐹
for smoothness, ∥U(𝑛) −U(𝑛)

𝑡−1
∥2
𝐹
for slow time-variation, or U(𝑛) ⪰ 0

for non-negativity constraints. Next, we review two common types of solver

for optimizing (5.13): adaptive least-squares filters and stochastic gradient

solvers.

a) Adaptive Least-Squares (LS) Filters. We can see that the first term

of (5.13) is of a weighted LS form very common in adaptive filtering while the

second one is to regularize the estimators. Accordingly, (5.13) can be effec-

tively minimized by adaptive LS filters in general and recursive least-squares

(RLS) filters in particular.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 133

In [176], Kasai proposed an exponential RLS algorithm called OLSTEC to

minimize (5.13) when the observations are outlier-free. OLSTEC is, however,

designed for third-order streaming tensors only and its complexities are rel-

atively high compared to other algorithms. Thanh et al. in [30] proposed an-

other RLS algorithm called ACP which is capable of dealing with big stream-

ing tensors of higher order (𝑁 ≥ 4). ACP is fast and requires much lower

complexity than OLSTEC. Very recently, the same authors in [27] proposed

a sliding-window version of ACP robust to both sparse outliers and miss-

ing data, namely RACP. Interestingly, three algorithms belong to the class

of provable online CP algorithms in which their convergence is guaranteed

under certain conditions.

In [213], Vandecappelle et al. introduced a nonlinear least-squares (NLS)

algorithm for computing the streaming CP decomposition of third-order ten-

sors. In particular, the authors recast the objective function of (5.13) into

a truncated exponential window one by incorporating a diagonal weighting

matrix L = diag
(
[0, . . . , 0, 𝛽𝐿−1, 𝛽𝐿−2, . . . , 𝛽, 1]

)
and then applied aNLS solver

to track the tensor factors with time. Following the same line, Smith et al.
in [216] proposed another online CP algorithm called CP-stream. This algo-

rithm has the potential to factorize high-order streaming tensors as well as

support constraints on streaming CP decomposition such as smoothness and

nonnegativity.

b) Stochastic Gradient Solvers. Instead of optimizing (5.13) directly, we

can minimize its 𝑡-th summand:

U(𝑛)𝑡 = argmin

U(𝑛)

P(𝑛)𝑡 ⊛
(
Y(𝑛)𝑡 − O

(𝑛)
𝑡 − U(𝑛)

(
W(𝑛)𝑡

)⊤)

2

𝐹
+ 𝜌𝑈R𝑈

(
U(𝑛)

)
.

(5.15)

Three algorithms TeCPSGD [106], OLCP [175], and SOFIA [222] adopt this

replacement for tracking tensor factors with time. Themain difference among

them is the type of R𝑈 (.). Besides, they obtain different forms of update:

[SOFIA] : U(𝑛)𝑡 = U(𝑛)
𝑡−1
+ 𝛾𝑡𝚫U(𝑛)𝑡 , (5.16)

[TeCPSGD] : U(𝑛)𝑡 =

(
1 − 𝛽𝑡

𝑡𝜂𝑡

)
U(𝑛)
𝑡−1
+ 1

𝜂𝑡
ΔU(𝑛)𝑡 , (5.17)

[OLCP] : U(𝑛)𝑡 = P(𝑛)𝑡

(
Q(𝑛)𝑡

)−1

with (5.18)

P(𝑛)𝑡 = P(𝑛)
𝑡−1
+ ΔP(𝑛)𝑡 and

Q(𝑛)𝑡 = Q(𝑛)
𝑡−1
+ ΔQ(𝑛)𝑡 .

Here, 𝛾𝑡 , 𝜂𝑡 , ΔU
(𝑛)
𝑡 , ΔP(𝑛)𝑡 , and ΔQ(𝑛)𝑡 can be obtained from

{
U(𝑚)
𝑡−1

}𝑁−1

𝑚=1
and

the error 𝚫Y𝑡 = P𝑡 ⊛
(
Y𝑡 − O𝑡 − J{U(𝑛)

𝑡−1
}𝑁−1

𝑛=1
, u(𝑁)𝑡 K

)
. It is worth noting

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 134

that SOFIA is capable of dealing with sparse corruptions. TeCPSGD has the

ability to track tensors from missing observations, while OLCP can handle

streaming tensors of order greater than 3.

In [228], Zeng et al. proposed an incremental ALS algorithm called iCP-

AM to minimize a reinforced version of (5.15) which is defined as

U(𝑛)𝑡 = argmin

U(𝑛)

 [
Y(𝑛)𝑡 U(𝑛)

𝑡−1

(
U(𝑁)
𝑡−1
⊙ V(𝑛)

𝑡−1

)⊤]
− U(𝑛)

([
u(𝑁)𝑡

Ū(𝑛)𝑡

]
⊙ V(𝑛)𝑡

)⊤

2

𝐹

,

(5.19)

where V(𝑛)𝜏 =
(⊙𝑛−1

𝑖=1
U(𝑖)𝜏

)
⊙

(⊙𝑁−1

𝑖=𝑛+1 U
(𝑖)
𝜏

)
. An appealing feature of iCP-AM

against other online CP algorithms is that it has a strategy to deal with the

variation of the CP rank over time, i.e., to change the number of low-rank

components throughout the tracking process.

In parallel, Gujral et al. in [220] proposed an online algorithm called

SPADE for tracking tensors under the PARAFAC2 format. Specifically, SPADE

tracks a fixed (non-temporal) factor along one mode and allows the other ten-

sor factors (modes) to vary with time. Thanks to its stochastic design, SPADE

is fast and memory-efficient. However, the stationary assumption that time

variation or concept drift is not allowed limits its applicability.

5.4.3 Bayesian Inference

Besides, another good approach for dealing with the problem of streaming

CP decomposition is Bayesian inference. The state-of-the-art Bayesian-based

streaming CP decomposition algorithms are POST [217], BRST [214], and

SBDT [229]. In general, three algorithms start with a prior distribution of

unknown parameters and then infer a posterior that best approximates the

joint distribution of these parameters on the arrival of new streaming data.

The estimated posterior is then used as the prior for the next update. In this

subsection, we briefly describe the two online Bayesian inference frameworks

which were already used for tensor tracking: (i) streaming variational Bayes

(SVB) and (ii) assumed-density filtering (ADF). Also, prior distributions of pa-

rameters of interest are reviewed.

a) Streaming variational Bayes. The two former algorithms POST and

BRST adopted the SVB framework [230] which is based on the following

Bayes’ rule:

𝑝
(
𝚯

��X𝑡−1 ⊞𝑁 Y𝑡

)
� 𝑝

(
Y𝑡

��
𝚯

)
𝑝
(
𝚯

��X𝑡−1

)
, (5.20)

where𝚯 denotes the parameters of interest, e.g., tensor factors, CP rank, noise

factors, and other parameters. On the arrival of Y𝑡 , SVB first uses the current

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 135

posterior 𝑞𝑡−1(𝚯) := 𝑝
(
𝚯|X𝑡−1

)
as the prior of 𝚯, and then integrates with

the likelihood of Y𝑡 to obtain

𝑝𝑡 (𝚯) = 𝑝
(
Y𝑡

��
𝚯

)
𝑞𝑡−1(𝚯), (5.21)

which can be served as an approximation of the joint distribution 𝑝 (𝚯, Y𝑡) up
to a scale factor. The variational posterior 𝑞𝑡 (𝚯) is derived from maximizing

the variational model evidence lower bound (ELBO)

L(𝑞(𝚯)) = E𝑞
[

log

(
𝑝𝑡 (𝚯)/𝑞(𝚯)

)]
(5.22)

which is equivalent to minimizing the Kullback-Leibler (KL) divergence:

argmin

𝑞

[
KL

(
𝑞(𝚯)

𝑝𝑡 (𝚯)) = ∫
𝑞(𝚯) log

{
𝑞(𝚯)
𝑝𝑡 (𝚯)

}
𝑑𝚯

]
. (5.23)

The optimized form of 𝑞𝑡 (𝚯𝑖) of (5.23) can be given by

log𝑞𝑡 (𝚯𝑖) = E𝑞 (𝚯/𝚯𝑖)
[

log𝑝𝑡 (𝚯)
]
+ const, (5.24)

where E𝑞 (𝚯/𝚯𝑖) [.] is an expectation w.r.t. 𝑞 over all but 𝚯𝑖 .

b) Assumed-Density Filtering. The latter algorithm, SBDT, applied the

ADF framework to infer the posterior distribution 𝑞𝑡 (𝚯) over time. Par-

ticularly, ADF is an incremental learning framework that allows for com-

puting the approximate posteriors in Bayesian inference for stochastic pro-

cesses [231]. The ADF framework is also grounded on the Bayes’ rule (5.20)

but utilizes a distribution from the exponential family (e.g., Gaussian distri-

bution) to approximate the current posterior. Instead of minimizing the KL

divergence or maximizing the variational ELBO like SVB, ADF projects 𝑝𝑡 (𝚯)
into the selected distribution through moment matching to obtain 𝑞𝑡 (𝚯).

c) Prior distributions over 𝚯.We list common prior distributions over𝚯

which were already used by POST, BRST, and SBDT.

Prior distribution of tensor factors: All three algorithms assume that the

prior over tensor factors is derived from the following Gaussian distribution

which is controlled by the hyperparameter 𝝀 = [𝜆1, 𝜆2, . . . , 𝜆𝑟]:

𝑝
(
U(𝑛)

��𝝀)
=

𝐼𝑛∏
𝑖=1

N
(
u(𝑛)
𝑖

��0,𝚲−1
)
,∀𝑛 ∈ [1, 𝑁], (5.25)

where u(𝑛)
𝑖

is the 𝑖-th row of U(𝑛) and 𝚲 = diag(𝝀) denotes the inverse

covariance matrix. Here, 𝝀 is supposed to follow a Gamma distribution:

𝑝 (𝝀) =
𝑟∏
𝑗=1

Gam

(
𝜆 𝑗 |𝑐 𝑗 , 𝑑 𝑗

)
, (5.26)

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 136

where Gam

(
𝜆 𝑗 |𝑐 𝑗 , 𝑑 𝑗

)
=

𝑑 𝑗
𝑐 𝑗

Γ (𝑐 𝑗) 𝜆 𝑗
𝑐 𝑗−1𝑒−𝑑 𝑗𝜆 𝑗 with Γ(𝑧) =

∫ ∞
0
𝑥𝑧−1𝑒−𝑥𝑑𝑥 . Specif-

ically, the mean and variance of Gam(𝜆 𝑗 |𝑐 𝑗 , 𝑑 𝑗) are, respectively, 𝑐 𝑗/𝑑 𝑗 and
𝑐 𝑗/𝑑2

𝑗 which aim to control the magnitude of 𝝀.
Prior distribution of noises: The noise tensor is often assumed to be Gaus-

sian, i.e., N𝑡 ∼
∏
𝑖1𝑖2 ...𝑖𝑁

N(0, 𝜏−1) with a noise precision 𝜏 > 0. The parame-

ter𝜏 is further assigned to another Gamma distribution 𝑝 (𝜏 |𝑎, 𝑏) = Gam

(
𝜏 |𝑎, 𝑏

)
in the same way as for 𝝀.

Prior distribution of sparse components: Only BRST in [214] has the ability

to handle sparse outliers. Here, BRST places a Gaussian prior distribution

over the sparse O𝑡 as

𝑝
(
O𝑡

��𝜸)
=

𝐼1∏
𝑖1

𝐼2∏
𝑖2

· · ·
𝐼𝑁∏
𝑖𝑁

N
([
O𝑡

]
𝑖1𝑖2 ...𝑖𝑁

���0, 𝛾−1

𝑖1𝑖2 ...𝑖𝑁

) [P𝑡]𝑖
1
𝑖
2
...𝑖𝑁

. (5.27)

where𝜸 is the sparsity precision parameter. If the value of 𝛾𝑖1 ...𝑖𝑁 is large, the

corresponding entry in O𝑡 is likely to have a small magnitude. By controlling

the value of 𝛾𝑖1 ...𝑖𝑁 , we can control the sparsity of O𝑡 .

Prior distribution of NN’s weights: SBDT in [229] incorporates neural net-

works (NN) into tensor factorization. SBDT assigns a spike-and-slab prior

distribution over NN weights to sparsify the network. Each weight 𝜔𝑚𝑗𝑡 =

[W𝑚] 𝑗𝑡 of NN is particularly sampled from

𝑝
(
𝜔𝑚𝑗𝑡 |𝑠𝑚𝑗𝑡

)
= 𝑠𝑚𝑗𝑡N

(
𝜔𝑚𝑗𝑡 |0, 𝜎2

0

)
+ (1 − 𝑠𝑚𝑗𝑡)𝛿 (𝜔𝑚𝑗𝑡), (5.28)

where 𝛿 (.) denotes the delta function and the binary selection indicator 𝑠𝑚𝑗𝑡
is derived from 𝑝 (𝑠𝑚𝑗𝑡) = Bern(𝑠𝑚𝑗𝑡 |𝜌0) = 𝜌

𝑠𝑚𝑗𝑡

0
(1 − 𝜌0)1−𝑠𝑚𝑗𝑡

.

5.4.4 Multi-aspect streaming CP decomposition

In the literature, there are some online algorithms capable of tracking multi-

aspect streaming tensors under the CP format, such as MAST [232], OR-

MSTC [233], InParTen2 [234], and DisMASTD [235]. We refer the readers to

Tab. 5.3 for their key features. In what follows, we first describe the main dy-

namic tensor decomposition (DTD) framework shared by most of these algo-

rithms and then highlight their characteristics in the following text. For ease

of reference, we denote by X𝑡−1 ∈ R𝐼1×···×𝐼𝑁 and X𝑡 ∈ R(𝐼1+𝑑1)×···× (𝐼𝑁 +𝑑𝑁)

the two successive snapshots at 𝑡 − 1 and 𝑡 , please see Fig. 5.4 for an illustra-

tion. At time 𝑡 , given X𝑡 and the old estimates {U(𝑛)
𝑡−1
}𝑁𝑛=1

of X𝑡−1, we wish to

update {U(𝑛)𝑡 }𝑁𝑛=1
such that X𝑡 ≈ J{U(𝑛)𝑡 }𝑁𝑛=1

K.
The DTD introduced in [232] offers an online framework for the problem

of multi-aspect streaming CP decomposition. Particularly, DTD relaxes the

CP representation of X𝑡 in the sense that if X𝑡 is expressed by J{U(𝑛)𝑡 }𝑁𝑛=1
K,

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 137



(3)

tU

(2)

tU
(1)

tU

1d
1 1()[]I d r 

(1)ˆ
tU

(2)ˆ
tU

(3
)

ˆ tU

2 2()[]I d r 

2I 2d

3I

3d

3 3()[]I d r 

1I
(1)

tU

(2)

tU

(3
)

tU

1tX

New Observations

1I

1d



3I


3d

2I 2d

I







Figure 5.4: Multi-aspect streaming CP decomposition of a third-order tensor.

then its sub-tensor X𝑡−1 can be approximated by J{Ū(𝑛)𝑡 }𝑁𝑛=1
K where Ū(𝑛)𝑡 ∈

R𝐼𝑛×𝑟 is the sub-matrix of U(𝑛)𝑡 ∈ R(𝐼𝑛+𝑑)×𝑟 . Accordingly, DTD enables us to

divide X𝑡 into two parts X𝑡−1 and Y𝑡 = X𝑡\X𝑡−1 in order to take advantages

of old estimates. We can first update Ū(𝑛)𝑡 incrementally from U(𝑛)
𝑡−1

with a low

cost and then estimate the remaining part Û(𝑛)𝑡 ∈ R𝑑×𝑟 of U(𝑛)𝑡 . The tensor

factors are particularly derived from{
U(𝑛)𝑡

}𝑁
𝑛=1

= argmin

{U(𝑛) }𝑁
𝑛=1

ℓ

(
Y𝑡 ,

{
U(𝑛)

}𝑁
𝑛=1

)
+ 𝜌

(𝑁∑︁
𝑛=1

U(𝑛)

∗), (5.29)

where the loss function ℓ (.) is defined as

ℓ

(
Y𝑡 ,

{
U(𝑛)

}𝑁
𝑛=1

)
= 𝜇

J{U(𝑛)𝑡−1
}𝑁𝑛=1

K − J{Ū(𝑛) }𝑁𝑛=1
K

2

𝐹

+

PΩ𝑡

(
Y𝑡

)
− PΩ𝑡

(
J{U(𝑛) }𝑁𝑛=1

K
)

2

𝐹
. (5.30)

Here, Ω𝑡 denotes the set of observed entries and 𝜇, 𝜌 > 0 are two regularized

parameters. Depending on the type of constraints, additional information

imposed and the method of optimization, we can obtain several types of esti-

mators for tracking multi-aspect streaming tensors with time under the DTD

framework.

In [232], Song et al. developed the so-called MAST algorithm for tracking

multi-aspect streaming tensors. The authors recast (5.29) into a constrained

minimization and then formed the following Lagrangian function

L
(
Y𝑡 ,𝚯

)
=

𝑁∑︁
𝑛=1

(
𝜌

Z(𝑛)

∗ + 〈

𝚲
(𝑛) ,Z(𝑛) − U(𝑛)

〉
+ 𝜂

2

Z(𝑛) − U(𝑛)

2

𝐹

)
+ ℓ

(
Y𝑡 ,

{
U(𝑛)

}𝑁
𝑛=1

)
, (5.31)

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 138

Table 5.3: Main features of multi-aspect streaming CP decomposition algo-

rithms.

Algorithm MAST OR-MSTC InParTen2 DisMASTD
(2017 [232]) (2019 [233]) (2020 [234]) (2021 [235])

Missing? ✓ ✓ ✗ ✗

Outliers? ✗ ✓ ✗ ✗

High-order?
(𝑁 ≥ 4)

✓ ✓ ✗ ✓

Distributed? ✗ ✗ ✓ ✓

where 𝚯 = {U(𝑛) ,Z(𝑛) ,𝚲(𝑛) }𝑁𝑛=1
with auxiliary matrices {Z(𝑛) }𝑁𝑛=1

and La-

grange multiplier matrices {𝚲(𝑛) }𝑁𝑛=1
, and 𝜂 > 0 is a regularization parameter.

Since terms of (5.31) are all convex, it can be effectively minimized by several

methods. In particular, MAST applies an ADMM solver to minimize (5.31) in

order to balance the trade-off between effectiveness and efficiency in tracking

process.

Since MAST is not designed for handling sparse outliers, Najafi et al.
in [233] introduced a robust version of MAST called OR-MSTC. In the pres-

ence of sparse outliers, the authors proposed to regularize the objective func-

tion of (5.29) by adding an ℓ1-norm regularization term 𝜆∥O∥1 and replacing

Y𝑡 with Y𝑡 − O in the first term of ℓ (.) in (5.31). Because the term 𝜆∥O∥1
is convex, OR-MSTC also adopts the well-known ADMMmethod in a similar

way to MAST.

In [234], Yang et al. proposed a distributed version of MAST called In-

ParTen2. Thanks to Apache Spark, it can handle large-scale streaming tensors

efficiently with a limited memory. However, the use of InParTen2 is limited

for third-order streaming tensors only. In [235], Yang et al. introduced an-

other distributed method called DisMASTD capable of dealing with tensors

of higher order. One of appealing feature of DisMASTD is that it can avoid

repetitive computation and reduce network communication cost.

5.5 Streaming Tucker Decomposition

In the literature, there are many online tensor methods proposed for factor-

izing streaming tensors. We can broadly categorize them into three main

classes: (i) online tensor dictionary learning, (ii) tensor subspace tracking, and

(iii) multi-aspect streaming Tucker decomposition. Specifically, the first two

classes are designed for two specific cases of single-aspect streaming Tucker

decompositions, while the latter class is for multi-aspect streaming tensors.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 139

Table 5.4: Main features of the state-of-the-art streaming Tucker decompo-

sition algorithms.

Algorithm

Missing Sparse High-order Convergence Computational

Additional Information

Data? Outliers? (𝑁 ≥ 4)? Guarantee? Complexity

STA [236,237] ✗ ✗ ✓ ✗ O
(
(𝑁 − 1)𝑟𝐼𝑁−1

)
- Subspace tracking + deflation

IRTSA [238,239] ✗ ✗ ✗ ✗ O
(
3𝑟𝐼3

)
(with 𝑁 = 3) - ISVD-based tracking

ITF [240] ✗ ✗ ✗ ✗ O
(
3𝑟𝐼3

)
(with 𝑁 = 3) - ISVD-based tracking

IHOSVD [241] ✗ ✗ ✓ ✗ O
(
𝑁𝑟2𝐼𝑁

)
- Adopts recursive matrix SVD

ALTO [242] ✗ ✗ ✗ ✓

O
(
3(𝑟 + 𝑘)6𝐼3

)
- Adds noise perturbation

𝑘: random columns - Uses tensor sequential mapping

LRUT [243] ✗ ✗ ✓ ✗
O

(
𝑁 (𝑟 + 𝑘)2𝑁 𝐼𝑁

)
- Adds noise perturbation

𝑘: random columns - Supports parallel computing

Riemannian-
✓ ✗ ✗ ✗ unavailable

- Computes SGD on Riemannian
Tucker [244] manifold

HO-RLSL [245] ✗ ✓ ✓ ✗ 3𝐼2O
(
𝐼3

)
- For 𝑁 = 4 only

IHOSVD [246] ✗ ✗ ✓ ✗
O

(
𝑁 (𝐼/𝑑)2(𝑁−1)) - Supports distributed computing

𝑑: number of cores - Adopts RoundRobin process +
columnwise Jacobi-rotation

MIHOSVD
[247]

✗ ✗ ✓ ✗
O

(
𝑁 (𝐼/𝑑)2(𝑁−1)) - Supports distributed computing

𝑑: number of cores - Adopts tree-based integration +
columnwise Jacobi-rotation

SIITA [248] ✓ ✗ ✓ ✗

O
(
𝐾 (𝑟𝑁 |Ω | + 𝑁𝐼𝑀𝑟)

)
- Multi-aspect streaming method

𝐾 : iterations, 𝑀: number of - Supports side information +
columns of side matrices nonnegativity + sparsity

eOTD [249] ✗ ✗ ✓ ✗

O
(
𝑟𝑑2(𝑚−1) 𝐼2(𝑁−𝑚)

)
- Multi-aspect streaming method

𝑑,𝑚: number of coming
temporal slices & modes

- Adopts SGD + MGS + block
tensor matrix multiplications

OTL [250] ✗ ✗ ✓ ✓
O

(
𝑑 (𝑁 − 1) (𝐼𝑟2)𝑁−1

) - Promotes sparse coding
𝑑: dimensionality of new

coming tensor
- Supports nonnegativity +
orthogonality

Singleshot
[251]

✗ ✗ ✓ ✓

O
(
𝑑𝑁𝑟𝑁 𝐼𝑁−1 + 𝑁𝑟2𝑁

)
- Uses tensor sketching

𝑑: dimensionality of new
coming tensor

- Supports multiple coming
temporal slices + nonnegativity

TTMTS [252] ✗ ✗ ✓ ✓

O
(
(𝑁𝑘 + 𝑑)𝐼𝑁

)
- Uses tensor random projection

𝑑 = (𝑠 (1 − (𝑠/𝐼)𝑁)/(1 − 𝑠/𝐼) - Supports one/two-pass
𝑘, 𝑠: parameters of projection approximations

SNBTD [253] ✗ ✗ ✓ ✓

O
(
𝐼𝑁−1 (𝑁𝐼𝑟 +𝑀𝑅 + 4𝑀2)

)
- Nonlinear decomposition with

𝑀: number of pseudo inputs𝑎 Fourier features
𝑅: size of the pseudo input - Uses Bayesian inference + ADF

D-L1-Tucker
[254]

✗ ✓ ✓ ✗
O

(
𝐾 (𝑟𝐼𝑁−1 + 𝐼2𝑟𝑁−1)

)
- Applies threshold-based outlier

𝐾 : iterations detection + L1-HOOI

BASS-Tucker
✗ ✗ ✓ ✗

O
(
𝑟3(𝑁−1) + (𝐼𝑟)𝑁−1

+𝑁𝑟3𝐼𝑁−1
) - Sparse decomposition

[255] - Uses Bayesian inference + ADF

SBDT [229] ✗ ✗ ✓ ✗
O

(
𝑁𝐼𝑟 + 𝐾𝐼𝑁−1

)
- Uses Bayesian inference + ADF

𝐾 : number of weights in NNs - Incorporates NNs

Zoom-Tucker
✗ ✗ ✓ ✗

O
(
𝐾𝐵𝑁𝑟𝐼𝑁−1 + 𝐾𝑁 2𝑟𝑁+1

+𝐾𝑁 2𝑟2𝐼)
)

𝐾 : iterations & 𝐵 : blocks

- Supports multiple coming

[256] temporal slices
- Requires a preprocessing phase

RI/BK-NTD
✗ ✗ ✓ ✗

O
(
𝐾𝑁 (𝐼𝑟)𝑁

)
- Nonnegative decomposition

[257] 𝐾 : iterations - Uses NNLS + BCD

ATD [30] ✓ ✗ ✓ ✓

O
(
𝑟 |Ω | + 𝑟2𝑁 |S1 | + 𝑟2 |S2 |
+𝑟2𝐼𝑁−2

)
with |S1 |, |S2 | :

size of sampling sets

- Uses BCD + Sampling
- Supports parallel computing

★ Suppose that 𝐼1 = 𝐼2 = · · · = 𝐼𝑁 = 𝐼 , 𝑟1 = 𝑟2 = · · · = 𝑟𝑁 = 𝑟 , and |Ω | is the number of observed elements.
Abbreviations: ISVD, (incremental SVD), SGD (stochastic gradient descent), MGS (modified Gram-Schmidt process), BCD (block-coordinate
descent), ADF (assume-density filtering), NN (neural network), and NNLS (nonnegative constrained least-squares solver).
𝑎 Pseudo inputs: a small active pseudo set, which is not necessarily required to be a subset of the real data, is introduced to break the dependencies
between outputs and hence avoid the explicit computation of the full covariance matrix.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 140

(1)

tU

1[]I r

2[]I r

New Observations

1tX

(2)

tU

(1)

tU


(1)

tU

1 1[]I r

2 2[]I r

1tG
(2)

1tU

(1)

1tU


1tX

1tX

2I

1I

3I

1



2I

1I

3I

1 2 (1)[]r r t  

1 2 1[]r r 
tG

1tG

tY

1 2[]r r t 

Figure 5.5: Online tensor dictionary learning.

5.5.1 Online Tensor Dictionary Learning

In the class of online tensor dictionary learning methods, we are particularly

interested in a specific case of single-aspect streaming Tucker decomposition

where the underlying tensor X𝑇 ∈ R𝐼1×···×𝐼𝑁 −1×𝑇
– which represents a set of

𝑇 data streams {Y𝑡 }𝑇𝑡=1
of the same size 𝐼1 × 𝐼2 × · · · × 𝐼𝑁−1 – is supposed to

be modelled by

X𝑇 =

r
G𝑇 ;

{
U(𝑛)

}𝑁−1

𝑛=1
, I𝑇

z
, (5.32)

where the core tensor G𝑇 is of size 𝑟1 × · · · × 𝑟𝑁−1 ×𝑇 (i.e., 𝑟𝑁 = 𝑇), the tensor

factors {U(𝑛) }𝑁−1

𝑛=1
,U(𝑛) ∈ R𝐼𝑛×𝑟𝑛 are of fixed size, and the last factor U(𝑁) is

an identify matrix. Specifically, the 𝑡-th slice Y𝑡 of X𝑇 is expressed as

Y𝑡 =

r
G𝑡 ;

{
U(𝑛)

}𝑁−1

𝑛=1

z
, 𝑡 = 1, 2, . . . ,𝑇 , (5.33)

where G𝑡 ∈ R𝑟1×𝑟2×···×𝑟𝑁 −1
is the 𝑡-th slice of the core tensor G𝑇 . The primary

objective here is to estimate G𝑡 and incrementally update {U(𝑛) }𝑁−1

𝑛=1
on the

arrival of Y𝑡 at each time 𝑡 . In what follows, we review two main approaches

to deal with this problem.

a) Incremental Subspace Learning on Tensor Unfolding Matrices.

A natural and very first approach for streaming Tucker decomposition is to

incrementally update the subspaces covering unfolding matrices of the un-

derlying tensor. The central idea of this approach stems from the fact that the

𝑛-th tensor factor U(𝑛)𝑡 which is derived from the standard HOSVD is given

by

U(𝑛)𝑡 = EVD

([
X(𝑛)
𝑡−1
,Y(𝑛)𝑡

] [
X(𝑛)
𝑡−1
,Y(𝑛)𝑡

]⊤)
, (5.34)

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 141

where X(𝑛)
𝑡−1

=
[
Y(𝑛)

1
, . . . ,Y(𝑛)

𝑡−1

]
with Y(𝑛)

𝜏
is the mode-𝑛 unfolding matrix of

Y𝜏 . Accordingly at time 𝑡 , we can apply the following dynamic tensor anal-

ysis (DTA) framework introduced in [236, 237] to estimate G𝑡 and update

{U(𝑛)𝑡 }𝑁−1

𝑛=1
:

C(𝑛)𝑡 ← 𝛽C(𝑛)
𝑡−1
+

(
Y(𝑛)𝑡

)⊤Y(𝑛)𝑡 , (5.35a)

U(𝑛)𝑡 ← eig

(
C(𝑛)𝑡 , 𝑟

)
, (5.35b)

G𝑡 ←
r
Y𝑡 ,

{
(U(𝑛)𝑡)⊤

}𝑁−1

𝑛=1

z
, (5.35c)

where 0 < 𝛽 ≤ 1 is a forgetting factor and eig(C(𝑛)𝑡 , 𝑟) computes the top 𝑟

principal eigenvectors ofC(𝑛)𝑡 . Since the two steps (5.35a) and (5.35b) are gen-

erally expensive, there have been some studies offering good modifications or

fast alternatives for (5.35).

In [236, 237], Sun et al. proposed a streaming tensor analysis (STA) al-

gorithm for tracking U(𝑛)𝑡 with time, instead of taking the orthonormal step

(5.35b) directly. Particularly on the arrival of Y𝑡 , STA first divides its unfold-

ing matrix Y(𝑛)𝑡 into column vectors {y(𝑛)𝑚,𝑡 } and then performs the following

steps on each vector y(𝑛)𝑚,𝑡 : (i) projects it onto the subspace U
(𝑛)
𝑡−1

, (ii) evaluates

the corresponding residual error and the energy for each entry of y(𝑛)𝑚,𝑡 , and

(iii) updates the matrix U(𝑛)𝑡 . Intuitively, the larger the residual error is, the

more U(𝑛)𝑡 is updated. The complexity of STA is moderate while its effective-

ness was demonstratedwith the problem of anomaly detection andmulti-way

latent semantic indexing.

In [238, 239], Hu et al. introduced the so-called IRTSA algorithm to track

the dominant subspaces {U(𝑛)𝑡 }𝑁−1

𝑛=1
. Specifically, instead of computing (5.35a),

IRTSA applies a fast incremental SVD (ISVD) proposed by Ross et al. in [258]

on the mode-𝑛 unfolding matrix X(𝑛)𝑡 =
[
X(𝑛)
𝑡−1
,Y(𝑛)𝑡

]
in (5.34). Thanks to

ISVD, IRTSA shares the same order of computational complexity with STA

while offers a better estimation than STA for the problem of background

modelling and object tracking. Although the current version of IRTSA is

designed for factorizing three-order streaming tensors, it is not difficult to

extend IRTSA for dealing with higher-order tensors. Besides, a modified ver-

sion of IRTSA was introduced by Zang et al. in [240] for the problem of web

service recommendation.

In [241], Kuang et al. also proposed an incremental SVD-based stream-

ing Tucker decomposition, namely IHOSVD. In particular, this algorithm per-

forms the following three processes in a serial manner: (i) applies a recursive

SVD method to compute singular values and singular vectors of unfolding

matrices of the new tensor, (ii) merges the new results with the old estima-

tions from past observations, and (iii) obtains the core tensor with 𝑛-mode

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 142

products. Theoretical analyses and experimental results on intelligent trans-

portation applications demonstrate the effectiveness of IHOSVD.

In [259], Li et al. modified slightly the recursive update of the covariance

matrix C(𝑛)𝑡 in (5.35a) as follows

C(𝑛)𝑡 = (1 − 𝛼)C(𝑛)
𝑡−1
+ 𝛼

(
Y(𝑛)𝑡

)⊤Y(𝑛)𝑡 , (5.36)

with a weight 1 ≥ 𝛼 > 0 and then introduced a robust incremental algo-

rithm called RTSL which has the potential to model background and detect

anomalies in applications of computer vision. Since RTSL still applies directly

the DTA framework, its complexity is relatively high. Thus, it may become

inefficient for handling large-scale and high dimensional streaming data.

Some other algorithms for streaming Tucker decomposition belonging to

this group were presented in [245–247,260], focusing on specific applications

such as dynamic brain network analysis, smart city services, cyber-physical-

social networks and systems.

b) Online Multimodal Dictionary Learning. Another good strategy

for the problem of single-aspect tensor tracking is to apply online multimodal

dictionary learning (OMDL) techniques. As OMDL is a stochastic version

of the multimodal dictionary (multilinear subspace) learning [261], it allows

estimating dictionaries (i.e., tensor factors) with one-pass processing. In the

literature, there exist some algorithms applying OMDL for tracking the low

multilinear-rank component of streaming tensors with time, such as OTDL

[250], ODL [262], ORLTM [263], OLRTR [264], and D-L1-Tucker [254].

The two former algorithms OTDL and ODL adopt the typical two-step

learning procedure to track the tensor factors over time, namely (i) tensor

coding or inference of coefficients in the core tensor and (ii) dictionary update

per each tensor mode.

Step 1: Tensor Coding. When Y𝑡 is observed, the general formulation of

optimization for this step is given by:

G𝑡 = argmin

G

Y𝑡 − JG;

{
U(𝑛)
𝑡−1

}𝑁−1

𝑛=1
K

2

𝐹
+ 𝜌𝐺R𝐺 (G), (5.37)

where 𝜌𝐺R𝐺 (.) is a regularization term on the core tensor G to promote spar-

sity or nonnegativity for instance. Since the first term of (5.37) is differen-

tiable while the second term may admit a proximal operator (e.g., ℓ𝑝-norm),

OTDL and ODL applied proximal methods to minimize it.

Step 2: Dictionary Update. When G𝑡 is estimated, the BCD framework can

be used to update U(𝑛)𝑡 . Specifically, both algorithms optimize the following

minimization:

U(𝑛)𝑡 = argmin

U(𝑛)

𝑡∑︁
𝜏=1

Y𝜏 − JG𝜏 ;

{
U(𝑛)
𝑡−1

}𝑁−1

𝑛=1
K

2

𝐹
+ 𝜌𝑈R𝑈

(
U(𝑛)

)
, (5.38)

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 143

with a penalty term 𝜌𝑈R𝑈 (.) on U(𝑛) . Interestingly, (5.38) can be recast into

the standard least-squares cost function which is very common in adaptive

filtering theory. Accordingly, OTDL introduced an effective recursive least-

squares (RLS) solver to optimize it. Meanwhile, ODL used the stochastic gra-

dient descent method to estimate U(𝑛)𝑡 with a low cost.

The next two algorithms ORLTM and OLRTR, on the other hand, esti-

mated the tensor factors without the need of tensor coding. In particular, the

tensor factor U(𝑛) is directly derived from the following optimization

U(𝑛)𝑡 = argmin

U(𝑛)

𝑡∑︁
𝜏=1

ℓ
(
Y𝜏 ,U(𝑛)

)
+ 𝜌𝑈R𝑈

(
U(𝑛)

)
, (5.39)

where the loss function ℓ (.) is defined as

ℓ
(
Y𝜏 ,U(𝑛)

)
= min

R(𝑛) ,E(𝑛)

Y(𝑛)𝜏
− U(𝑛)R(𝑛) − O(𝑛)

2

𝐹
+ 𝜆1

E(𝑛)

1
+ 𝜆2R𝑅 (R(𝑛)) .

(5.40)

Here, R(𝑛) andO(𝑛) play the role of the coefficient and error, respectively. The

main difference betweenORLTMandOLRTR is the type ofR𝑅 (.) used. Specif-
ically, OLRTR uses the simple Frobenius norm regularization R𝑅 (R(𝑛)) =

∥R(𝑛) ∥2
𝐹
, while ORLTM reinforces R(𝑛) = W(𝑛)Z(𝑛) and then forms R𝑅 (R(𝑛))

= ∥W(𝑛) ∥2
𝐹
+ ∥Z(𝑛) ∥2

𝐹
. Intuitively, the minimization (5.39) may be regarded as

a robust version of (5.38) which aims to deal with sparse corruptions. Also,

the minimization (5.40) is not difficult to solve since its terms are all convex.

Hence, both OLRTR and ORLTM applied the RLS method to update U(𝑛)𝑡 over

time.

In [254], Chachlakis et al. proposed a streaming Tucker decomposition

called D-L1-Tucker for dealing with streaming tensors. D-L1-Tucker shares

the same objective function with ORLTM and OLRTR, but adopts a different

approach to handle data corruptions. Particularly on the arrival of Y𝑡 , D-L1-

Tucker first identifies whether Y𝑡 is an anomaly or not based on its reliability

which is defined as

𝑟𝑡 =

JY𝑡 ;

{
(U(𝑛)

𝑡−1
)⊤

}𝑁−1

𝑛=1
K

2

𝐹

Y𝑡

−2

𝐹
. (5.41)

If 𝑟𝑡 ≤ 𝜏 where 𝜏 ∈ [0, 1] is a predefined threshold, Y𝑡 is labelled as an outlier

slice and then it is disregarded. Otherwise, Y𝑡 is considered as reliable and

useful for tracking process. In such a case, D-L1-Tucker appends Y𝑡 to the

memory set Z𝑡 = Z𝑡−1 ∪ Y𝑡 and then applies the batch L1-HOOI algorithm

proposed in [265] for factorizing Z𝑡 in order to obtain tensor factors. Af-

ter that, Z𝑡 is re-updated by removing the oldest measurement for the next

processing. D-L1-Tucker requires a good batch initialization and its tracking

ability is dependent on the threshold 𝜏 and the memory size𝑀 to store Z𝑡 .

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 144

(1)

tU

1[]I r

2[]I r

3(1)[]I r 

New Observations

tG

(3)

tU

1tX
(2)

tU

(1)

tU


(1)

tU

1 1[]I r

2 2[]I r

1tG

(3)

1tU

(2)

1tU

(1)

1tU



3 3[]I r

(3)

tu

1tX

2I

1I

3I

1


(3)

tU

2I

1I

3I

1 2 3[]r r r 

1 2 3[]r r r 

(fixed size)

tY

Figure 5.6: Online tensor subspace learning.

5.5.2 Tensor Subspace Tracking

Apart from the model (5.32), the tensor X𝑇 ∈ R𝐼1×···×𝐼𝑁 −1×𝑇
and its 𝑡-th tem-

poral slice Y𝑡 with 1 ≤ 𝑡 ≤ 𝑇 can be modelled as follows

X𝑇 =

r
G;

{
U(𝑛)

}𝑁
𝑛=1

z
, (5.42)

Y𝑡 =

r
G;

{
U(𝑛)

}𝑁−1

𝑛=1
, u(𝑁)𝑡

z
, (5.43)

where the core tensor G ∈ R𝑟1×𝑟2×···×𝑟𝑁
and {U(𝑛) }𝑁−1

𝑛=1
with U(𝑛) ∈ R𝐼𝑛×𝑟𝑛

are of fixed size except the last factor U(𝑁) ∈ R𝑇×𝑟𝑁 , and u(𝑁)𝑡 ∈ R1×𝑟𝑁
is

the 𝑡-th row of U(𝑁) , see Fig. 5.6 for an illustration. At each time 𝑡 , given old

estimations G𝑡−1
and {U(𝑛)

𝑡−1
}𝑁−1

𝑛=1
, we are interested in tracking G𝑡 , u

(𝑁)
𝑡 and

{U(𝑛)𝑡 }𝑁−1

𝑛=1
which can compactly represent the temporal slice Y𝑡 . We refer

this problem to as tensor subspace tracking.
1

It is worth mentioning that single-aspect streaming CP methods also be-

long to this class as the core tensor G is constrained to be identity. In the

literature, there exist some tensor subspace tracking methods which have the

potential to deal with a general case of G. Each method adopts a different

strategy to factorize streaming tensors. In what follows, we briefly describe

their main features in chronological order.

1
This name stems from the following observation: we can recast (5.43) into the form

y𝑡 = Du𝑡 , where y𝑡 = vec(Y𝑡), u𝑡 = (u(𝑁)𝑡)⊤ and D is the transpose of the mode-𝑁 un-

folding matrix of JG; {U(𝑛) }𝑁−1

𝑛=1
K. Intuitively, this form may be regarded as the data model

which is very common and widely used in the problem of subspace tracking where we wish

to incrementally update D on the arrival of y𝑡 at each time 𝑡 . Since the subspace matrix D has

a tensor structure, we label this problem as "tensor subspace tracking" without hesitation.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 145

a) Augmented Projection. In [243], Baskaran et al. introduced the so-

called LRUT algorithm (which stands for Low-Rank Updates to Tucker de-

composition) using a randomized projection technique for tracking the low

multilinear-rank approximation of streaming tensors over time. When a data

stream arrives, LRUT first projects it onto an extended tensor subspace and

then forms an augmented core tensor. Specifically, LRUT adds a few more

random dimensions to the current tensor subspace defined by old estimations

of the tensor factors. The inclusion of some random vectors here plays a role

of noise perturbation aimed to prevent the main optimization from getting

stuck in local optima. Next, LRUT performs the standard Tucker decomposi-

tion (e.g., batch HOSVD or HOOI) on the resulting augmented core tensor to

update tensor factors. In this way, we can avoid the computation of SVD on

unfolding matrices of the full tensor which is highly expensive in an online

setting. However, its computational complexity is still relatively high since

LRUT uses several orthogonalization operations on augmented tensor factors

and unfolding matrices of the projected tensor slice.

b) Riemannian Optimization. In [244], Kasai et al. developed a Rie-

mannian manifold preconditioning approach for tensor completion. Specifi-

cally, its stochastic version can be adapted for factorizing incomplete stream-

ing tensors in an online fashion. Since the Tucker format provides an effec-

tive representation for tensors in the manifold Mr =
{
X ∈ R𝐼1×𝐼2×···×𝐼𝑁 |

rank(X) := r = [𝑟1, 𝑟2, . . . , 𝑟𝑁]
}
, Riemannian optimization can offer a good

approach for tensor decomposition and completion [266]. Accordingly, the

authors proposed an efficient Riemannian gradient based method to estimate

the low multilinear-rank component of tensors. The proposed method con-

sists of a rank-one Riemannian gradient computation and a retraction step.

Specifically, a novel Riemannian metric on the tangent space ofMr and its

quotient manifold was introduced to enable the Riemannian optimization

framework. Furthermore, a map that combines all retractions on the indi-

vidual manifolds of tensor factors was used to transform the estimations to

the tensor manifold.

c) Bayesian Inference. In [255], Fang et al. proposed a Bayesian stream-

ing Tucker decomposition method called BASS-Tucker for handling stream-

ing sparse tensors. Similar to Bayesian methods for streaming CP decomposi-

tion, BASS-Tucker adopts the streaming variational Bayes (SVB) framework

to infer the posterior of parameters of interest (e.g., tensor core, tensor fac-

tors, and nuisance parameters) over time. In addition, BASS-Tucker also uti-

lizes the same priors for the tensor factors and noise variance except that of

the core tensor. Here, the following spike-and-slab prior is used to model the

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 146

core tensor:

𝑝
(
S |𝜌0

)
=

𝑟1∏
𝑗1=1

𝑟2∏
𝑗2=1

· · ·
𝑟𝑁∏
𝑗𝑁 =1

Bern

(
𝑠 𝑗1 𝑗2 ... 𝑗𝑁 |𝜌0

)
, (5.44)

𝑝 (G |S) =
𝑟1∏
𝑗1=1

𝑟2∏
𝑗2=1

· · ·
𝑟𝑁∏
𝑗𝑁 =1

𝑠 𝑗1 𝑗2 ... 𝑗𝑁N
(
𝑔 𝑗1 𝑗2 ... 𝑗𝑁 |0, 𝜎2

0

)
+ (1 − 𝑠 𝑗1 𝑗2 ... 𝑗𝑁)𝛿 (𝑔 𝑗1 𝑗2 ... 𝑗𝑁),

(5.45)

where S ∈ R𝑟1×𝑟2×···×𝑟𝑁
is a binary tensor, Bern(.|𝜌0) is the Bernoulli distri-

bution with probability 𝜌0, and 𝛿 (.) is the Delta function. We refer the readers

to subsection 5.4.3 for details on prior distributions of {U(𝑛) }𝑁−1

𝑛=1
and other

model parameters as well as how the SVB framework works.

d) Block-Coordinate Descent. There are three online Tucker algorithms

using the BCD framework, including ATD [30], RT-NTD [257] and BK-NTD

[257]. In general, they go through the following stages when Y𝑡 arrives:

Stage 1: Estimate the coefficient vector u(𝑁)𝑡 given old estimations G𝑡−1

and {U(𝑛)
𝑡−1
}𝑁−1

𝑛=1
. Generally, u(𝑁)𝑡 can be derived from

u(𝑁)𝑡 = argmin

u(𝑁)

Y𝑡 − JG𝑡−1
; {U(𝑛)

𝑡−1
}𝑁−1

𝑛=1
, u(𝑁)K

2

𝐹
+ 𝜌𝑢R𝑢 (u(𝑁)). (5.46)

Stage 2: Estimate the tensor factorU(𝑛)𝑡 given u(𝑁)𝑡 , old estimation ofU(𝑛)
𝑡−1

and the remaining factors, 1 ≤ 𝑛 ≤ 𝑁 −1. The main optimization can be given

by

U(𝑛)𝑡 = argmin

U(𝑛)

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏 ℓ (Y𝜏 ,U(𝑛)) + 𝜌𝑈R𝑈
(
U(𝑛)

)
, (5.47)

where ℓ (Y𝜏 ,U(𝑛)) =

Y(𝑛)

𝜏
−U(𝑛)W(𝑛)𝜏

2

𝐹
, Y(𝑛)

𝜏
andW(𝑛)𝜏 are respectively the

mode-𝑛 unfolding matrices of Y𝜏 and W𝜏 . Here, the coefficient tensor W𝜏

is defined as

W𝜏 = JG𝑡−1
; {U(𝑚)

𝑡−1
}𝑁−1

𝑚=1,𝑚≠𝑛, u
(𝑁)
𝜏 K. (5.48)

Stage 3: Estimate the core tensor G𝑡 given G𝑡−1
, u(𝑁)𝑡 , and {U(𝑛)𝑡 }𝑁−1

𝑛=1

particularly from

G𝑡 = argmin

G

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

X(1)𝜏 − U(1)𝑡 G(1)Z𝜏

2

𝐹
+ 𝜌𝐺R𝐺 (G), (5.49)

where (.) (1) denotes themode-1 unfoldingmatrix andZ𝜏 = u𝜏⊗
(⊗𝑁

𝑛=2
U(𝑛)𝑡

)
.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 147



(3)

tU

(2)

tU
(1)

tU
1d

1 1 1()[]I d r 
(1)ˆ
tU

(2)ˆ
tU

(3
)

ˆ tU

2 2 2()[]I d r 

2I
2d

3I

3d

3 3 3()[]I d r 

1I(1)

tU

(2)

tU

(3
)

tU

(0,0,0)

tX

New Observations

1I

1d



3I


3d

2I
2d

(0,1,0)

tX

(1,0,0)

tX (1,1,0)

tX
(0,1,1)

tX

(1,1,1)

tX(1,0,1)

tX
(0,0,1)

tX

(0,0,0)

1t t X X

1 2 3[]r r r 

tG

(fixed size)







Figure 5.7: Multi-aspect streaming Tucker decomposition of a three-order

tensor.

Here, R𝑢 (.), R𝑈 (.), and R𝐺 (.) are regularization terms on the coefficient

u(𝑁)𝑡 , the factor U(𝑛)𝑡 , and the core tensor G𝑡 , respectively. These penalties

can be nonnegativity, smoothness, or sparsity depending on the specific ap-

plication.

The former ATD algorithm was proposed by Thanh et al. in [30] which

is capable of tracking the low multilinear-rank approximation of streaming

tensors from highly incomplete observations. In stage 1, ATD particularly re-

casts (5.46) into a standard LS optimization and then applies a randomized LS

technique to minimize it. In stage 2, ATD introduces a recursive LS solver

to optimize (5.47) in an efficient way. Instead of solving (5.49) directly, ATD

applies the stochastic gradient descent to obtain its solution.

The two latter RI-NTD andBK-NTD algorithmswere proposed by Zdunek

et al. in [257] for factorizing nonnegative tensors from streaming data. Both

algorithms performnonnegative least-square (NNLS) solvers to incrementally

update the tensor factors and the core tensor. Particularly, RI-NTD utilizes

a recursive strategy involving the nonnegatively constrained Gauss–Seidel

method while BK-NTD adopts the block Kaczmarz method. Similar to ATD,

both RI-NTD and BK-NTD estimate the core tensor using only the new com-

ing data via a stochastic optimization.

5.5.3 Multi-aspect streaming Tucker decomposition

Besides single-aspect streaming Tucker decomposition methods, few online

techniques are capable of tracking multi-aspect streaming tensors under the

Tucker format over time, such as SITTA in [248] and eOTD in [249].

SIITA in [248] offers an online inductive framework for tracking the low-

rank tensor approximation of multi-aspect streaming tensors as well as com-

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 148

pleting their missing data with side information. On the arrival of new data,

SIITA particularly minimizes the following optimization

argmin

G,{U(𝑛) ,A(𝑛) }𝑁
𝑛=1

𝑓𝑡

(
Y𝑡 , {S(𝑛)𝑡 }𝑁𝑛=1

, G, {U(𝑛) }𝑁𝑛=1

)
, (5.50)

with

𝑓𝑡

(
Y𝑡 , {S(𝑛) }𝑁𝑛=1

, G, {U(𝑛) }𝑁𝑛=1

)
=

PΩ𝑡

(
Y𝑡

)
− PΩ𝑡

(
JG;

{
S(𝑛)𝑡 U(𝑛)

}𝑁
𝑛=1

K
)

2

𝐹

+ 𝜌𝐺

G

2

𝐹
+

𝑁∑︁
𝑛=1

𝜌𝑛

U(𝑛)

2

𝐹
, (5.51)

where {S(𝑛)𝑡 }𝑁𝑛=1
with S𝑡 ∈ R𝑀𝑛×𝐼𝑛

is the set of side information matrices and

𝜌𝐺 , {𝜌𝑖}𝑁𝑖=1
are regularization parameters. Here, SIITA incorporates the side

information into the data model by using {S(𝑛)𝑡 }𝑁𝑛=1
as multiplicative terms.

Accordingly, SIITA can accelerate the tracking process because the product

S(𝑛)𝑡 U(𝑛) transforms the dimensionality of variables from 𝐼𝑛 to 𝑀𝑛 , and typ-

ically with 𝑀𝑛 ≪ 𝐼𝑛 . As every term of (5.50) are convex, SITTA adopts the

gradient descent to minimize it. Besides, a simple variant of SIITA namely

NN-SITTA was also obtained for nonnegative tensor decomposition. NN-

SITTA is specifically derived from projecting the estimates of SIITA into their

nonnegative orthant at each time 𝑡 .

In [249], Xiao et al. proposed the so-called eOTD algorithm for the multi-

aspect tensor tracking problem. Unlike SIITA, eOTD adopts the divide and

conquer paradigm to deal with multi-aspect streaming tensors. In particu-

lar, it divides the underlying tensor X𝑡 into 2
𝑁

sub-tensors X
(𝑖1,...,𝑖𝑁)
𝑡 with

𝑖𝑛 ∈ {0, 1}, 1 ≤ 𝑛 ≤ 𝑁 , and X
(0,...,0)
𝑡 = X𝑡−1, see Fig. 5.7 for an illustra-

tion. These sub-tensors are grouped into 𝑁 classes {X𝑛}𝑁𝑛=1
based on the

sum of sub-indices. For example, for a third-order tensor, we have X1 ={
X
(1,0,0)
𝑡 , X

(0,1,0)
𝑡 , X

(0,0,1)
𝑡

}
,X2 =

{
X
(1,1,0)
𝑡 , X

(1,0,1)
𝑡 , X

(0,1,1)
𝑡

}
, andX3 = {X (1,1,1)𝑡 }.

If a sub-tensor X
(𝑖1,...,𝑖𝑁)
𝑡 ∈ G𝑛 , factorizing it will results in X

(𝑖1,...,𝑖𝑁)
𝑡 =

JG𝑡 , {V
(𝑛)
𝑡 }𝑁𝑛=1

K where V(𝑛)𝑡 = Û(𝑛)𝑡 if 𝑖𝑛 = 1 and V(𝑛)𝑡 = U(𝑛)𝑡 if 𝑖𝑛 = 0. Here,

the matrix Û(𝑛)𝑡 is constantly updated as follows

Û(𝑛)𝑛𝑒𝑤 = 𝛼Û(𝑛)
𝑜𝑙𝑑
+ (1 − 𝛼)X𝑡 (𝑖1,...,𝑖𝑁)

𝑛

(
G(𝑛)
𝑖𝑛

)
#

. (5.52)

The tensor factorU(𝑛)𝑡 is specifically derived fromU(𝑛)𝑡 = orth

(
[U(𝑛)

𝑡−1
; Û(𝑛)𝑛𝑒𝑤]

)
=(

[Ū(𝑛)
1

; Û(𝑛)𝑡]
)
where themodified Gram-Schmidt process was applied to com-

pute the orth(.) operation. Finally, the tensor core G𝑡 of fixed size is estimated

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 149

 1

1
1

2
1

N(1)

tG (2)

tG
(1)N

t


G

()

1

N

tG1

1N  
1tX tY

1 1[]I r 1 2 2[]r I r 
2 1 1[]N N Nr I r    1[]Nr t 

()N

tG
tX

Figure 5.8: Single-aspect streaming tensor-train decomposition.

by

G𝑡 =

r
G𝑡−1

,
{(
Ū(𝑛)𝑡

)⊤U(𝑛)
𝑡−1

}𝑁
𝑛=1

z
+

∑︁
(𝑖1,...,𝑖𝑁)≠(0,...,0)

r
X
(𝑖1,...,𝑖𝑁)
𝑡 ,

{
Û(𝑛)𝑡

}𝑁
𝑛=1

z
.

(5.53)

An appealing feature of eOTD is that throughout the tracking process,

eOTD only uses cheap tensor-matrix multiplications and pseudo-inverse op-

erations instead of computing the expensive SVDs on big matrices. This

makes eOTD easy for applying to large-scale applications.

5.6 Other Streaming Tensor Decompositions

Apart from the two most popular streaming CP and Tucker decompositions,

some online methods are capable of tracking tensors under other multiway

models. This section focuses on tracking algorithms that exploit TT, BTD,

and t-SVD formats to construct the low-rank tensor approximation in the

streaming model.

5.6.1 Streaming Tensor-Train Decomposition

Despite success in the batch setting, TT decomposition has not gained in pop-

ularity as CP and Tucker for tensor tracking. In the literature, there exist few

tracking algorithms developed for the problem of single-aspect tensor track-

ing under the TT format, see Fig. 5.8 for an illustration.

In [31, 32, 35], Thanh et al. proposed three adaptive TT algorithms called

TT-FOA, ATT, and ROBOT for factorizing tensors in an online fashion. Par-

ticularly, TT-FOA in [32] is, to the best of our knowledge, the very first of its

kind in the literature. However, its practical use is limited due to the lack of

robustness to data corruption. To overcome the drawback, ATT in [31] and

ROBOT in [35] were developed to deal with missing data and sparse outliers,

respectively.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 150

All three algorithms share the same optimization frameworkwhere block-

coordinate gradient (BCD) and recursive least-squares (RLS) methods are uti-

lized to minimize the cost function. In particular, a general formulation of the

optimization problems can be written as

{
{G (𝑛)𝑡 }𝑁𝑛=1

, O𝑡

}
= argmin

{G (𝑛) }𝑁
𝑛=1

,O

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏
(

P𝜏 ⊛

(
G
(1) ×1

2
· · · ×1

𝑁−1
G
(𝑁−1)

×1

𝑁 G(𝑁)𝜏 + O𝜏 − Y𝜏

)

2

𝐹
+ 𝜌𝑂R𝑂

(
O𝜏

))
+ 𝜌𝐺R𝐺

({
G
(𝑛)}𝑁−1

𝑛=1

)
, (5.54)

where 𝛽 ∈ (0, 1] is a forgetting factor to reduce the impact of old observa-

tions; R𝑂 (O𝜏) andR𝐺
(
{G (𝑛) }𝑁−1

𝑛=1

)
are two regularization terms. Specifically,

TT-FOA does not impose the two penalties; ATT adopts R𝐺
(
{G (𝑛) }𝑁−1

𝑛=1

)
=∑𝑁−1

𝑛=1

G (𝑛) − G
(𝑛)
𝑡−1

2

𝐹
to control the smoothness of TT-cores over time; and

ROBOT applies the ℓ1-norm regularization R𝑂 (O𝜏) = ∥O𝜏 ∥1 to promote the

sparsity on O𝜏 .

Thanks to the BCD framework, (7.46) can be effectively decomposed into

two main stages: (i) estimate the temporal TT-core G(𝑁)𝑡 and outlier O𝑡 ,

and (ii) update non-temporal TT-cores {G (𝑛)𝑡 }𝑁−1

𝑛=1
. In stage 1, TT-FOA and

ATT apply the regularized least-squares method to estimate G(𝑁)𝑡 under the

assumption that Y𝑡 is outlier-free. Meanwhile ROBOT adopts an effective

ADMM solver to account for the sparse outlier O𝑡 . In stage 2, an effective

RLS solver was introduced to estimate {G (𝑛)𝑡 }𝑁−1

𝑛=1
whenG(𝑁)𝑡 and O𝑡 (if any)

are given in stage 1.

In parallel, Liu et al. in [267] proposed an incremental TT method called

iTTD to factorize tensors having one temporal mode. Specifically, iTTD con-

siders coming data streams as individual tensors and then factorizes them

into TT-cores. The results are appended to old estimates derived from past

observations. In [268], Wang et al. also developed an incremental TT method

called AITT to decompose tensors from industrial IoT data streams. By ex-

ploiting a relationship between the directly reshaped matrix and integration

of tensor unfolding matrices, AITT can estimate effectively the underlying

TT-cores. However, the two frameworks of iTTD and AITT are not really on-

line streaming learning ones but incremental batch learning. Therefore, they

are not useful for data streams from dynamical observations in time-varying

environments.

5.6.2 Streaming Block-Term Decomposition

The block-term decomposition (BTD) unifies the two well-known CP and

Tucker decompositions, and thus, the tracking algorithms under the CP and

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 151

 ...

tX

1tX tY
 

)1(

1
U

)2(

1
U)1(

L
U

)2(

L
U

1
u

L
u

Figure 5.9: Tracking the rank-(𝐿, 𝐿, 1) BTD of 3-rd order streaming X𝑡 .

Tucker formats principally belong to the class of the streaming BTD with one

block. When the number of blocks is greater than 2, there are only two BTD

methods able to deal with streaming tensors, including OnlineBTD [269] and

O-BTD-RLS [270].

The former method was proposed by Gujral et al. in [269] for tracking

tensors under the generalized BTD format of 𝐿 blocks and a multilinear rank-

(𝑟1, 𝑟2, . . . , 𝑟𝑁). On the arrival of the temporal slice Y𝑡 , OnlineBTD performs

the following minimization:

argmin

{G𝑖 }𝑟𝑖=1
,{U(𝑛) }𝑁

𝑛=1

Y𝑡 −
𝑟∑︁
𝑖=1

JG𝑖 , {U
(𝑛)
𝑖
}𝑁𝑛=1

K

2

𝐹

, (5.55)

whereU(𝑛) =
[
U(𝑛)

1
,U(𝑛)

2
, . . . ,U(𝑛)𝑟

]
withU(𝑛)

𝑖
∈ R𝐼𝑛×𝑟𝑛 andG𝑖 ∈ R𝑟1×𝑟2×···×𝑟𝑁 ,

1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑟 . Here, {U(𝑛) }𝑁−1

𝑛=1
are supposed to remain unchanged

with time except the last tensor factor U(𝑁) . Prior information of 𝐿 and rank-

(𝑟1, 𝑟2, . . . , 𝑟𝑁) are known in advance. Old estimates of the core tensors and

tensor factors of X𝑡−1 are used as a “warm start” for OnlineBTD at each

time 𝑡 . To speed up the tracking, OnlineBTD utilizes (i) an accelerated ma-

tricized tensor times Kronecker product, (ii) the pseudo-inverse operator us-

ing LU decomposition, and (iii) a dynamic programming strategy introduced

by Zhou et al. in [175] to avoid the re-computation of duplicated Kronecker

products.

The secondmethodwas introduced by Rontogiannis et al. in [270]. Specif-
ically, O-BTD-RLS is designed for tracking the low rank-(𝑟, 𝑟, 1) terms of

three-order streaming tensors (i.e., 𝑟1 = 𝑟2 = 𝑟 and 𝑟3 = 1), see Fig. 5.9 for

an illustration. In particular, the tensor factors of the underlying tensor are

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 152

incrementally updated by minimizing the following objective function:

argmin

{U(𝑛) }3
𝑛=1

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

Y𝜏 − U(1)W𝜏

[
U(2)

]⊤

2

𝐹

+ 𝜌1

√︃

𝚵u𝑙

2

2
+ 𝜂2

+ 𝜌2

𝐿∑︁
𝑙=1

𝑟∑︁
𝑘=1

√︃

u(1)
𝑙,𝑘

2

2
+

u(2)
𝑙,𝑘

2

2
+ 𝜂2, (5.56)

Here, U(𝑛) =
[
U(𝑛)

1
,U(𝑛)

2
, . . . ,U(𝑛)

𝐿

]
with U(𝑛)

𝑙
∈ R𝐼𝑛×𝑟 is the 𝑛-th tensor factor

of interest, and u(𝑛)
𝑙,𝑘

is the 𝑘-th column of U(𝑛)
𝑙

, 𝑛 = 1, 2; u𝜏 and u𝑙 are the 𝜏-th
row and 𝑙-th column of the temporal factor U(3) ∈ R𝑡×𝐿 , respectively; W𝜏 =

diag(u𝜏) ⊗ I𝑟 and 𝚵 = diag(𝛽𝑡−1, . . . , 𝛽, 1); 𝜌1 and 𝜌2 are two regularization

parameters; and 𝜂2
is a small positive number to promote smoothness at zero.

Here, the former term of (5.56) has the form of weighted least-squares while

two latter terms are regularizations. Accordingly, an efficient recursive least-

squares solver was introduced to minimize (5.56) effectively. An appealing

feature of O-BTD-RLS is that it has the ability to reveal the BTD ranks over

time by specifying the number of columns of the tensor factors which are

non-negligible in magnitude at each time 𝑡 .

5.6.3 Streaming t-SVD Decomposition

Similar to TT and BTD, streaming t-SVD is still in its early stage. In the lit-

erature, there exists only two works of Zhang et al. in [271] and Gilman et
al. in [272, 273] addressing the problem of tensor tracking under the t-SVD

format.

In [271], Zhang et al. introduced an online tensor PCA for sequential 2D

data based on the t-SVD structure. When Y𝑡 arrives, the proposed algorithm

updates:

■ The coefficient matrix W𝑡 and the sparse outlier O𝑡 from solving the

following minimization

{W𝑡 , O𝑡 } = argmin

W,O

1

2

Y𝑡 −U𝑡−1 ∗W − O

2

𝐹
+ 𝜆1

2

∥W∥2𝐹 + 𝜆2∥O∥1.

(5.57)

■ The low tubal-rank tensor U𝑡 (a.k.a. basis dictionary) from taking iFFT

of the tensor
ˆU𝑡 along the third dimension where

ˆU𝑡 is specifically

derived from

Û𝑡 = argmin

Û

1

2

tr
[
Û⊤

(
Â𝑡 + 𝐼3𝜆1I

)
Û
]
− tr

[
Û⊤B̂𝑡

]
. (5.58)

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 153

Here, Â𝑡 = diag(FFT(A𝑡))withA𝑡 = A𝑡−1+W𝑡∗W⊤
𝑡 , B̂𝑡 = diag(FFT(B𝑡))

with B𝑡 = B𝑡−1 + (Y𝑡 − O𝑡) ∗W⊤
𝑡 , and the solution Û𝑡 is a matricization

of
ˆU𝑡 .

As the online tensor PCA above is not designed for handling missing data,

Gilman et al. in [272,273] proposed another algorithm called TOUCANwhich

is capable of tracking tensors from missing observations. Specifically, the

authors proposed to solve the constrained minimization

{U𝑡 ,w𝑡 } = argmin

U,w

𝑡∑︁
𝜏=1

FΩ𝜏

(
y𝜏 − Uw𝜏

)

2

2

subject to U⊤U = I𝑟𝐼3, (5.59)

where y𝜏 = unfold(Y𝜏) ∈ C𝐼1𝐼3×1
, w𝜏 = unfold(W𝜏) ∈ C𝑟𝐼3×1

, FΩ𝜏
=

PΩ𝜏

(
F−1

𝐼3
⊗ I𝐼1

)
∈ C |Ω𝜏 |×𝐼1𝐼3

is the subsampled inverse Fourier transform, F𝑛 ∈
C𝑛×𝑛 denotes the Discrete Fourier Transform matrix, the mixing matrix U ∈
R𝐼1𝐼3×𝑟𝐼3 is defined as U =

(
F𝐼3 ⊗ I𝐼1

)
bcirc(U) F−1

𝐼3
.

Motivated by the so-called GROUSE algorithm for subspace tracking in

[72], TOUCAN applies the incremental gradient descent on the tensor Grass-

man manifold to track U𝑡 with time. It is worth noting that the objective

function (5.59) is very common in subspace tracking problems. Therefore,

we can apply any subspace tracking algorithms which are capable of dealing

with missing data to minimize (5.59) effectively.

5.7 Applications

Tensor tracking or dynamic tensor analysis has already been found several

online applications and this section provides some typical examples in dif-

ferent research fields, from computer vision and neuroscience to anomaly

detection.

5.7.1 Computer Vision

We begin this section with one of the earliest and most popular applications

of tensor tracking: visual tracking which is an important task in computer vi-

sion [274]. Naturally, video datasets can be represented as 4-th order stream-

ing tensors of dimensionality, width × height × channel × time. Accordingly,

there are several studies devoted to developing tensor-based visual trackers

for better modeling the appearance of target objects, such as [238, 275–277],

to name a few. For example, Hu et al. in [238] proposed the so-called IRTSA

tracker using incremental tensor subspace learning to capture the appear-

ance of objects. Zhang et al. in [275] introduced another visual tracker called

DTAMU which stands for dynamic tensor analysis with mean update. Weim-

ing et al. in [276] developed a semi-supervised tensor-based visual tracker

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 154

using graph embedding. Khan et al. in [277] built an online spatio-temporal

tensor learningmodel for visual tracking using Bayesian inference. It is worth

noting thatmost of the existing tensor-based visual trackers correspond to the

streaming Tucker decomposition and its variants.

Another notable application of tensor tracking in computer vision is video

background and foreground separation which is quite related to visual track-

ing, but with a different aim of modeling the scene background and detecting

the information of changes in the scene. Similar to visual tracking, many

tensor-based separators were proposed, such as [27,35,263,278,279]. Particu-

larly in [27], Thanh et al. proposed a robust adaptive CP method called RACP

which is capable of modeling video background and detecting moving ob-

jects. Li et al. in [263] introduced an online robust low-rank tensor modeling

(ORLTM) method and found its success in video background subtraction. An-

drews et al. in [278] developed an online stochastic tensor decomposition for

background subtraction in multispectral video sequences. A robust stream-

ing tensor-train algorithm was developed in [35] which also has the potential

to detect foreground in video. Salut et al. in [279] proposed an online tensor

robust principal component analysis and validated its effectiveness with the

problem of background and foreground separation.

In parallel, there are other interesting computer vision applications of dy-

namic tensor analysis, such as visual data recovery [176, 280], online video

denoising [281, 282], and segmentation/classification [252, 283].

5.7.2 Neuroscience

The brain can be viewed as a complex system with various interacting re-

gions that can produce large multivariate data over time [284]. Many types

of brain data can be represented by tensors, such as electroencephalogra-

phy (EEG), magnetoencephalography (MEG), functional magnetic resonance

imaging (fMRI), and near-infrared spectroscopy (NIRS) [285]. Apart from

three intrinsic modes (i.e., frequency, channel, and time), brain data can have

higher-order modes, such as, subjects, conditions, and trials [285]. Together

with the fact that brain activities can change over time, dynamic tensor anal-

ysis has become an useful tool to study the structure and function of brain

from such data.

In what follows, we list some appealing brain-computer interface appli-

cations to demonstrate the use of dynamic tensor analysis in neuroscience.

First, for the problem of detecting dynamic functional connectivity networks

(DFCNs), Ozdemir et al. in [245] introduced a recursive tensor-based frame-

work capable of tracking DFCNs over time. The proposed framework was

then applied for studying error-related negativity – a brain potential response

when patients make errors during cognitive tasks [286]. Mahyari et al. in

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 155

[287] developed a two-step approach using incremental tensor subspace anal-

ysis for detecting DFCNs. Particularly, they first detect change points at

which the functional connectivity across subjects presents abrupt changes

and then summarize DFCNs between successive change points. Recently,

Acar et al. in [288] proposed to use the Parafac2 model for tracking the evo-

lution of connectivity networks and compared its performance with ICA and

IVA. For the problem of localizing dynamic brain sources over time, Ardeshir

et al. in [289] utilized the boundary element method (BEM) [290] and the

adaptive PARAFAC-RLST tracker [211] with two operational windows. A

variant using augmented complex statistics in [291] also has the ability to

track moving EEG sources with time. For the problem of online EEG com-

pletion, Trung et al. in [292] proposed an adaptive CP algorithm called NL-

PETRELS capable of tracking and imputing incomplete EEG data. Thanh et
al. in [27, 30] also demonstrated the use of ACP and RACP with real data by

applying them for online EEG completion. Other neuroscience applications

of tensor analysis were reviewed in [180, 293, 294].

5.7.3 Anomaly Detection

Anomaly detection, which corresponds to identifying patterns and data points

that do not conform to normal behavior, plays an essential role in many ap-

plications, such as cyber security, statistics, and finance, to name a few [295].

Here, we provide some notable tensor-based anomaly detectors which are

customized to specific online applications.

Shi et al. in [296] developed the so-called STenSr algorithm for anomaly

detection and pattern discovery in spatio-temporal tensor streams from sen-

sor networks. STenSr utilizes an incremental HOSVD and a metric based

on Euclidean distance to detect abrupt changes when new data comes. Ka-

sai et al. in [297] introduced an online time-structured traffic tensor tracking

framework to detect network-level anomalies from link indirect measure-

ments over time. In particular, it is based on a robust adaptive CP decom-

position that uses RLS for tensor tracking and ADMM for detecting abnormal

flows. Cao et al. in [298] designed an interactive system called Voila for de-

tecting and monitoring visual anomalies. Voila is a tensor-based anomaly

detector with an interaction design that can ranks anomalous patterns based

on user input. Lin et al. in [299] proposed a novel method called TBAD to

localize anomalous events. TBAD employs a spatial-feature-temporal tensor

model and analyses latent patterns through unsupervised learning. Xu et al.
in [300] introduced a tensor-based framework, namely SWTF, capable of de-

tecting multiple types of anomalies in road networks. We refer the readers

to [200] for a broader interdisciplinary survey of tensors for anomaly detec-

tion.

CHAPTER 5. AN OVERVIEW OF TENSOR TRACKING 156

5.7.4 Others

Apart from online applications in the domains above, tensor tracking also

found success in some other research fields, namely wireless communica-

tions (e.g., channel tracking [301], DOA tracking [302], and time delay estima-

tion [303]), network analysis (e.g., link prediction [304], internet scale moni-

toring [305], and bot activities and network intrusions [306]), data analytics of

chemical and biological manufacturing processes and components [307,308],

performance monitoring [309, 310], and transportation [311, 312].

5.8 Conclusions
Tensor tracking has recently gained increasing attention as a powerful tool

for multidimensional data stream analysis. In this survey, we have provided a

technical overview of online techniques for tracking streaming tensors over

time. We highlighted the two most popular streaming CP and Tucker de-

compositions. Specifically, four main groups of streaming CP decomposition

algorithms were emphasized, including subspace-based, block-coordinate de-

scent, Bayesian inference, and multi-aspect streaming decompositions. We

categorized the current streaming Tucker decomposition methods into three

major classes based on their model architecture. They are online tensor dic-

tionary learning, tensor subspace tracking, and multi-aspect streaming de-

compositions. Recent years have also witnessed significant advances in other

types of tensor decomposition such as tensor-train, BTD, and t-SVD. A brief

survey on the existing methods which are capable of tracking tensors under

these formats was presented.

Robust Tensor Tracking

with Missing Data and

Outliers

6

6.1 Introduction . 159

6.1.1 Related Works . 160

6.1.2 Main Contributions . 161

6.2 Tensor Tracking with Missing Data 163

6.2.1 Problem Statement . 163

6.2.2 Adaptive CP Decomposition 165

6.2.2.1 Proposed ACP Algorithm 165

6.2.2.2 Performance Analysis 171

6.2.3 Adaptive Tucker Decomposition 172

6.2.3.1 Proposed ATD Algorithm 173

6.2.3.2 Performance Analysis 176

6.3 Tensor Tracking with Sparse Outliers 177

6.3.1 Problem Statement . 177

6.3.2 Robust Adaptive CP Decomposition 179

6.3.2.1 Proposed RACP Algorithm 179

6.3.2.2 Extensions of the RACP algorithm 185

6.3.3 Performance Analysis 187

6.3.3.1 Assumptions 187

6.3.3.2 Main Results 188

6.3.3.3 Discussions 191

6.4 Performance Evaluation . 192

6.4.1 Performance of ACP 192

6.4.1.1 Experiment Setup 192

6.4.1.2 Effect of Forgetting Factor 𝛽 193

6.4.1.3 Asymptotic Convergence Behavior 194

6.4.1.4 Noisy and Dynamic Environments 195

6.4.1.5 Evaluation of Effectiveness and Efficiency . 196

6.4.2 Performance of ATD 198

6.4.2.1 Experimental Setup 198

6.4.2.2 Robustness of ATD 198

6.4.2.3 Tracking Ability in Dynamic Environments 199

6.4.2.4 Orthogonality Constraint 200

157

CHAPTER 6. ROBUST TENSOR TRACKING 158

6.4.2.5 Real Data . 200

6.4.3 Performance of RACP 203

6.4.3.1 Experiment Setup 203

6.4.3.2 Robustness of RACP 204

6.4.3.3 Nonnegative RACP 211

6.4.3.4 Real Datasets 212

6.5 Conclusions . 221

6.6 Appendix . 222

6.6.1 Appendix A: Proof of Lemma 9 222

6.6.1.1 Stage I . 222

6.6.1.2 Step II . 226

6.6.2 Appendix B: Proof of Lemma 11 231

6.6.3 Appendix D: Proof of Lemma 12 235

6.6.4 Appendix D: Proof of Lemma 13 237

6.6.5 Appendix E: Useful Propositions 241

Tensor decomposition is a powerful multilinear algebra tool for analyzing mul-
tiway data and has been used for various signal processing and machine learn-
ing applications. When the underlying tensor is derived from (multidimen-
sional) data streams, streaming tensor decomposition or tensor tracking is re-
quired. In this chapter, we propose three novel adaptive algorithms for tracking
the low-rank approximation of high-order streaming tensors over time, includ-
ing ACP, ATD, and RACP. Under the CP format, ACP minimizes an expo-
nentially weighted recursive least-squares cost function to obtain the tensor
CP factors in an efficient way, thanks to the alternative minimization frame-
work and the randomized sketching technique. Under the Tucker format, ATD
first tracks the underlying low-dimensional subspaces covering the tensor fac-
tors, and then estimates the core tensor using a stochastic approximation. Both
the two algorithms ACP and ATD are fast and fully capable of tracking stream-
ing tensors from incomplete observations. When observations are corrupted
by sparse outliers, we introduce the so-called RACP algorithm robust to gross
corruptions. Particularly, RACP first performs online outlier rejection to accu-
rately detect and remove sparse outliers, and then performs tensor factor track-
ing to efficiently update the tensor factors. Convergence analysis for three al-
gorithms are established in the sense that the sequence of generated solutions
converges asymptotically to a stationary point of the objective function. Exten-
sive experiments are conducted on both synthetic and real data to demonstrate
the effectiveness of the proposed algorithms in comparison with state-of-the-art
adaptive algorithms.

CHAPTER 6. ROBUST TENSOR TRACKING 159

6.1 Introduction

The era of “Big Data”, which deals with massive datasets, has brought new

analysis techniques for discovering new valuable information hidden in the

data [313]. Among these techniques is multilinear low-rank approximation

(LRA) of matrices and tensors, which has recently attracted much attention

from engineers and researchers [11].

A tensor is a multidimensional array and provides a natural representa-

tion of multivariate and high-dimensional data. Low-rank approximation of

tensors (t-LRA) can be considered as a multiway extension of LRA of ma-

trices (which are two-way) to higher dimensions [10]. Generally, t-LRA is

referred to as tensor decomposition which allows factorizing a tensor into

a sequence of basic components [10]. As a result, t-LRA provides a useful

tool for dealing with several large-scale multidimensional problems in mod-

ern data analysis which would be, otherwise, intractable by classical meth-

ods. Two widely-used approaches for t-LRA are CANDECOMP/PARAFAC

(CP) decomposition
1
[14] and Tucker decomposition [314]. Under CP decom-

position, a tensor can be represented as a sum of rank-1 tensors; each rank-1

tensor is formulated as the outer product of vectors. Under Tucker decom-

position, a tensor is factorized into a sequence of factor matrices acting on a

reduced-size core tensor. “Workhorse” algorithms are based on the method of

alternating least-squares (ALS). The readers are referred to the work of [10]

for a good review.

Characteristics of big data are associated with the following three “V”s:

high volume, high velocity and high veracity [313]. Velocity and veracity are

the focus of this chapter. Velocity requires (near) real-time processing of data

streams, while veracity demands robust algorithms to better deal with miss-

ing, noisy and inconsistent data. In online applications, data acquisition is

often a time-varying process in which data are serially collected or changing

with time. Besides, missing data are ubiquitous and more and more common

in high-dimensional problems in which collecting all attributes of data is ei-

ther too expensive or even impossible. In addition, outliers which are data

points that appear to be inconsistent with or exhibit abnormal behaviour dif-

ferent from others causes cause several issues (e.g., they introduce bias in

estimation) for knowledge discovery from data in general and data streams

in particular. However, well-known t-LRA algorithms either face high com-

plexity or operate in batch mode and, thus, may not be suitable for such prob-

lems. This has led to defining a variant of t-LRA, namely tensor tracking or

1
In the literature, there exist some other names for the CP decomposition: PARAFAC (Par-

allel Factors), CPD (Canonical Polyadic Decomposition), and CANDECOMP or CAND (Canon-

ical Decomposition).

CHAPTER 6. ROBUST TENSOR TRACKING 160

streaming tensor decomposition.

6.1.1 Related Works

In the literature, there are several studies related to the problem of track-

ing online t-LRA in the missing data context; the tensors are said to be both

streaming and incomplete. For adaptive CP decomposition, Mardani et al. pro-
posed TeCPSGD [106], which is a first-order algorithm and uses themethod of

stochastic gradient descent (SGD). Leveraging the framework of alternating

minimization, TeCPSGD can estimate directly all factors but the one corre-

sponding to the dimension growing over time in an efficient way. However, it

often suffers from a slow convergence rate inherent to SGD and, hence, is not

suitable for fast time-varying scenarios. To overcome this drawback, Kasai de-

veloped OLSTEC [176], which is an efficient second-order algorithm and ex-

ploits the recursive least-squares technique. OLSTEC provides a competitive

performance in terms of estimation accuracy, but its computational complex-

ity is much higher than that of TeCPSGD. In parallel, Chinh et al. proposed
to first track the low-dimensional tensor subspace and then derive the load-

ing factors from its Khatri-Rao structure [215]. However, the performance of

this algorithm is sensitive to initialization. None of the abovementioned al-

gorithms is capable of tracking online t-LRA when the tensors are of higher

orders (i.e., greater than or equal to 4). On the other hand, some adaptive CP

algorithms, such as [175,216], are capable of handling higher-order streaming

tensors. However, they do not handle incomplete datasets. Recently, Zhang

et al. have developed BRST [214], which is able to handle outliers. To track

and separate the low-rank and sparsity components of the underlying tensor,

a Bayesian statistical model was applied. The computational complexity of

BRST is, however, very high and thus the method becomes inefficient when

handling high-dimensional and fast-arriving data streams.

For adaptive Tucker decomposition, Kasai and Mishra introduced RP-

Tucker [244], dealing with dynamic tensor completion. Leveraging a specific

Riemannian metric, RPTucker effectively performs preconditioned SGD on

the Riemannian manifold of the subspace spanned by tensor factors. Very re-

cently, Gilman and Balzano have proposed TOUCAN (tensor rank-one update

on the complex Grassmannian) [273], for tensor singular-value decomposi-

tion (t-SVD). Similar to RPTucker, TOUCAN also performs the incremental

gradient descent on the Grassmann manifold. However, both algorithms are

only suitable for third-order tensors. Dimitris et al. have recently proposed

the first robust online Tucker decomposition that can deal with streaming

tensors in the presence of outliers [254]. However, it was not designed for

handling missing data. Some studies have been conducted to design efficient

t-SVD algorithms for higher-order tensors, for example [315–317]. These al-

CHAPTER 6. ROBUST TENSOR TRACKING 161

gorithms were designed for batch computation and thus are not suitable for

dynamic models. Recently, Thanh et al. have proposed TT-FOA [32], which is

an adaptive tensor-train (TT) model for streaming tensors. Although TT-FOA

and its stochastic version are capable of tracking the online low-rank tensor-

train representation of large-scale and higher-order tensors, they were not

designed to handle the situation with missing data.

In the multi-aspect streaming perspective of tensor analysis, Song et al.
proposed an effectivemulti-aspect streaming tensor framework (MAST) [232],

used for dynamic tensor completion. MAST can successfully track the mul-

tilinear LRA of incomplete tensors with dynamic growth in more than one

tensor mode. A robust version of MAST for handling outliers, called outlier-

robustmulti-aspect streaming tensor completion and factorization (OR-MSTC),

was proposed in [233]. Thanks to the framework of alternating direction

method of multipliers (ADMM), OR-MSTC can estimate the low-rank compo-

nent from measurements corrupted by outliers. A new inductive framework,

called SIITA, has been proposed to incorporate side information into incre-

mental tensor analysis [248]. SIITA can be seen as a counterpart of MAST for

multi-aspect streaming Tucker decomposition. Although all these approaches

provide good frameworks for the problem of dynamic tensor completion, they

are either useful for third-order tensors only or are of high complexity and

hence relatively inefficient in applications with online data streams. In addi-

tion, convergence analysis of these algorithms is not available.

Some other studies attempted to extend robust subspace learning/online

PCA for high-order tensor data. Hu et al. proposed an incremental tensor

subspace learning algorithm, called IRTSA, and applied it to robust visual

tracking in video streams [239]. Li et al. presented a robust algorithm that

can update the tensor dictionary and detect anomalies in an online manner,

namely RTSL [259]. Sobral et al. introduced an online stochastic tensor al-

gorithm for learning low-rank structure and sparse components in the ten-

sor data [278]. Another incremental tensor decomposition was designed for

video background and foreground separation in [318]. Li et al. developed an

adaptive algorithm for robust low-rank tensor learning, called ORLTM [263].

Very recently, Dimitris et al. have proposed the first robust online Tucker

decomposition that can deal with streaming tensors in the presence of out-

liers [254]. However, none of the above algorithms are designed for handling

missing data. The problem of robust tensor tracking for high-order incom-

plete streaming tensors remains largely unexplored.

6.1.2 Main Contributions

The main contributions of this chapter are summarized as follows:

■ Firstly, under the CP format, we propose a novel adaptive CP (ACP) al-

CHAPTER 6. ROBUST TENSOR TRACKING 162

gorithm for tracking higher-order incomplete streaming tensors. ACP

is fast and requires a low computational complexity and memory stor-

age, thanks to the alternative minimization and randomized sketching.

It can handle incomplete tensors derived from infinite data streams be-

cause it performs CP decomposition with constant time and space com-

plexity that are independent of time index 𝑡 . A convergence analysis

is then provided to establish performance guarantees. To the best of

our knowledge, the proposed ACP algorithm is the first one capable of

dealing with streaming tensors of higher orders with “provable” con-

vergence guarantee.

■ Secondly, under the Tucker format, we propose the second algorithm,

namely adaptive Tucker decomposition (ATD), more flexible than ACP,

for the problem of online t-LRA. ATD exhibits competitive performance

in terms of both estimation accuracy and computational complexity. Its

convergence guarantee is also presented. Also, this chapter presents for

the first time a provable adaptive Tucker algorithm for this problem.

■ Thirdly, we propose a novelmethod for robust adaptive CP, called RACP,

for the robust tensor tracking problem in the presence of both miss-

ing data and outliers. Particularly, RACP aims to learn low-rank com-

ponents of streaming tensors in an online fashion as well as offering

robustness against gross data corruptions. RACP is a scalable and ef-

fective online CP algorithm with ability to (i) estimate low-rank com-

ponents of streaming tensors derived from imperfect and noisy data

streams due to missing observations and outlier corruptions, (ii) adapt

the changes of the underlying data streams in dynamic and nonsta-

tionary environments, (iii) separate and reject sparse outliers in an on-

line fashion with high accuracy, and (iv) easily incorporate prior in-

formation for dealing with specific constraints on the tensor model,

e.g., smoothness and nonnegativity. Also, we prove that RACP is a

provable adaptive CP algorithm with a convergence guarantee. Under

mild conditions, we prove that the sequence of solutions generated by

RACP converges asymptotically to a stationary point of the empirical

loss function. Moreover, the asymptotic variation of the solutions and

the almost-sure convergence of the objective function values are also

analyzed.

■ Last but not least, we provide several experiments on both synthetic

and real data to illustrate the effectiveness of the proposed algorihtms

in comparison with state-of-the-art tensor tracking algorithms.

CHAPTER 6. ROBUST TENSOR TRACKING 163

6.2 Tensor Tracking with Missing Data

6.2.1 Problem Statement

In this section, we investigate the problem of tracking an incomplete stream-

ing tensor X𝑡 ∈ R𝐼1×𝐼2×···×𝐼
𝑡
𝑁 fixing all but the last dimension 𝐼 𝑡

𝑁
(see illustra-

tion in Fig. 6.1 where the gray boxes represent missing data). Specifically, the

𝑡-th tensor slice Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1
of X𝑡 is supposed to be generated under

the following model:

Y𝑡 = P𝑡 ⊛
(
L𝑡 + N𝑡

)
, (6.1)

where P𝑡 is a binary observation mask, N𝑡 is a Gaussian noise tensor of the

same size with Y𝑡 , and Y𝑡 is the multilinear low-rank component. The mask

P𝑡 shows whether the (𝑖1, 𝑖2, . . . , 𝑖𝑁−1)-th entry of Y𝑡 is missing or not, i.e.,

𝑝𝑖1𝑖2 ...𝑖𝑁 −1
=

{
1, if 𝑦𝑖1𝑖2 ...𝑖𝑁 −1

is observed,

0, otherwise.

(6.2)

The low-rank component Y𝑡 is given by
2

L𝑡
Δ
=

r
G;

{
U(𝑛)

}𝑁−1

𝑛=1
, u(𝑁)𝑡

z
, (6.3)

where r = [𝑟1, 𝑟2, . . . , 𝑟𝑁] is the desired lowmultilinear rank, G ∈ R𝑟1×𝑟2×···×𝑟𝑁

is the core tensor, U = {U(𝑛) }𝑁−1

𝑛=1
with U(𝑛) ∈ R𝐼𝑛×𝑟𝑛 contains the first 𝑁

loading factors, and u(𝑁)𝑡 ∈ R𝑟𝑁 is the weight vector.
3
The underlying tensor

X𝑡 is derived from appending the new slice X𝑡 to the previous X𝑡−1 along

the time dimension, i.e.,

X𝑡 = X𝑡−1 ⊞𝑁 Y𝑡 , (6.4)

where 𝐼 𝑡
𝑁
= 𝐼 𝑡−1

𝑁
+ 1, as shown in Fig. 6.1.

The problem of tracking t-LRA of the incomplete streaming tensor X𝑡 can

be stated as follows:

Tensor Tracking with Missing Data: At each time 𝑡 , we observe

a streaming tensor slice Y𝑡 under the data model (6.1). We aim to

estimate G𝑡 and U𝑡 that will provide a good multilinear low-rank

approximation for X𝑡 in time.

2
In online setting, the tensor core G and loading factors {U(𝑛) } might be changing slowly

over time, i.e., G = G𝑡 and U(𝑛) = U(𝑛)𝑡 , 𝑛 = 1, 2, . . . , 𝑁 − 1. Our algorithms are capable of

estimating G and U accurately, but also successfully tracking their variation along the time.

3
In batch setting, the weight vector u𝑡 in (6.3) is seen as the 𝑡-th row of the last loading

factor U(𝑁) ∈ R𝐼 𝑡𝑁 ×𝑟𝑁 of X𝑡 .

CHAPTER 6. ROBUST TENSOR TRACKING 164

t = 2t = 1K

I

J(t)

Figure 6.1: Incomplete streaming tensors.

Applying batch methods to X𝑡 is possible, but these turns out inefficient

for online (adaptive) settings. Our goal is to develop efficient one-pass algo-

rithms, both in computational complexity and memory storage, for tracking

the t-LRA of X𝑡 from past estimations at each time 𝑡 .

In an adaptive scheme, we propose to minimize the following exponen-

tially weighted cost function:

{
G𝑡 ,U𝑡

}
= argmin

G,U

[
𝑓𝑡
(
G,U

)
=

1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏 ℓ
(
G,U, P𝜏 , Y𝜏

)]
, (6.5)

where the loss function ℓ (·) with respect to the 𝜏-th temporal slice Y𝜏 is given

by

ℓ
(
G,U, P𝜏 , Y𝜏

) Δ
= min

u𝜏 ∈R𝑟𝑁

P𝜏 ⊛

(
Y𝜏 −

r
G,

{
U(𝑛)

}𝑁−1

𝑛=1
, u(𝑁)𝜏

z)

2

𝐹

, (6.6)

and 𝛽 ∈ (0, 1] is the forgetting parameter. Here, all observations (i.e. tensor

slices) in the time interval [1, 𝑡] are taken into consideration in the estimation

of the underlying low-rank component at each time 𝑡 . The least-squares loss

ℓ (.) defines the residual for each observation which measures the difference

between the observed value and the estimated value of the tensor slice. 𝛽

is used for discounting the effect of past observations exponentially, and en-

suring that observations in the distant past are substantially down-weighted

in the cost function relative to the latest ones. Accordingly, when 𝛽 < 1,

this can facilitate the tracking ability of estimators, especially in time-varying

and non-stationary environments. The effective window length for 𝛽 < 1 is

(1 − 𝛽)−1
when 𝑡 is large.

In the next two sections, we describe the two proposed algorithms for

solving (6.5) under CP and Tucker decompositions. We make the following

four assumptions for the convenience of deploying our algorithms as well as

analyzing their performance.

(A1) Observed tensor slices {Y𝑡 }𝑡≥1 are independent and identically dis-

tributed from a data-generating distribution, which is the underlying

distribution of the dataset, having a compact set V . This assumption

CHAPTER 6. ROBUST TENSOR TRACKING 165

is very common for convergence analysis in online settings in general

and adaptive tensor decomposition in particular, e.g., [25,106,120,176].

Naturally, it holds in several scenarios, for instance, real-life data are

often bounded such as image, video and audio.
4

(A2) Tensor slices {Y𝑡 }𝑡≥1 follow the data model (6.47) where the true un-

derlying loading factors

{
U(𝑛)𝑡

}
𝑡≥1

are bounded, i.e.,

U(𝑛)𝑡

𝐹
≤ 𝜅 < ∞.

When (A1) holds, (A2) naturally holds. It also prevents arbitrarily large

values in U(𝑛)𝑡 and ill-conditioned computation.

(A3) Observation mask tensors {P𝑡 }𝑡≥1 are independent of {Y𝑡 }𝑡≥1 and

their entries obey the uniform distribution. With respect to the im-

putation of missing values and recovery of low-rank components, the

uniform randomness allows the sequence of binary masks {P𝑡 }𝑡≥1 to

admit stable recovery [319]. Moreover, the number of observed entries

in Y𝑡 is supposed to be larger than the lower bound O(𝑟𝐿 log𝐿), where
𝐿 = 𝐼1𝐼2 . . . 𝐼𝑁−1 and 𝑟 = max(𝑟1, 𝑟2, . . . , 𝑟𝑁) , and every row of Y(𝑛)𝑡 is

observed at least 𝑟 entries for all 𝑛. The constraints are fundamental

conditions to prevent the underdetermined imputation problem [320].

(A4) The lowmultilinear-rank model is either static or changing slowly over

time, i.e., the core tensor and loading factors may vary slowly between

two consecutive times 𝑡 − 1 and 𝑡 : G𝑡 ≃ G𝑡−1
and U(𝑛)𝑡 ≃ U(𝑛)

𝑡−1
. The

tensor rank is supposed to be known.

6.2.2 Adaptive CP Decomposition

In this subsection, we first propose a fast adaptive CP algorithm for tracking

online t-LRA of incomplete streaming tensors, called ACP. Then, we provide a

performance analysis in terms of complexity and convergence to demonstrate

its effectiveness and efficiency.

6.2.2.1 Proposed ACP Algorithm

Under the CP tensor model, (6.5) can be rewritten as follows:

U𝑡 = argmin

U

[
𝑓𝑡 (U) =

1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏 ℓ
(
U, P𝜏 , Y𝜏

)]
, (6.7)

4
Indeed, (A1) is a strong assumption in our analysis, but it can be relaxed as follows: Ob-

served tensor slices {Y𝑡 }𝑡≥1 are Frobenius-norm bounded, i.e., ∥Y𝑡 ∥𝐹 < 𝑀 < ∞. Low-rank
components {Y𝑡 }𝑡≥1 of the observed tensor slices {Y𝑡 }𝑡≥1 are supposed to be deterministic

and bounded. Noise tensors {N𝑡 }𝑡≥1 are i.i.d. from a distribution having a compact support.

CHAPTER 6. ROBUST TENSOR TRACKING 166

where the loss function ℓ (U, P𝜏 , Y𝜏) is defined by

ℓ
(
U, P𝜏 , Y𝜏

) Δ
= min

u(𝑁)𝜏 ∈R𝑟

P𝜏 ⊛

(
Y𝜏 −

r{
U(𝑛) }𝑁−1

𝑛=1
, u(𝑁)𝜏

z)

2

𝐹

. (6.8)

Leveraging past estimations of the loading factors, we propose to min-

imize the surrogate 𝑔𝑡 (U) of 𝑓𝑡 (U) instead, which is defined, for a given

value of

{
u(𝑁)𝜏

}
1≤𝜏≤𝑡 , by

𝑔𝑡 (U) =
1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P𝜏 ⊛

(
Y𝜏 −

r{
U(𝑛)

}𝑁−1

𝑛=1
, u(𝑁)𝜏

z)

2

𝐹

. (6.9)

The main motivation here stems from the following observations which will

be detailed later in our convergence analysis. First, it is easy to verify that

𝑔𝑡 (U) provides an upper bound on 𝑓𝑡 (U) (i.e., 𝑓𝑡 (U) ≤ 𝑔𝑡 (U) for all U
and a fixed set of {u(𝑁)𝜏 }1≤𝜏≤𝑡). Also, the error function 𝑒𝑡 (U) = 𝑔𝑡 (U) −
𝑓𝑡 (U) is 𝐿-smooth for some constant 𝐿 > 0, i.e. it is differentiable and

∇𝑒𝑡 (U) is 𝐿-Lipschitz continuous. As a result, 𝑔𝑡 (U) is a first-order surro-
gate function of 𝑓𝑡 (U) [321] and hence its theoretical convergence results

can be achieved without making any strong assumptions on 𝑓𝑡 (U). In par-

ticular, the sequence of surrogate values {𝑔𝑡 (U𝑡)}∞𝑡=1
is quasi-martingale and

converges almost surely. Accordingly, under a simple assumption that the

directional derivative of 𝑓𝑡 exists in any direction at any U, {𝑔𝑡 (U𝑡)}∞𝑡=1
and

{𝑔𝑡 (U𝑡)}∞𝑡=1
converge to the same limit. Indeed, the solution U𝑡 derived

from minimizing 𝑔𝑡 (U) converges to a stationary point of 𝑓𝑡 (U) when 𝑡 ap-
proaches infinity. Furthermore, 𝑔𝑡 (U) can be effectively minimized with a

convergence rate of O(1/𝑡) and it is much simpler than minimizing 𝑓𝑡 (U).
In order to obtain a low-complexity estimator, we exploit that (6.9) can be

efficiently solved using the alternating minimization framework whose iter-

ation step coincides with the tensor slice’s acquisition in time. In particular,

it can be divided into two main stages: (i) estimate u(𝑁)𝑡 first, given the old

estimation U𝑡 , and (ii) update the loading factor U
(𝑛)
𝑡 , given u(𝑁)𝑡 and the re-

maining factors. The proposed ACP algorithm is summarized in Algorithm 6.

In the following, we will describe the key steps of our algorithm for minimiz-

ing (6.9).

Step 1: Estimation of u(𝑁)𝑡

Under the assumption that the loading factors might be static or slowly time-

varying, i.e., U𝑡 ≃ U𝑡−1, the weight vector u
(𝑁)
𝑡 can be derived from the loss

function ℓ (.) in (6.8) at time 𝑡 by

u(𝑁)𝑡 = argmin

u∈R𝑟

P𝑡 ⊛
(
Y𝑡 −H𝑡 ×𝑁 u⊤

)

2

2

, (6.10)

CHAPTER 6. ROBUST TENSOR TRACKING 167

where H𝑡 = I
∏𝑁−1

𝑛=1
×𝑛U(𝑛)𝑡−1

. Problem (6.10) can be readily converted into

the standard form of

u(𝑁)𝑡 = argmin

u∈R𝑟

P𝑡 (y𝑡 − H𝑡u)

2

2

, (6.11)

where P𝑡 = diag(vec(P𝑡)), y𝑡 = vec(Y𝑡), andH𝑡 has the Khatri-Rao struc-
ture, i.e.,

H𝑡 =
𝑁−1⊙
𝑛=1

U(𝑛)
𝑡−1
. (6.12)

For the sake of convenience, let Ω𝑡 and xΩ𝑡
be the set and vector contain-

ing the observed entries of Y𝑡 , while HΩ𝑡
is the sub-matrix of H𝑡 obtained by

selecting the rows corresponding to xΩ𝑡
.

Generally, problem (6.11) is an overdetermined least-squares (LS) regres-

sion and requires O(|Ω𝑡 |𝑟 2) with respect to (w.r.t.) computational complexity

to compute the exact LS solution [322]. Thus, it costs time and effort when

dealing with high-dimensional and high-order tensors.

We propose to solve a regularized least-squares sketch of (6.11) instead,

i.e.,

u(𝑁)𝑡 = argmin

u∈R𝑟

L (
yΩ𝑡
− HΩ𝑡

u
)

2

2

+ 𝛼

u

2

2
, (6.13)

where 𝛼 is a small positive parameter for regularization, L(.) is a sketching
map that helps reduce the sample size, and hence speed up the calculations.

Here, the introduction of 𝛼 ∥u∥2
2
is for avoiding the singular/ill-posed com-

putation or pathological cases as well as increasing the least-squares inter-

pretability in practice.
5
Accordingly, the updated rule for u𝑡 is given by

u(𝑁)𝑡 =

(
H⊤S𝑡HS𝑡 + 𝛼I

)−1

H⊤S𝑡xS𝑡 , (6.14)

whereHS𝑡 and xS𝑡 are transformed versions ofHΩ𝑡
and xΩ𝑡

under the sketch-

ing L(.), respectively.
Inwhat follows, we indicate that inmany cases, the uniform row-sampling

can provide a good sketch for (6.11) in which each row has equal chance of

being selected. We start by revisiting the definition of the leverage scores and

coherence of a matrix.

5
The value of𝛼 can be chosen in the range [10

−3, 1] for reasonable performance in practice.

CHAPTER 6. ROBUST TENSOR TRACKING 168

Definition 4 (Leverage Scores & Coherence [323, Definition 2.1]).
Given a matrix A = [a⊤

1
; . . . ; a⊤𝑚] ∈ R𝑚×𝑟 with 𝑚 > 𝑟 , its 𝑖-th row

leverage score is defined as

T𝑖 (A)
Δ
= a⊤𝑖

(
A⊤A

)
#a𝑖 =

U𝐴 (𝑖, :)

2

2
, 𝑖 = 1, 2, . . . ,𝑚. (6.15)

Here, U𝐴 ∈ R𝑚×𝑟 is the left singular vector matrix of A. The coherence
of A is the largest leverage score

𝜇 (A) = max

𝑖
T𝑖 (A). (6.16)

The leverage score T𝑖 (A) evaluates the contribution of a𝑖 in constituting

A’s row space. Accordingly, if the value of 𝜇 (A) is high, A contains at least

one “strong” row whose removal would have a pernicious effect on its row

space. When the value of 𝜇 (A) is small (e.g. 𝜇 (A) ≈ 𝑟/𝑚 ≪ 1), no specific

row is more important than others, i.e. information is approximately uni-

formized across all rows. In such a case, the matrix A is called incoherent.

The following proposition indicates that the Khatri-Rao structure of H𝑡 may

increase the incoherence from its factors.

Proposition 11 (Coherence of H𝑡) Let 𝜇𝑡−1 =
1

𝑁 − 1

𝑁−1∑︁
𝑛=1

𝜇
(
U(𝑛)
𝑡−1

)
.

We have

𝜇 (H𝑡) = 𝜇
(𝑁−1⊙
𝑛=1

U(𝑛)
𝑡−1

)
(𝑖)
≤

𝑁−1∏
𝑛=1

𝜇
(
U(𝑛)
𝑡−1

) (𝑖𝑖)
≤ 𝜇𝑁−1

𝑡−1
< 1. (6.17)

Proof. The first inequality (i) is indeed a corollary of Lemma 4 in [324]

which shows that 𝜇 (A1 ⊙ A2) ≤ 𝜇 (A1)𝜇 (A2) for any A1 and A2 of suitable

sizes.

The second inequality (ii) is obtained by applying the AM–GM inequality

to the set of 𝑁 positive numbers

{
𝜇
(
U(𝑛)
𝑡−1

)}𝑀−1

𝑛=1
.

Accordingly, when dealingwith a high-order streaming tensor (𝑁 is large)

and/or with some incoherent tensor factors, 𝜇 (H𝑡) ≤ 𝜇𝑁−1

𝑡−1
≪ 𝜇𝑡−1 < 1,

i.e., H𝑡 has low coherence. In such cases, uniform row-sampling is effec-

tive [325, 326]. In the presence of highly coherent factors, a preconditioning

(mixing) step is necessary to guarantee the incoherence. For instance, the sub-

sampled randomized Hadamard transform (SRHT) is a good candidate which

can produce a transformedmatrixwhose rows have (almost) uniform leverage

scores [327]. In this context, we here emphasize that well-known randomized

LS algorithms can help save much computational complexity while obtaining

CHAPTER 6. ROBUST TENSOR TRACKING 169

reasonable estimations of u(𝑁)𝑡 , especially for large-scale low-rank tensors.

Step 2: Estimation of U(𝑛)𝑡

The loading factor U(𝑛)𝑡 can be updated by minimizing the objective function

𝑔𝑡 (·) w.r.t. U(𝑛) , as

U(𝑛)𝑡 = argmin

U(𝑛) ∈R𝐼𝑛×𝑟

1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P(𝑛)𝜏

⊛
(
Y(𝑛)
𝜏
− U(𝑛)

(
W(𝑛)𝜏

)⊤)

2

𝐹
, (6.18)

where Y(𝑛)
𝜏
(resp. P(𝑛)

𝜏
) is the mode-𝑛 unfolding of Y𝜏 (resp. P𝜏) and the

coefficient matrix W(𝑛)𝜏 is given by

W(𝑛)𝜏 =

(𝑁−1⊙
𝑖=1,𝑖≠𝑛

U(𝑖)
𝑡−1

)
⊙ (u(𝑁)𝜏)⊤. (6.19)

Interestingly, we exploit the fact that minimization (6.18) can boil down

to the problem of subspace tracking in the presence of missing data [41]. Par-

ticularly, the solution of (6.18) can be obtained by minimizing subproblems

for each row u(𝑛)𝑚 of U(𝑛) ,𝑚 = 1, 2, . . . , 𝐼𝑛 as

u(𝑛)𝑡,𝑚 = argmin

u(𝑛)𝑚 ∈R𝑟

1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P(𝑛)𝜏,𝑚

((
y(𝑛)
𝜏,𝑚

)⊤ −W(𝑛)𝜏

(
u(𝑛)𝑚

)⊤)

2

𝐹
, (6.20)

where y(𝑛)
𝜏,𝑚

is the𝑚-th row ofY(𝑛)
𝜏

and the row-maskmatrix P(𝑛)
𝜏,𝑚

= diag(P(𝑛)
𝜏
(𝑚, :)).

Thanks to the parallel scheme of the well-known PETRELS algorithm for sub-

space tracking [73], we derive an efficient estimator for minimizing the ex-

ponentially weighted LS cost function (6.18). Particularly, we first define two

auxiliary matrices S(𝑛)𝑡 and V(𝑛)𝑡 as follows
6

S(𝑛)𝑡 = 𝛽S(𝑛)
𝑡−1
+

(
W(𝑛)𝑡

)⊤W(𝑛)𝑡 , (6.21)

V(𝑛)𝑡 =
(
S(𝑛)𝑡

)−1
(
W(𝑛)𝑡

)⊤
. (6.22)

The loading factor U(𝑛)𝑡 is then updated recursively by

U(𝑛)𝑡 = U(𝑛)
𝑡−1
+ 𝚫Y(𝑛)𝑡

(
V(𝑛)𝑡

)⊤
, (6.23)

where the matrix 𝚫Y(𝑛)𝑡 is derived from the mode-𝑛 unfolding of the residual

error tensor 𝚫Y𝑡

𝚫Y𝑡 = P𝑡 ⊛
(
Y𝑡 −H𝑡 ×𝑁 (u(𝑁)𝑡)⊤

)
. (6.24)

6
To enable the recursive updating rule, the matrix S(𝑛)

0
is initialized by a scaled identity

matrix S(𝑛)
0

= 𝛿𝑛I𝑟𝑛 with 𝛿𝑛 > 0.

CHAPTER 6. ROBUST TENSOR TRACKING 170

Input: Incomplete slices

{
P𝑡 ⊛ Y𝑡

}∞
𝑡=1

, Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×1
, CP rank 𝑟 ,

Forgetting factor 𝛽 ∈ (0, 1], Parameters: 𝛼 > 0, 𝛿 > 0, and𝑚 > 0.

Initialization:

{
U(𝑛)

0

}𝑁−1

𝑛=1
is initialized randomly and

{
S(𝑛)

0

}𝑁−1

𝑛=1
= 𝛿I𝑟 .

Main Program:

for 𝑡 = 1, 2, . . . do

YΩ𝑡
= P𝑡 ⊛ Y𝑡

Step 1: Estimation of u𝑡

S = randsample
(
|Ω𝑡 |, ⌊𝑚𝑟 log 𝑟⌉

)
H𝑡 = I

𝑁−1∏
𝑛=1

×𝑛U(𝑛)𝑡−1

u𝑡 =
(
H⊤S𝑡HS𝑡 + 𝛼I

)−1H⊤S𝑡yS𝑡

U(𝑁)𝑡 =

[
U(𝑁)
𝑡−1

⊤
, u(𝑁)𝑡

]⊤
𝚫Y𝑡 = P𝑡 ⊛

(
Y𝑡 −H𝑡 ×𝑁 u⊤𝑡

)
Step 2: Estimation of

{
U(𝑛)𝑡

}𝑁−1

𝑛=1

for 𝑛 = 1, 2, . . . , 𝑁 − 1 do

Y(𝑛)Ω𝑡
= unfold𝑛 (YΩ𝑡

)

𝚫Y(𝑛)𝑡 = unfold𝑛 (𝚫X𝑡)

W(𝑛)𝑡 =
((
U(𝑛)
𝑡−1

)
#Y(𝑛)Ω𝑡

)⊤
S(𝑛)𝑡 = 𝛽S(𝑛)

𝑡−1
+

(
W(𝑛)𝑡

)⊤W(𝑛)𝑡

V(𝑛)𝑡 = (S(𝑛)𝑡)−1W(𝑛)𝑡

U(𝑛)𝑡 = U(𝑛)
𝑡−1
+ 𝚫Y(𝑛)𝑡

(
V(𝑛)𝑡

)⊤
end

end

Output:

{
U(𝑛)𝑡

}𝑁
𝑛=1

Algorithm 6: Adaptive CP Decomposition (ACP)

This is not PETRELS, but a modified version. Here, we can utilize the already

updated U(𝑛)𝑡 for tracking the remaining factors which can improve the rate

of convergence. Also, we can estimate all the 𝑁 factors in a parallel scheme

which reduces further the cost when several computational units are avail-

able.

CHAPTER 6. ROBUST TENSOR TRACKING 171

6.2.2.2 Performance Analysis

Memory Storage and Computational Complexity: For the sake of sim-

plifying the analysis, we assume that the fixed dimensions of the streaming

tensor Y𝑡 are equal to 𝐼 and the CP rank is much lower than 𝐼 , 𝑟 ≪ 𝐼 .

With respect to memory storage, ACP requires O
(
(𝑁 −1) (𝐼𝑟 +𝑟 2)

)
words

of memory at each time 𝑡 , in particular for 𝑁 loading factors {U(𝑛) }𝑁−1

𝑛=1
and

𝑁 − 1 matrices S(𝑛)𝑡 of size 𝑟 × 𝑟 .
In terms of computational complexity, the estimation of u(𝑁)𝑡 costsO(|S𝑡 |𝑟 2)

flops from solving the randomized LS regression and forming the sketch for

HS𝑡 . The complexity for updating the loading factor U(𝑛)𝑡 comes from the

computation of the two matrices 𝚫Y(𝑛)𝑡 and V(𝑛)𝑡 . In particular, the first one

requires O(|Ω𝑡 |𝑟) flops while the latter costs O(𝐼𝑁−2𝑟 2) flops. Note that, the
matrix S(𝑛)𝑡 is of size 𝑟 × 𝑟 , thus the computation of

(
S(𝑛)𝑡

)−1

is not expensive

and it is independent of the tensor dimension. In conclusion, the overall com-

putational complexity is O
(
|Ω𝑡 |𝑟 + ((𝑁 − 1)𝐼𝑁−2 + |S𝑡 |)𝑟 2

)
flops and reduces

to O
(
|Ω𝑡 |𝑟 + (𝐼𝑁−2 + |S𝑡 |)𝑟 2

)
flops in a parallel scheme. Note that when a

preconditioning step (e.g. SRHT) is needed to guarantee the incoherence of

HΩ𝑡
, ACP requires an additional cost of O

(
|Ω𝑡 |𝑟 log 𝑟

)
flops [328].

Convergence Guarantee: Inspired by our companion work on robust

subspace tracking in [25] and the convergence analysis for 3-order tensors in

[106,176], we derive a unified approach to analyze the convergence behavior

of ACP for high-order streaming tensors with missing data. Specifically, we

analyze the convergence of both the sequence of objective values {𝑓𝑡 (U𝑡)}∞𝑡=1

and the sequence of generated solutions {U𝑡 }∞𝑡=1
. Our main theoretical result

is stated in the following lemma.

Lemma 9 Given assumptions (A1)-(A4), 𝛽 = 1, and the trueU is fixed,
the sequence of solutions {U𝑡 }∞𝑡=1

generated by ACP converges to a min-
imum point of 𝑓𝑡 when 𝑡 →∞.

Proof Sketch. Our proof contains three main stages: (S1) we show that the

solutions {U𝑡 , u𝑡 }∞𝑡=1
are uniformly bounded to justify the well-definedness

condition. Their variations between two successive time instances satisfy

∥U(𝑛)
𝑡+1 − U

(𝑛)
𝑡 ∥𝐹 → O(1/𝑡) a.s. (S2) The sequence of nonnegative surrogate

values {𝑔𝑡 (U𝑡)}∞𝑡=1
is quasi-martingale and convergent almost surely. (S3)

The empirical loss function {𝑓𝑡 (U𝑡)}∞𝑡=1
and its surrogate {𝑔𝑡 (U𝑡)}∞𝑡=1

con-

verge to the same limit, i.e., 𝑔𝑡 (U𝑡) → 𝑓𝑡 (U𝑡) 𝑎.𝑠 . Accordingly, {U𝑡 }∞𝑡=1

converges to a stationary point of 𝑓𝑡 (U), i.e., ∇𝑓𝑡 (U𝑡)
𝑡→∞−→ 0. Details of the

analysis is provided in the Appendix A.

CHAPTER 6. ROBUST TENSOR TRACKING 172

Input: Observations

{
P𝑡 ⊛ X𝑡

}∞
𝑡=1

, X𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×1
, Tucker rank rTD =

[𝑟1, . . . , 𝑟𝑁], Forgetting factor 𝛽 , Parameters: 𝛼 > 0, 𝛿 > 0, and𝑚 > 0.

Initialization:

{
U(𝑛)

0

}𝑁−1

𝑛=1
and G

0
are initialized randomly,

{
S(𝑛)

0

}𝑁−1

𝑛=1
= 𝛿I𝑟𝑛 .

Main Program:

for 𝑡 = 1, 2, . . . do

YΩ𝑡
= P𝑡 ⊛ Y𝑡

Step 1: Estimation of u𝑡

S = randsample
(
|Ω𝑡 |, ⌊𝑚𝑟𝑁 log 𝑟𝑁 ⌉

)
H𝑡 = G𝑡−1

𝑁−1∏
𝑛=1

×𝑛U(𝑛)𝑡−1

u𝑡 =
(
H⊤S𝑡HS𝑡 + 𝛼I

)−1H⊤S𝑡 yS𝑡

U(𝑁)𝑡 =

[
U(𝑁)
𝑡−1

⊤
, u(𝑁)𝑡

]⊤
𝚫Y𝑡 = P𝑡 ⊛

(
Y𝑡 −H𝑡 ×𝑁 u⊤𝑡

)
Step 2: Estimation of {U(𝑛)𝑡 }𝑁−1

𝑛=1

for 𝑛 = 1, 2, . . . , 𝑁 − 1 do

W(𝑛)𝑡 =
(
U(𝑛)
𝑡−1

)
#Y(𝑛)Ω𝑡

S(𝑛)𝑡 = 𝛽S(𝑛)
𝑡−1
+W(𝑛)𝑡

(
W(𝑛)𝑡

)⊤
V(𝑛)𝑡 =

(
S(𝑛)𝑡

)−1W(𝑛)𝑡

U(𝑛)𝑡 = U(𝑛)
𝑡−1
+ 𝚫Y(𝑛)𝑡

(
V(𝑛)𝑡

)⊤
end

Step 3: Estimation of G𝑡

Z𝑡 = u𝑡 ⊗
(𝑁−2⊗
𝑛=2

U(𝑛)𝑡

)
𝚫G𝑡 =

(
U(1)𝑡

)
#

𝚫Y(1)𝑡 Z#

𝑡

𝚫G𝑡 = reshape(𝚫G𝑡 , rTD)
G𝑡 = G𝑡−1

+ 𝚫G𝑡

end

Output:

{
U(𝑛)𝑡

}𝑁
𝑛=1

and G𝑡

Algorithm 7: Adaptive Tucker Decomposition (ATD)

6.2.3 Adaptive Tucker Decomposition

The proposed ACP algorithm is not always well-defined due to the fact that

for a given CP rank, the optimal CP-based representation of tensors may be

nonexistent [207]. Under the Tucker format, we now propose a more flexible

algorithm called adaptive Tucker decomposition (ATD).

In the sameway, we propose tominimize the following surrogate function

CHAPTER 6. ROBUST TENSOR TRACKING 173

𝑔𝑡 (G,U) of 𝑓𝑡 (G,U) in (6.5):

{G𝑡 ,U𝑡 } = argmin

G,U

𝑔𝑡 (G,U), where

𝑔𝑡 (G,U) =
1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P𝜏 ⊛

(
Y𝜏 −

r
G;

{
U(𝑛)

}𝑁−1

𝑛=1
, u(𝑁)𝜏

z)

2

𝐹

, (6.25)

to leverage old estimations of the tensor core and the loading factors at each

time 𝑡 .

6.2.3.1 Proposed ATD Algorithm

Thanks to the alternating minimization framework, we can obtain an effi-

cient first-order estimator for optimizing (6.25) in the same manner as ACP.

Specifically, we first update the weight vector u(𝑁)𝑡 , given old estimations of

G and U, then estimate the loading factors {U(𝑛)𝑡 }𝑛≥1 given u(𝑁)𝑡 , G𝑡−1
and

the remaining factors, and finally obtain the core tensor G𝑡 from the latest

updated factors. The proposed algorithm is summarized in Algorithm 7.

Step 1: Estimation of u(𝑁)𝑡

We can derive the weight vector u(𝑁)𝑡 from the minimizing the last summand

of 𝑔𝑡 (G,U) as follows:

u(𝑁)𝑡 = argmin

u∈R𝑟𝑁

P𝑡 ⊛
(
Y𝑡 −H𝑡 ×𝑁 u⊤

)

2

2

, (6.26)

where H𝑡 = G𝑡−1

∏𝑁−1

𝑛=1
×𝑛U(𝑛)𝑡−1

. Similar to (6.10), the expression (6.26) can

be readily reformulated into its matrix-vector format as follows:

u(𝑁)𝑡 = argmin

u∈R𝑟𝑁

P𝑡 (y𝑡 − H𝑡u)

2

2

, (6.27)

where y𝑡 = vec(Y𝑡), H𝑡 is the unfolding matrix of the tensor H𝑡 and the

observation matrix P𝑡 = diag(vec(P𝑡)). The closed-form solution of (6.27)

can be directly obtained by applying the LS method as

u(𝑁)𝑡 =

(
H⊤𝑡 P𝑡H𝑡 + 𝛼I

)−1

H⊤𝑡 P𝑡y𝑡 , (6.28)

where 𝛼 > 0 is a small regularization parameter to avoid pathological cases

in practice.

In order to speed up the computation of (6.28), the same randomized sam-

pling technique as in (7.12) can be applied to obtain an approximated version

of u(𝑁)𝑡 .

CHAPTER 6. ROBUST TENSOR TRACKING 174

Step 2: Estimation of U(𝑛)𝑡

Given u𝑡 and old estimations of G𝑡−1
and U𝑡−1, we rewrite the minimiza-

tion (6.25) with respect to the variable U(𝑛) as follows:

U(𝑛)𝑡 = argmin

U(𝑛) ∈R𝐼𝑛×𝑟𝑛

1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P(𝑛)𝜏

⊛
(
Y(𝑛)
𝜏
− U(𝑛)W(𝑛)𝜏

)

2

𝐹
, (6.29)

where the coefficient matrixW(𝑛)𝜏 is the mode-𝑛 unfolding of the tensor W𝜏

which is defined by

W𝜏 =

(
G𝑡−1

𝑁−1∏
𝑖=1,𝑖≠𝑛

×𝑖U(𝑖)𝑡−1

)
×𝑁+1 (u(𝑁)𝜏)⊤. (6.30)

Minimization (6.29) is similar to its counterpart in the proposed ACP algo-

rithm in (6.18). Therefore, we can apply the same subspace-based technique

to update U(𝑛)𝑡 . In particular, the updating rule for U(𝑛)𝑡 can be given by

U(𝑛)𝑡 = U(𝑛)
𝑡−1
+ 𝚫Y(𝑛)𝑡 (V

(𝑛)
𝑡)⊤, (6.31)

where the residual error 𝚫Y(𝑛)𝑡 and the coefficient matrix V(𝑛)𝑡 are computed

as

𝚫Y(𝑛)𝑡 = P(𝑛)𝑡 ⊛
(
Y(𝑛)𝑡 − U

(𝑛)
𝑡−1

W(𝑛)𝑡

)
, (6.32)

V(𝑛)𝑡 =
(
S(𝑛)𝑡

)−1W(𝑛)𝑡 , (6.33)

where the matrix S(𝑛)𝑡 is updated recursively as

S(𝑛)𝑡 = 𝛽S(𝑛)
𝑡−1
+W(𝑛)𝑡 (W

(𝑛)
𝑡)⊤. (6.34)

Step 3: Estimation of G𝑡

For the estimation of G𝑡 given the latest updated loading factors, (6.25) is

reformulated as

G𝑡 = argmin

G

1

𝑡

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P(1)𝜏 ⊛ (

Y(1)
𝜏
− U(1)𝑡 G(1)Z𝜏

)

2

𝐹
, (6.35)

where the variable G(1) is the mode-1 unfolding of G and the matrix Z𝜏 is

given by

Z𝜏 = u(𝑁)𝜏 ⊗
(𝑁−1⊗
𝑛=2

U(𝑛)𝑡

)
. (6.36)

CHAPTER 6. ROBUST TENSOR TRACKING 175

When handling a streaming tensor with a huge number of slices (i.e., 𝑡 is

large) and a large number of unknown parameters in G (i.e.,

∏𝑁
𝑛=1

𝑟𝑛 is large),

applying batch gradient methods for (6.35) may be time-consuming despite

the effect of the forgetting factor 𝜆. Stochastic approximation is introduced

as a good alternative [329].

In particular, we minimize the last summand of (6.35) instead:

G𝑡 = argmin

G

P(1)𝑡 ⊛ (
Y(1)𝑡 − U

(1)
𝑡 G(1)Z𝑡

)

2

𝐹
. (6.37)

Given the estimation ofU𝑡 , the residual error between the newcoming tensor

slice and the recovered one is given by

𝚫Y(1)𝑡 = P(1)𝑡 ⊛
(
Y(1)𝑡 − U

(1)
𝑡 G(1)

𝑡−1
Z𝑡

)
. (6.38)

Accordingly, we can derive the variation of G at time 𝑡 from

𝚫Y(1)𝑡 = P(1)𝑡 ⊛
(
U(1)𝑡 𝚫G(1)𝑡 Z𝑡

)
, (6.39)

where 𝚫G(1)𝑡 = G(1)𝑡 − G
(1)
𝑡−1

. In particular, 𝚫G
𝑡
is computed as

7

𝚫G(1)𝑡 =
(
U(1)𝑡

)
#

𝚫Y(1)𝑡 Z#

𝑡 . (6.41)

After that,𝚫G(1)𝑡 will be reshaped into a tensor𝚫G𝑡 of size 𝑟1×𝑟2×· · ·×𝑟𝑁 .
To sum up, we obtain the simple rule for updating G𝑡 as follows:

G𝑡 = G𝑡−1
+ 𝚫G𝑡 . (6.42)

We note that for overdetermined cases, the rule for updating G𝑡 can be sped

up by using the following “vector trick” in [331]:

vec(ABC⊤) = (C ⊗ A)vec(B). (6.43)

In particular, the expression (6.39) can be cast into the standard least-squares

format as follows:

𝜹y𝑡 = P𝑡

(
u𝑡 ⊗

(𝑁−1⊗
𝑛=1

U(𝑛)𝑡

))
𝜹g𝑡 , (6.44)

where 𝜹x𝑡 = vec(𝚫Y(1)𝑡), 𝜹g𝑡 = vec
(
𝚫G(1)𝑡

)
and P𝑡 = diag

(
vec(P(1)𝑡)

)
.

Interestingly, (6.44) is of the Kronecker structure, thus 𝜹g𝑡 can be efficiently

computed by applying randomized sketching techniques with a much lower

complexity, e.g., the uniform sampling or the Kronecker product regression

in [332].

7
Since Z𝑡 is of the Kronecker structure, we can obtain the pseudoinverse of Z𝑡 efficiently

by using the following nice property [330]

(A1 ⊗ A2 ⊗ · · · ⊗ A𝑛)# = A#

1
⊗ A#

2
⊗ · · · ⊗ A#

𝑛 . (6.40)

CHAPTER 6. ROBUST TENSOR TRACKING 176

Step 4: Orthogonalization Step (Optional)

In the cases where the orthogonality constraints are imposed on the loading

factors, we add an orthogonalization step of U(𝑛) at each time 𝑡 as follows:

U(𝑛)𝑡 = U(𝑛)𝑡

[(
U(𝑛)𝑡

)⊤U(𝑛)𝑡

]−1/2
, (6.45)

where (.)−1/2
represents the inverse square root or simply take the QR de-

composition of U𝑡 . Accordingly, the update of 𝚫G𝑡 in (6.41) can be speeded

up by replacing the pseudo-inverse with the transpose operator:

𝚫G
𝑡
=

(
U(1)𝑡

)⊤
𝚫Y(1)𝑡 Z⊤𝑡 . (6.46)

6.2.3.2 Performance Analysis

Memory Storage and Computational Complexity: We assume that the

fixed dimensions of the streaming tensor are equal to 𝐼 and the desired Tucker

rank is rTD = [𝑟, 𝑟, . . . , 𝑟] .
In terms of memory storage, ATD requires O(𝑟𝑁) and O

(
(𝑁 −1)𝐼𝑟

)
words

of memory for saving the core tensor G and 𝑁 − 1 loading factors {U(𝑛) }𝑁−1

𝑛=1

respectively. In addition, the cost for saving𝑁−1matrices S(𝑛)𝑡 isO((𝑁−1)𝑟 2)
words of memory in total.

In terms of computational complexity, the computation of ATD comes

from threemain estimations: (i) theweight vector u(𝑁)𝑡 , (ii) the loading factors

{U(𝑛) }𝑁−1

𝑛=1
and (iii) the core tensor G. The two former estimations are similar

to that of ACP, so they require a cost of O
(
|Ω𝑡 |𝑟 + (𝐼𝑁−2 + |S1 |)𝑟 2

)
flops in a

parallel scheme where |S1 | denotes the size of the sampling set of (6.27). The

latter estimation costs O
(
|Ω𝑡 |𝑟 + 𝐼𝑁−2𝑟 2𝑁

)
flops for computing 𝚫X and 𝚫G.

If using the randomize technique in this stage, the complexity is reduced to

O
(
|Ω𝑡 |𝑟 + |S2 |𝑟 2𝑁

)
flops where S2 is the set of selected samples from (6.44).

Therefore, the overall computational complexity of ATD is O
(
|Ω𝑡 |𝑟 + (𝐼𝑁−2 +

|S1 |)𝑟 2 + |S2 |𝑟 2𝑁
)
in parallel scheme.

Convergence Guarantee: The convergence of ATD can be stated by the

following lemma:

Lemma 10 Given assumptions (A1)-(A4), 𝛽 = 1, the true G and U

are fixed, the solutions {G𝑡 ,U𝑡 }∞𝑡=1
generated by ATD converges to a

stationary point of the empirical cost function 𝑓𝑡 when 𝑡 →∞.

Proof Sketch. The proof of Lemma 10 can be obtained by applying the

same arguments and principles as in the case of ACP, detailed in the Ap-

pendix A. In particular, the analysis consists of the following three main

CHAPTER 6. ROBUST TENSOR TRACKING 177

Figure 6.2: Temporal slice Y𝑡 with missing data and sparse outliers.

stages: (S1) the surrogate function 𝑔𝑡 (G,U) is strongly bi-convex in the

sense that G and U are seen as multivariate variables. Solutions {G𝑡 ,U𝑡 }∞𝑡=1

generated by ATD are bounded and their variations between two successive

time instances satisfy ∥U(𝑛)
𝑡+1 − U

(𝑛)
𝑡 ∥𝐹 → O(1/𝑡) a.s. (S2) The nonnegative

sequence {𝑔𝑡 (G𝑡 ,U𝑡)}∞𝑡=1
is quasi-martingale and hence convergent almost

surely. Furthermore, 𝑔𝑡 (G𝑡 ,U𝑡) − 𝑓𝑡 (G𝑡 ,U𝑡) → 0 a.s. (S3) The empirical

cost function 𝑓𝑡 (G,U) is continuously differentiable and Lipschitz. The se-

quence of solutions {G𝑡 ,U𝑡 }∞𝑡=1
converges to a stationary point of 𝑓𝑡 (G,U),

i.e., when 𝑡 →∞, the gradient ∇𝑓𝑡 (G𝑡 ,U𝑡) → 0 a.s.

6.3 Tensor Tracking with Sparse Outliers

6.3.1 Problem Statement

Here, we consider an incomplete streaming tensor X𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×𝑡

whose slices are serially observed with time. At each time 𝑡 , X𝑡 is particularly

obtained by concatenating a new incoming “slice” Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×1
into

the previous X𝑡−1 along the time dimension, i.e., X𝑡 = X𝑡−1 ⊞𝑁 Y𝑡 . Particu-

larly, we suppose to observe the slice Y𝑡 satisfying the following model:

Y𝑡 = P𝑡 ⊛
(
L𝑡 + O𝑡 + N𝑡

)
, (6.47)

where P𝑡 is a binary mask tensor, L𝑡 is a low-rank tensor, O𝑡 is a sparse

tensor containing outliers, N𝑡 is a Gaussian noise tensor, and all these tensors

are of the same size with Y𝑡 , please see Fig 6.2 for an illustration.

Specifically, the observationmaskP𝑡 indicateswhether the (𝑖1, 𝑖2, . . . , 𝑖𝑁−1)-
th entry of L𝑡 is observed or missing, i.e.,

𝑝𝑖1𝑖2 ...𝑖𝑁 =

{
0, if 𝑥𝑖1𝑖2 ...𝑖𝑁 −1

is missing,

1, otherwise.

(6.48)

The low-rank tensor L𝑡 is generated according to the following model:

L𝑡 =

r{
U(𝑛)

}𝑁−1

𝑛=1
, u(𝑁)𝑡

z
, (6.49)

CHAPTER 6. ROBUST TENSOR TRACKING 178

where u(𝑁)𝑡 ∈ R𝑟×1
is a weight vector

8
and {U(𝑛) }𝑁−1

𝑛=1
, with U(𝑛) ∈ U𝑛 ⊆

R𝐼𝑛×𝑟 , are loading factors. For short, writeD := U1×U2×· · ·×U𝑁 and denote

D =
[
(U(1))⊤, . . . , (U(𝑁))⊤

]⊤
the tensor dictionary containing all loading fac-

tors. The robust tensor tracking (RTT) problem can be stated as follows:

Tensor Tracking with Sparse Outliers: At each time 𝑡 , we observe

a streaming tensor slice Y𝑡 under the data model (6.47). We aim to

estimate D𝑡 ∈ D such that it can provide a good multilinear low-rank

approximation for X𝑡 in time.

Now, we define a loss function ℓ (·) that not only promotes sparsity but

also preserves convexity. For a fixed D and a tensor slice X under a binary

observation mask P, the loss function w.r.t. D and {P, Y} is defined as

ℓ
(
D, P, X

)
= min

u,O
ℓ̃
(
D, P, X, O, u

)
, with (6.50)

ℓ̃
(
D, P, Y, O, u

)
=

O

1
+ 𝜌

2

P ⊛ (
Y − O −H ×𝑁 u⊤

)

2

𝐹
, (6.51)

where H = I
∏𝑁−1

𝑛=1
×𝑛U(𝑛) . The ℓ1-norm is to promote the sparsity on O

and 𝜌 > 0 is a regularized parameter.

Now, given a streaming set of incomplete tensor slices {P𝜏 ⊛ Y𝜏 }𝑡𝜏=1
,

robust tensor tracking (RTT) can be formulated as the following optimization

problem:

D𝑡 = argmin

D

[
𝑓𝑡 (D) =

1

𝐿𝑡

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏 ℓ
(
D, P𝜏 , Y𝜏

)]
, (6.52)

where 𝐿𝑡 is the length of a sliding window and 𝛽 is a forgetting factor. When

𝐿𝑡 = 𝑡, 𝛽 = 1, the minimization of (6.52) boils down to its counterpart in batch

setting. When 0 < 𝐿𝑡 < 𝑡 or 𝛽 < 1, it reduces the impact of past observations,

and hence facilitates the tracking ability of RTT estimators in time-varying

conditions.

We make some assumptions to support the proposed algorithm in Section

III. First, entries of tensor slices {Y𝑡 }𝑡≥1 are Frobenius-norm bounded, i.e.,

∥Y𝑡 ∥𝐹 ≤ 𝑀𝑥 < ∞ ∀𝑡 . This prevents arbitrarily large values in observations

and ill-conditioned computation. Next, the tensor rank 𝑟 is supposed to re-

main unchanged over time. In addition, tensor factors {U(𝑛)𝑡 }𝑁𝑛=1
are bounded

and full column rank, i.e., rank(U(𝑛)𝑡) = 𝑟 < 𝐼𝑛 and ∥U(𝑛)𝑡 ∥𝐹 ≤ 𝜅𝑈 < ∞ ∀𝑛.
Besides, the variation between two consecutive time instants is small, U(𝑛)𝑡 ≃

8
In batch setting, the weight vector u𝑡 in (6.49) is seen as the 𝑡-th row of the last loading

factor U(𝑁) ∈ R𝐼 𝑡𝑁 ×𝑟 of the underlying tensor X𝑡 .

CHAPTER 6. ROBUST TENSOR TRACKING 179

U(𝑛)
𝑡−1
∀𝑛, 𝑡 i.e. D𝑡−1 ≃ D𝑡 . This assumption permits the estimation of the out-

liers and the coefficient vector from the previous estimation with reasonable

accuracy. Under these assumptions, our optimization algorithm is capable

of accurately estimating tensor factors, but also successfully tracking their

variation along the time.

6.3.2 Robust Adaptive CP Decomposition

In this section, we first propose the robust adaptive CP (RACP) algorithm

for the RTT problem in the presence of missing data and outliers. Then, we

introduce two simple extensions of RACP in order to deal with smoothness

condition and nonnegative constraints.

6.3.2.1 Proposed RACP Algorithm

Solving the minimization of (6.52) exactly is possible but difficult since 𝑓𝑡 (·)
is nonconvex. We here adapt it using the majorization-minimization (MM)

framework [321], which has been successfully applied to several signal pro-

cessing problems in general [333] and online learning problems in particu-

lar [25, 120, 121, 334]. In essence, we decompose it into two main stages: (i)

online outlier rejection and (ii) tensor factor tracking.

On the arrival of Y𝑡 at each time 𝑡 , we first estimate the outlier tensor O𝑡

and the coefficient vector u𝑡 based on the old estimation D𝑡−1. Specifically,

we solve the following optimization:

{O𝑡 , u𝑡 } = argmin

O,u
ℓ̃
(
D𝑡−1, P𝑡 , Y𝑡 , O, u

)
. (6.53)

From the past statistics {D𝜏 , P𝜏 , Y𝜏 , O𝜏 , u𝜏 }𝜏≥1, the set of loading factors

D𝑡 = {U(𝑛)𝑡 }𝑁𝑛=1
can be updated by minimizing the following majorizing sur-

rogate
˜𝑓𝑡 (·):

˜𝑓𝑡 (D) =
1

𝐿𝑡

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏 ℓ̃
(
D, P𝜏 , Y𝜏 , O𝜏 , u𝜏

)
, (6.54)

that locally approximates 𝑓𝑡 (·). Note that ˜𝑓𝑡 (D) is not only first-order surro-

gate, but also a majorant function of 𝑓𝑡 (D), that is, for all 𝑡 and D, we always
have 𝑓𝑡 (D) ≤ ˜𝑓𝑡 (D) and the error function 𝑒𝑡 (D) = ˜𝑓𝑡 (D) − 𝑓𝑡 (D) is Lipschitz
continuous. In fact,

˜𝑓𝑡 (D) and 𝑓𝑡 (D) converge almost-surely to the same limit,

and the solution D𝑡 , which minimizes
˜𝑓𝑡 (D), is exactly the one of 𝑓𝑡 (D) when

𝑡 →∞. The results will be later proven in our convergence analysis. In what

follows, we propose two solvers for minimizing (6.53) and (6.54) efficiently.

CHAPTER 6. ROBUST TENSOR TRACKING 180

Input: Tensor slices

{
P𝑡 ⊛Y𝑡

}∞
𝑡=1

, Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1
×1
, rank 𝑟 , forgetting factor 𝛽 ∈ (0, 1],

Parameters: penalty 𝜌 > 0, precision 𝜖𝑟𝑒𝑠 , 𝜖𝑜𝑢𝑡 > 0, maximum iteration𝐾 , 𝛼 ∈ [1.5, 1.8], 𝛿 > 0.

Initialization:

{
U(𝑛)

0

}𝑁 −1

𝑛=1
is initialized randomly and

{
S(𝑛)

0

}𝑁 −1

𝑛=1
= 𝛿I𝑟 .

Main Program:

for 𝑡 = 1, 2, . . . do

Stage 1: Online Outlier Rejection

H𝑡−1 =
⊙𝑁 −1

𝑛=1
U(𝑛)
𝑡−1

o0, z0, u0 ← 0
for 𝑖 = 1, 2, . . . , 𝐾 do

u𝑖 =
(
H⊤𝑡−1

P𝑡H𝑡−1

)
#H⊤𝑡−1

P𝑡
(
y𝑡 − o𝑖−1 − z𝑖−1/𝜌

)
,

r𝑖 = 𝛼P𝑡
(
y𝑡 − H𝑡−1u𝑖

)
+ (1 − 𝛼)o𝑖−1

o𝑖 = S
1/𝜌

(
r𝑖 − z𝑖−1/𝜌

)
,

z𝑖 = z𝑖−1 + 𝜌 (o𝑖 − r𝑖),
if stopping criteria are met break

end

Outlier Removal (Re-update of P𝑡 in (6.61) is optional): Ŷ𝑡 = P𝑡 ⊛ (Y𝑡 − O𝑡)
Stage 2: Estimation of

{
U(𝑛)𝑡

}𝑁
𝑛=1

for 𝑛 = 1, 2, . . . , 𝑁 do

W(𝑛)𝑡 =

(𝑁⊙
𝑖=1,𝑖≠𝑛

U(𝑖)
𝑡−1

)
⊙ (u(𝑁)𝑡)⊤ [Jacobi]

W(𝑛)𝑡 =

(𝑛−1⊙
𝑖=1

U(𝑖)𝑡

)
⊙

(𝑁⊙
𝑖=𝑛+1

U(𝑖)
𝑡−1

)
⊙ (u(𝑁)𝑡)⊤ [Gauss-Seidel]

W̃(𝑛)𝑡 =

[(
W(𝑛)𝑡

)⊤ (
W(𝑛)

𝑡−𝐿𝑡
)⊤]⊤

for𝑚 = 1, 2 . . . , 𝐼𝑛 do

P̃
(𝑛)
𝑡,𝑚 =

[
P(𝑛)𝑡,𝑚 0
0 −𝛽𝐿𝑡 P(𝑛)

𝑡−𝐿𝑡 ,𝑚

]
Ỹ(𝑛)𝑡,𝑚 =

[
Ŷ(𝑛)𝑡,𝑚 Ŷ(𝑛)𝑡−𝐿𝑡 ,𝑚

]
S(𝑛)𝑡,𝑚 = 𝛽S(𝑛)

𝑡−1,𝑚
+

(
W̃(𝑛)𝑡

)⊤P̃(𝑛)𝑡,𝑚W̃(𝑛)𝑡

V(𝑛)𝑡,𝑚 =
(
S(𝑛)𝑡,𝑚

)−1
(
W̃(𝑛)𝑡

)⊤
𝜹 ỹ(𝑛)

𝑡,𝑚
= P̃
(𝑛)
𝑡,𝑚

((
ỹ(𝑛)
𝑡,𝑚

)⊤ − W̃(𝑛)𝑡

(
u(𝑛)
𝑡−1,𝑚

)⊤)
u(𝑛)𝑡,𝑚 = u(𝑛)

𝑡−1,𝑚
+

(
𝜹 ỹ(𝑛)

𝑡,𝑚

)⊤ (
V(𝑛)𝑡,𝑚

)⊤
end

end

Stage 3: (Optional) Normalization and Re-estimation of u𝑡
Column-wise Normalization:

[
U(𝑛)𝑡

]
:,𝑟

=
[
U(𝑛)𝑡

]
:,𝑟

/

[U(𝑛)𝑡

]
:,𝑟

2

2
.

Re-estimation of u𝑡 : u𝑡 =
(
H⊤𝑡 P𝑡H𝑡

)
#H⊤𝑡 P𝑡 (x𝑡 − o𝑡) where H𝑡 =

⊙𝑁
𝑛=1

U(𝑛)𝑡
end

Output: Loading factors

{
U(𝑛)𝑡

}𝑁
𝑛=1

.

Algorithm 8: Robust Adaptive CP Decomposition (RACP)

CHAPTER 6. ROBUST TENSOR TRACKING 181

Stage 1: Online Outlier Rejection

To estimate O𝑡 and u
(𝑁)
𝑡 , we recast (6.53) into the following standard matrix-

vector form:{
o𝑡 , u

(𝑁)
𝑡

}
= argmin

o,u
∥o∥1 +

𝜌

2

P𝑡 (y𝑡 − o − H𝑡−1u
)

2

2

, (6.55)

where o𝑡 = vec(O𝑡), y𝑡 = vec(Y𝑡), the observation mask matrix P𝑡 =

diag(vec(P𝑡)), andH𝑡−1 is of a Khatri-Rao structure, i.e.,H𝑡−1 =
⊙𝑁−1

𝑛=1
U(𝑛)
𝑡−1
.

Since both terms of (6.55) are convex, it can be efficiently solved by several

methods with convergence guarantees. Here, we use an ADMM solver to

minimize (6.55) due to its simple interpretation and moderate convergence

rate [114]. At the 𝑖-th iteration, we particularly read

u𝑖 =
(
H⊤𝑡−1

P𝑡H𝑡−1

)
#H⊤𝑡−1

P𝑡
(
y𝑡 − o𝑖−1 − z𝑖−1/𝜌

)
, (6.56)

r𝑖 = 𝛼P𝑡
(
y𝑡 − H𝑡−1u𝑖

)
+ (1 − 𝛼)o𝑖−1

(6.57)

o𝑖 = S1/𝜌
(
r𝑖 − z𝑖−1/𝜌

)
, (6.58)

z𝑖 = z𝑖−1 + 𝜌 (o𝑖 − r𝑖), (6.59)

whereS(·) is the soft-thresholding operator of the ℓ1-norm defined asS𝛼 (𝑥) =
max(0, 𝑥−𝛼)−max(0,−𝑥−𝛼) and 𝛼 ∈ [1.5, 1.8] is a relaxation parameter. The

procedure is stopped when residuals are small, i.e., ∥P𝑡 (y𝑡 −H𝑡−1u𝑖 − o𝑖)∥2 ≤
𝜖𝑟𝑒𝑠 and ∥o𝑖 −r𝑖 ∥2 ≤ 𝜖𝑜𝑢𝑡 where 𝜖𝑟𝑒𝑠 , 𝜖𝑜𝑢𝑡 > 0 are predefined accuracy param-

eters or when the procedure reaches the maximum number of iterations.

After the sparse outlier O𝑡 is detected, we reduce the effect of O𝑡 on the

tracking process by the following outlier removal

Ŷ𝑡 = P𝑡 ⊛ (Y𝑡 − O𝑡). (6.60)

In some cases, we can skip the corrupted entries in Y𝑡 by re-updating the

mask P𝑡 as

𝑝𝑖1𝑖2 ...𝑖𝑁 =

{
0, if 𝑥𝑖1 ...𝑖𝑁 is missing or outlier,

1, otherwise.

(6.61)

Here, the removal step (6.60) still holds under the new binary mask P𝑡 . This

approach stems from the following observations. In the context of subspace

tracking (ST), rejecting outliers can facilitate the tracking ability of ST esti-

mators since only “clean” measurements involve the process [25]. Our next

stage for estimating the tensor basis can indeed boil down to the ST problem

with missing data, so the outlier rejection mechanism of (6.61) can improve

performance. Please see Fig. 6.24 for an illustration that the outlier rejection

mechanism can help improve the convergence rate of RACP when the frac-

tion of corrupted entries is not too large.

CHAPTER 6. ROBUST TENSOR TRACKING 182

Stage 2: Estimation of factors

{
U(𝑛)𝑡

}𝑁−1

𝑛=1

The optimization (6.54) can be effectively solved by using the block-coordinate

descent (BCD) technique. The main idea is to minimize alternately the surro-

gate
˜𝑓𝑡 (·) w.r.t. each factor U(𝑛)𝑡 while fixing the remaining factors (hereafter

denoted as
˜𝑓𝑡 (U(𝑛)𝑡 , .) for short), that is,

U(𝑛)𝑡 = argmin

U(𝑛)
˜𝑓𝑡
(
U(𝑛) , .

)
. (6.62)

Minimization (6.62) is equivalent to

U(𝑛)𝑡 = argmin

U(𝑛)

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏

P(𝑛)𝜏

⊛
(
Ŷ
(𝑛)
𝜏
− U(𝑛)

(
W(𝑛)𝜏

)⊤)

2

𝐹
, (6.63)

where Ŷ
(𝑛)
𝜏

and P(𝑛)
𝜏

are the mode-𝑛 unfoldings of Ŷ𝜏 and P𝜏 , and W(𝑛)𝜏 is

given by

W(𝑛)𝜏 =



(𝑁−1⊙
𝑖=1,𝑖≠𝑛

U(𝑖)
𝑡−1

)
⊙ (u(𝑁)𝜏)⊤ [Jacobi],(𝑛−1⊙

𝑖=1

U(𝑖)𝑡

)
⊙

(𝑁−1⊙
𝑖=𝑛+1

U(𝑖)
𝑡−1

)
⊙ (u(𝑁)𝜏)⊤ [Gauss-Seidel] .

(6.64)

Depending on the implementation, we can use one of the two iterative meth-

ods: the Jacobi scheme supports the parallel and/or distributed processing

while the Gauss-Seidel scheme is useful for a sequential (serial) one. Except-

ing the closed-form ofW(𝑛)𝜏 , both methods share the same procedure for solv-

ing (6.63) which is detailed as follows.

Theminimization of (6.63) can be decomposed into sub-problems for each

row u(𝑛)𝑚 of U(𝑛) ,𝑚 = 1, 2, . . . , 𝐼𝑛 , as

u(𝑛)𝑡,𝑚 = argmin

u(𝑛)𝑚

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏

P(𝑛)𝜏,𝑚

((
ŷ(𝑛)
𝜏,𝑚

)⊤ −W(𝑛)𝜏

(
u(𝑛)𝑚

)⊤)

2

𝐹
, (6.65)

where ŷ(𝑛)
𝜏,𝑚

is the 𝑚-th row of Ŷ
(𝑛)
𝜏

, and the row-mask matrix is given by

P(𝑛)
𝜏,𝑚

= diag
(
P(𝑛)
𝜏
(𝑚, :)

)
.

The optimal solution of (6.65) can be derived from setting its derivative

to zero

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏
(
W(𝑛)𝜏

)⊤P(𝑛)
𝜏,𝑚

(
ŷ(𝑛)
𝜏,𝑚

)⊤
=

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏
(
W(𝑛)𝜏

)⊤P(𝑛)
𝜏,𝑚

W(𝑛)𝜏

(
u(𝑛)𝑡,𝑚

)⊤
.

(6.66)

CHAPTER 6. ROBUST TENSOR TRACKING 183

Instead of solving (6.66) directly, we propose a more elegant recursive way to

obtain u(𝑛)𝑡,𝑚 as follows. First, let us denote the left hand side of (6.66) by d(𝑛)𝑡,𝑚 ,

and

S(𝑛)𝑡,𝑚 =

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏
(
W(𝑛)𝜏

)⊤P(𝑛)
𝜏,𝑚

W(𝑛)𝜏 . (6.67)

Accordingly, (6.66) becomes

S(𝑛)𝑡,𝑚

(
u(𝑛)𝑡,𝑚

)⊤
= d(𝑛)𝑡,𝑚 . (6.68)

Interestingly, both d(𝑛)𝑡,𝑚 and S(𝑛)𝑡,𝑚 can be updated recursively:

d(𝑛)𝑡,𝑚 = 𝛽d(𝑛)
𝑡−1,𝑚

+
(
W̃(𝑛)𝑡

)⊤P̃(𝑛)
𝑡,𝑚

(
ỹ(𝑛)
𝑡,𝑚

)⊤
, (6.69)

S(𝑛)𝑡,𝑚 = 𝛽S(𝑛)
𝑡−1,𝑚

+
(
W̃(𝑛)𝑡

)⊤P̃(𝑛)
𝑡,𝑚

W̃(𝑛)𝑡 . (6.70)

where

W̃(𝑛)𝑡 =
[(
W(𝑛)𝑡

)⊤ (
W(𝑛)
𝑡−𝐿𝑡

)⊤]⊤
, (6.71)

ỹ(𝑛)
𝑡,𝑚

=
[
ŷ(𝑛)
𝑡,𝑚

ŷ(𝑛)
𝑡−𝐿𝑡 ,𝑚

]
, (6.72)

P̃
(𝑛)
𝑡,𝑚

=

[
P(𝑛)𝑡,𝑚 0
0 −𝛽𝐿𝑡P(𝑛)

𝑡−𝐿𝑡 ,𝑚

]
. (6.73)

Therefore, we can rewrite (6.68) as

S(𝑛)𝑡,𝑚

(
u(𝑛)𝑡,𝑚

)⊤
= 𝛽d(𝑛)

𝑡−1,𝑚
+

(
W̃(𝑛)𝑡

)⊤P̃(𝑛)
𝑡,𝑚

(
ỹ(𝑛)
𝑡,𝑚

)⊤
= 𝛽S(𝑛)

𝑡−1,𝑚

(
u(𝑛)
𝑡−1,𝑚

)⊤ + (
W̃(𝑛)𝑡

)⊤P̃(𝑛)
𝑡,𝑚

(
ỹ(𝑛)
𝑡,𝑚

)⊤
= S(𝑛)𝑡,𝑚

(
u(𝑛)
𝑡−1,𝑚

)⊤ + (
W̃(𝑛)𝑡

)⊤P̃(𝑛)
𝑡,𝑚

((
ỹ(𝑛)
𝑡,𝑚

)⊤ − W̃(𝑛)𝑡

(
u(𝑛)
𝑡−1,𝑚

)⊤)
. (6.74)

Multiplying both sides by

(
S(𝑛)𝑡,𝑚

)−1

results in

u(𝑛)𝑡,𝑚 = u(𝑛)
𝑡−1,𝑚

+
(
𝜹 ỹ(𝑛)

𝑡,𝑚

)⊤ (V(𝑛)𝑡,𝑚

)⊤
, (6.75)

where

𝜹 ỹ(𝑛)
𝑡,𝑚

= P̃
(𝑛)
𝑡,𝑚

((
ỹ(𝑛)
𝑡,𝑚

)⊤ − W̃(𝑛)𝑡

(
u(𝑛)
𝑡−1,𝑚

)⊤)
, (6.76a)

V(𝑛)𝑡,𝑚 =
(
S(𝑛)𝑡,𝑚

)−1
(
W̃(𝑛)𝑡

)⊤
. (6.76b)

CHAPTER 6. ROBUST TENSOR TRACKING 184

Collecting all rows u(𝑛)𝑡,𝑚 together,𝑚 = 1, 2, . . . , 𝐼𝑛 , a simplified version of (6.75)

for updating the whole factor U(𝑛)𝑡 can be given by
9

U(𝑛)𝑡 = U(𝑛)
𝑡−1
+ 𝚫Ỹ(𝑛)𝑡

(
V(𝑛)𝑡

)⊤
, (6.77)

where

S(𝑛)𝑡 = 𝛽S(𝑛)
𝑡−1
+

(
W̃(𝑛)𝑡

)⊤W̃(𝑛)𝑡 , (6.78a)

V(𝑛)𝑡 =
(
S(𝑛)𝑡

)−1
(
W̃(𝑛)𝑡

)⊤
, (6.78b)

𝚫Ỹ(𝑛)𝑡 = P̃
(𝑛)
𝑡
⊛

(
Ỹ(𝑛)𝑡 − U

(𝑛)
𝑡−1

(
W̃(𝑛)𝑡

)⊤)
, (6.78c)

with Ỹ(𝑛)𝑡 =

[
Ŷ(𝑛)𝑡 Ŷ(𝑛)

𝑡−𝐿𝑡 ,𝑚

]
. In this way, we can skip several operations and

save a memory storage of O
(∑𝑁−1

𝑛=1
(𝐼𝑛 − 1) (𝐼𝑛𝑟 + 𝑟 2)

)
. Specifically, the cost

of computing (6.78a) is O
(
𝑟 2

∏𝑁−1

𝑖=1,𝑖≠𝑛 𝐼𝑖
)
. The computation of (6.78b) also re-

quires a cost of O
(
𝑟 2

∏𝑁−1

𝑖=1,𝑖≠𝑛 𝐼𝑖
)
because S(𝑛)𝑡 is of size 𝑟 × 𝑟 and its inverse

computation is not expensive and independent of the tensor dimension. The

error matrix 𝚫Ỹ(𝑛)𝑡 in (6.78c) can be derived from Step 1 by reshaping the

residual vector P𝑡 (y𝑡 − o𝑡 − H𝑡−1u𝑡). The most expensive step is the product

𝚫Ỹ(𝑛)𝑡

(
V(𝑛)𝑡

)⊤
which costs 𝑟

∏𝑁−1

𝑖=1
𝐼𝑖 flopswhile the addition operator in (6.77)

requires only 𝑟𝐼𝑛 flops. Therefore, the overall cost of updating U
(𝑛)
𝑡 in a naive

way is O
(
𝑟
∏𝑁−1

𝑖=1
𝐼𝑖
)
. Note that 𝚫Ỹ(𝑛)𝑡

(
V(𝑛)𝑡

)⊤
can be divided into two parts

Z(𝑛)𝑡 = 𝚫Ỹ(𝑛)𝑡 W̃(𝑛)𝑡 and Z(𝑛)𝑡

(
S(𝑛)𝑡

)−⊤
. Here, 𝚫Ỹ(𝑛)𝑡 W̃(𝑛)𝑡 can be referred to

as “matricized tensor times Khatri-Rao product” (MTTKRP) [335, 336]. For-

tunately, Phan et al. in [336] proposed a clever reorganization of MTTKRP

which can accelerate the computation and reduce the overall cost of (6.77) to

O
(
𝑟 2

∏𝑁−1

𝑖=1,𝑖≠𝑛 𝐼𝑖
)
.

Stage 3: Normalization and re-estimation of u(𝑁)𝑡 (Optional)

In order to avoid numerical problems, we can perform the column-wise nor-

malization on the updated factors {U(𝑛)𝑡 }𝑁−1

𝑛=1
. In addition, given the already

estimated factors, the weight vector u𝑡 in Step 1 can be re-updated to achieve

a better estimation as follows

u(𝑁)𝑡 =
(
H⊤𝑡 P𝑡H𝑡

)
#H⊤𝑡 P𝑡 ŷ𝑡 , (6.79)

where H𝑡 =
⊙𝑁−1

𝑛=1
U(𝑛)𝑡 . This step is useful for the early stage of tracking

and fast time-varying environments [174, 211, 213].

9
To enable the recursive rules of (6.75) and (6.77), S(𝑛)

0,𝑚
and S(𝑛)

0
can be initialized by 𝛿I𝑟

where 𝛿 > 0, for 𝑛 = 1, 2, . . . , 𝑁 .

CHAPTER 6. ROBUST TENSOR TRACKING 185

6.3.2.2 Extensions of the RACP algorithm

In the following, we present two simplemodifications of RACPwhen smooth-

ness and nonnegativity are imposed on the loading factors.

Smoothness Condition

In many applications, smoothness is a common assumption under which the

underlying data or model is supposed to be smooth [337]. Here, we incorpo-

rate a smoothing regularization matrix on the loading factors to control the

smoothness of the solution as well as to avoid biases and singular/ill-posed

computation. Particularly, this regularization adds a small bias against large

terms into the updating rules.

On the arrival of Y𝑡 , the outliers O𝑡 and the coefficient vector u𝑡 are
derived from the following minimization:{

O𝑡 , u
(𝑁)
𝑡

}
= argmin

O,u

O

1
+ 𝛾

2

Bu

2

2
,

subject to

P𝑡 ⊛
(
Y𝑡 − O −H𝑡−1 ×𝑁 u

)

2

𝐹
= 0,

(6.80)

where H𝑡−1 = I
∏𝑁−1

𝑛=1
×𝑛U(𝑛)𝑡−1

and 𝛾 > 0 is a small penalty parameter and B
a chosen banded matrix. More concretely, the vector u𝑡 is obtained by mini-

mizing the following problem:

u(𝑁)𝑡 = argmin

u

𝛾

2

Bu

2

2
+ 𝜌

2

P𝑡 (y𝑡 − o − H𝑡−1u)

2

2
. (6.81)

Accordingly, we replace the update rule for u in (6.56) with

u𝑖 =
(
H⊤𝑡−1

P𝑡H𝑡−1 +
𝛾

𝜌
B⊤B

)
#

H⊤𝑡−1
P𝑡

(
y𝑡 − o𝑖

)
. (6.82)

Instead of (6.65), the𝑚-th row u(𝑛)𝑡,𝑚 of U(𝑛)𝑡 is derived from

u(𝑛)𝑡,𝑚 = argmin

u(𝑛)𝑚

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏

P(𝑛)𝜏,𝑚

((
ŷ(𝑛)
𝜏,𝑚

)⊤ −W(𝑛)𝜏

(
u(𝑛)𝑚

)⊤)

2

2

+ 𝛾
2

B(
u(𝑛)𝑚

)⊤

2

2

,

(6.83)

In particular, u(𝑛)𝑡,𝑚 is the solution of the following equation:

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏
(
W(𝑛)𝜏

)⊤P(𝑛)
𝜏,𝑚

(
ŷ(𝑛)
𝜏,𝑚

)⊤
=

(𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏
(
W(𝑛)𝜏

)⊤P(𝑛)
𝜏,𝑚

W(𝑛)𝜏 +
𝛾

2

B⊤B
) (
u(𝑛)𝑚

)⊤
. (6.84)

CHAPTER 6. ROBUST TENSOR TRACKING 186

Therefore, the recursive rule of (6.75) becomes

u(𝑛)𝑡,𝑚 = u(𝑛)
𝑡−1,𝑚

+
(
𝜹 ỹ(𝑛)

𝑡,𝑚

)⊤ (V̄(𝑛)𝑡,𝑚

)⊤
, (6.85)

where

V̄(𝑛)𝑡,𝑚 =

(
S(𝑛)𝑡,𝑚 +

𝛾

2

B⊤B
)−1 (

W̃(𝑛)𝑡

)⊤
. (6.86)

Nonnegative Constraint

It is known that nonnegative tensor factorization (NTF) offers interesting

properties, e.g., the resulting expression appears to be purely additive and

the loading factors are “sparse" in general [338].

One of the simplest ways is to project the estimates (i.e., {U(𝑛)𝑡 }𝑁−1

𝑛=1
and

u(𝑁)𝑡) on their nonnegative orthant at the end of each step of RACP, as in-

troduced by Nguyen et al. in [174]. This approach offers a low complexity

and yields a reasonable performance in some cases. However, it may not be

optimal as well as guarantee the convergence in general. In this task, we aim

to customize the updates of u(𝑁)𝑡 and {U(𝑛)𝑡 }𝑁−1

𝑛=1
for dealing with the nonneg-

ativity at each time 𝑡 .

In step 1, we particularly replace the exact LS solution (6.56) with the

minimizer of the following nonnegative least-squares (NNLS) problem:

u𝑖 = argmin

u

P𝑡 (y𝑡 − o𝑖 − H𝑡−1u
)

2

2

subject to [u] 𝑗 ≥ 0 ∀𝑗 . (6.87)

Here, we can apply any provable NNLS algorithm for solving (6.87), the reader

is referred to [339, 340] for good surveys on numerical methods for NNLS. In

this work, we adopt the widely-used algorithm of Lawson and Hanson [340]

which is implemented as the function lsqnonneg in MATLAB.

In step 2, the𝑚-th row of U(𝑛)𝑡 can be derived from minimizing the fol-

lowing constrained version of (6.65):

u(𝑛)𝑡,𝑚 = argmin

u(𝑛)𝑚

𝑡∑︁
𝜏=𝑡−𝐿𝑡+1

𝛽𝑡−𝜏

P(𝑛)𝜏,𝑚

((
ŷ(𝑛)
𝜏,𝑚

)⊤ −W(𝑛)𝜏

(
u(𝑛)𝑚

)⊤)

2

2

,

subject to

[
u(𝑛)𝑚

]
𝑗
≥ 0 ∀𝑗 . (6.88)

To solve (6.88), we apply the projected gradient method (i.e., proximal gradi-

ent on indicator function [118]). More concretely, the iterative procedure for

CHAPTER 6. ROBUST TENSOR TRACKING 187

updating u(𝑛)𝑡,𝑚 is given by
10

u𝑗 =

[(
I𝑟 −

S(𝑛)𝑡,𝑚

S(𝑛)𝑡,𝑚

2

)
u𝑗−1 −

d(𝑛)𝑡,𝑚

S(𝑛)𝑡,𝑚

2

]
+
, (6.89)

where 𝑗 denotes the iteration index. We refer to this modification of RACP as

NRACP.

6.3.3 Performance Analysis

In this section, we present a theoretical convergence analysis for the proposed

RACPmethod in Algorithm 1 while assumingD𝑡 = D is fixed. Inspired by the

recent results of our companion works on robust subspace tracking [25] and

tensor tracking [30], we establish a unified theoretical approach to analyse

the convergence of the objective values {𝑓𝑡 (D𝑡)}∞𝑡=1
as well as the solutions

{D𝑡 }∞𝑡=1
generated by RACP.

6.3.3.1 Assumptions

In order to facilitate the convergence analysis, we make the following as-

sumptions:
11

(A1) Low-rank components {Y𝑡 }𝑡≥1 of the observed tensor slices {Y𝑡 }𝑡≥1

are supposed to be deterministic and bounded. Entries of noise ten-

sors {N𝑡 }𝑡≥1 are zero-mean, independently and identically distributed

(i.i.d.) with a small finite covariance, and bounded. Entries of Y𝑡 are

Frobenius-norm bounded, i.e., ∥Y𝑡 ∥𝐹 ≤ 𝑀𝑥 < ∞, for all 𝑡 .

(A2) The dictionary D𝑡 remains unchanged over time (i.e., D𝑡 = D). The

loading factors are Frobenius-norm bounded and the tensor rank 𝑟 is

fixed.

(A3) Observation masks {P𝑡 }𝑡≥1 are independent of {Y𝑡 }𝑡≥1, and their en-

tries follow a uniform distribution. The number of observed entries

of Y𝑡 should be larger than the lower bound O
(
𝑟𝐿 log(𝐿)

)
, where 𝐿 =

𝐼1𝐼2 . . . 𝐼𝑁 . Every row of the mode-𝑛 unfolding Y(𝑛)𝑡 of Y𝑡 is observed

in at least 𝑟 entries, for 𝑛 = 1, 2, . . . , 𝑁 . In addition, each observed entry

10
Projected gradient descent has a form of u𝑗 =

[
u𝑗−1 −𝜂 𝑗∇ ˜𝑓𝑡 (u𝑗−1)

]
+, where ∇ ˜𝑓𝑡

(
u(𝑛)𝑚

)
=

S(𝑛)𝑡,𝑚u(𝑛)𝑚 − d(𝑛)𝑡,𝑚 . In practice, we can set the value of the step-size 𝜂 𝑗 to 1/L where L is the

Lipschitz constant of ∇ ˜𝑓𝑡
(
u(𝑛)𝑚

)
. In this work, it is easy to indicate that L =

S(𝑛)𝑡,𝑚

2
.

11
The four assumptions (A1)-(A4) are used for the purpose of convergence analysis only,

the proposed RACP algorithm can work well in many other scenarios, please see Sec. V for

details

CHAPTER 6. ROBUST TENSOR TRACKING 188

of Y𝑡 is corrupted by outliers independently of others, i.e., the index of

outliers is also uniformly random.

(A4)
˜𝑓𝑡 (·) is𝑚-strongly multi-block convex, i.e., its second-order derivative

w.r.t. each factor is positive-definite, ∇2

𝑛
˜𝑓𝑡
(
U(𝑛) , .

)
⪰ 𝑚I ≻ 0with𝑚 > 0.

Among them, assumptions (A1) and (A2) are common for analysing the

convergence of online learning algorithms, such as [25,106,120]. Indeed, (A1)

holds in many situations, e.g., real data are often bounded such as audio, im-

age and video. (A2) is a strong assumption as it requires the tensor dictionary

to be constant with time. It also prevents arbitrarily large values in U(𝑛) and
ill-conditioned computation. Along with (A1), it is interpreted as the sim-

plest possible data model in (robust) tensor tracking where tensor slices are

supposed to be generated from a stationary process. Theoretically, stationary

processes are often “easier” to model and analyse than nonstationary ones as

their statistical properties remain constant over time. Accordingly, stationary

has become a common assumption underlying many statistical procedures

in general and tracking tools in particular to study their convergence and

asymptotic behavior. In this work, a novel theoretical approach is established

to analyse the convergence behavior of RACP in stationary environments. We

leave the convergence analysis of RACP under a nonstationary model where

the tensor dictionary is time-varying to a future work. Assumption (A3) is

also common, under which the index of missing entries is uniformly random.

Moreover, with respect to the imputation of missing values and recovery of

low-rank components, the uniform randomness allows the sequence of binary

masks {P𝑡 }𝑡≥1 to admit stable recovery [319]. The next two constraints of

(A3) are fundamental conditions to prevent the underdetermined imputation

problem [341, 342]. The last constraint of (A3) plays a similar role as the first

one but accounting for sparse outliers. Assumption (A4) allows us to derive

several nice results in the convergence analysis. In fact, the Hessian matrix

of
˜𝑓𝑡 (·) w.r.t. each factor is already positive semidefinite, (A4) can be achieved

with a good initializationD0 or by simply adding a convex regularization term

into ℓ̃ (·) or ˜𝑓𝑡 (·).

6.3.3.2 Main Results

Given the assumptions of (A1)-(A4), our main theoretical result can be stated

in the following theorem:

CHAPTER 6. ROBUST TENSOR TRACKING 189

Theorem 4 Given (A1)-(A4), 𝐿𝑡 = 𝑡 and letD𝑡 be the solution generated
by Algorithm 1 at each time 𝑡 . When 𝑡 →∞,

■ 𝑓𝑡 (D𝑡) − ˜𝑓𝑡 (D𝑡)
𝑎.𝑠.→ 0;

■ ∇𝑓𝑡 (D𝑡)
𝑎.𝑠.→ 0.

Accordingly, D𝑡 is almost surely a stationary point of 𝑓𝑡 (.) when 𝑡 tends
to infinity.

The proof of this theorem follows intermediately Proposition 11 and Lem-

mas 12 and 13, to be stated shortly. We detail their proofs in our appendix.

Lemma 11 (Key Properties) Given (A1)-(A4), 𝐿𝑡 = 𝑡 , and denote the
error function 𝑒𝑡 := ˜𝑓𝑡 − 𝑓𝑡 . If {D𝑡 , O𝑡 , u𝑡 }∞𝑡=1

is a sequence of variables
generated by Algorithm 1, then

(a) Boundedness: {D𝑡 , O𝑡 , u𝑡 }∞𝑡=1
are uniformly bounded;

(b) Forward Monotonicity: ˜𝑓𝑡 (D𝑡−1) ≥ ˜𝑓𝑡 (D𝑡);

(c) Backward Monotonicity: ˜𝑓𝑡−1(D𝑡−1) ≤ ˜𝑓𝑡−1(D𝑡);

(d) Stability of Estimates: ∥D𝑡 − D𝑡−1∥𝐹 = O(1/𝑡);

(e) Stability of Errors: |𝑒𝑡 (D𝑡) − 𝑒𝑡−1(D𝑡−1) | = O(1/𝑡).

Proof Sketch. Part (a) can be derived from applying the same arguments

of Proposition 11 in our companion work [30]. Parts (b) and (c) are trivial

due to the proposed BCD scheme. Part (d) can be obtained by exploiting the

Lipschitz continuity and multi-block convexity of the surrogate function
˜𝑓𝑡 .

We indicate Part (e) by using Part (d) and the Lipschitz continuity of 𝑓 and ˜𝑓 .

Lemma 12 (Almost sure convergence) The sequence of { ˜𝑓𝑡 (D𝑡)}∞𝑡=1

converges almost surely as 𝑡 → ∞. The sequence of objective values
{𝑓𝑡 (D𝑡)}∞𝑡=1

converges to the same limit of its surrogate { ˜𝑓𝑡 (D𝑡)}∞𝑡=1
, i.e.,

𝑓𝑡 (D𝑡) → ˜𝑓𝑡 (D𝑡) 𝑎.𝑠 . (6.90)

Proof Sketch. We first prove that

∞∑︁
𝑡=1

E
[
𝛿𝑡E

[
˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡 (D𝑡)

��F𝑡]] < ∞, (6.91)

CHAPTER 6. ROBUST TENSOR TRACKING 190

where F𝑡 = {D𝜏 , O𝜏 , u𝜏 }0<𝜏≤𝑡 records all past estimates of RACP at time 𝑡 and

the indicator function 𝛿𝑡 is defined as

𝛿𝑡
Δ
=

{
1 if E

[
˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡 (D𝑡)

��F𝑡] > 0,

0 otherwise.

(6.92)

Thanks to the quasi-martingale convergence theorem [343, page 51], (6.91)

implies that { ˜𝑓𝑡 (D𝑡)}∞𝑡=1
converges almost surely as 𝑡 →∞.

We next prove {𝑓𝑡 (D𝑡)}∞𝑡=1
and { ˜𝑓𝑡 (D𝑡)}∞𝑡=1

converge to the same limit by

showing

∞∑︁
𝑡=1

˜𝑓𝑡 (D𝑡) − 𝑓𝑡 (D𝑡)
𝑡 + 1

< ∞. (6.93)

Since

∑∞
𝑡=1

1

𝑡+1 = ∞ and

��𝑒𝑡 (D𝑡)−𝑒𝑡−1(D𝑡−1)
�� = O(1/𝑡), we obtain∑∞

𝑡=1

˜𝑓𝑡 (D𝑡)−
𝑓𝑡 (D𝑡) < ∞, or

˜𝑓𝑡 (D𝑡) → 𝑓𝑡 (D𝑡) 𝑎.𝑠 ., (6.94)

thanks to [120, Lemma 3].

Lemma 13 (Local convergence) When 𝑡 → ∞, D𝑡 converges almost
surely to a stationary point of ˜𝑓∞(.) = lim𝑡→∞ ˜𝑓𝑡 (.):

∇ ˜𝑓∞(D𝑡) → ∇𝑓∞(D𝑡) → 0 𝑎.𝑠 . (6.95)

Proof Sketch. We first indicate that

lim

𝑡→∞
tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)

]
= 0, (6.96)

by showing

∑∞
𝑡=1

��� tr [
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)

] ��� < ∞.
Next, we prove that the following inequality

tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1

(
D𝑡+1

)]
≤ 𝑐1

D𝑡+1 − D𝑡

2

𝐹

+ 𝑐2 tr

[
(D − D𝑡)⊤∇ ˜𝑓𝑡+1

(
D𝑡

)]
, (6.97)

holds for all D ∈ D where 𝑐1 and 𝑐2 are positive constants.

Then, we use proof by contradiction to indicate that(
∇ ˜𝑓∞(D∞)

)⊤(D − D∞) ≥ 0, ∀D ∈ D . (6.98)

Accordingly, D∞ is a stationary point of
˜𝑓∞(.) .

CHAPTER 6. ROBUST TENSOR TRACKING 191

In order to prove ∇ ˜𝑓𝑡
(
D𝑡

) 𝑎.𝑠.→ ∇𝑓𝑡
(
D𝑡

)
as 𝑡 → ∞, we first exploit that

𝑓𝑡 (D+𝑎𝑡V) ≤ ˜𝑓𝑡 (D+𝑎𝑡V) ∀D,V ∈ D and𝑎𝑡 , and then take its Taylor expansion

at 𝑡 →∞ to yield

𝑓∞
(
D∞

)
+ tr

[
𝑎𝑡V⊤∇𝑓∞

(
D∞

)]
+ 𝒐

(
𝑎𝑡V

)
≤ ˜𝑓∞

(
D∞

)
+ tr

[
𝑎𝑡V⊤∇ ˜𝑓∞

(
D∞

)]
+ 𝒐

(
𝑎𝑡V

)
. (6.99)

As indicated in Lemma 12,
˜𝑓∞

(
D∞

)
= 𝑓∞

(
D∞

)
and thus

tr

[
𝑎𝑡V⊤∇𝑓∞

(
D∞

)]
≤ tr

[
𝑎𝑡V⊤∇ ˜𝑓∞

(
D∞

)]
.

Since the above inequality must hold for all V ∈ D and 𝑎𝑡 , we obtain

∇ ˜𝑓∞
(
D∞

)
= ∇𝑓∞

(
D∞

)
. (6.100)

Together with (6.98), we can conclude that D∞ is a stationary point of the

objective function 𝑓𝑡 (.) as 𝑡 →∞.

6.3.3.3 Discussions

Our analysis follows the same framework to derive the convergence of adap-

tive/incremental algorithms for online matrix/tensor factorization problems

as in [25,30,106,120,121,176]. Therefore, our main theoretical result is some-

how similar to their results. However, there are several points that make our

convergence analysis different from theirs.

First, [120] is devoted to the problem of online dictionary learning and

sparse coding. The authors dealt with a LASSO-like cost function and re-

quired a preliminary uniqueness condition on the sparse coding. The con-

dition is important to ensure that the solution generated in the sparse cod-

ing stage is unique, and to derive the Lipschitz property of the cost function.

Particularly, they suggested an elastic-net regularized term for enforcing the

condition. Since the problem formulation of RTT is different, our conver-

gence analysis does not involve such issues. Moreover, the missing data dis-

tinguishes our work from theirs.

The studies in [121] and [25] consider the problem of robust online PCA

and/or subspace tracking which can handle data corruptions (i.e., outliers

and/or missing entries). These studies are designed for tracking the time-

variant subspace – an object different from ours – which leads to some dif-

ferences from our analysis. In particular, their main goal is to develop prov-

able algorithms for minimizing the expected cost function in an online man-

ner, and then indicate that their algorithm converges to a stationary point or

global optimum under certain conditions. Our optimization, however, min-

imizes an exponential weighted cost function constructed on the latest data

CHAPTER 6. ROBUST TENSOR TRACKING 192

streams (i.e., tensor slices). Moreover, [121] does not require the solution de-

rived from the subspace update stage necessarily optimal, but full column

rank only at each time 𝑡 (see [121, Theorem 1]). However, it is a sufficient

condition on which we highly leverage in our analysis. In addition, our ob-

ject is a set of multiple loading factors, instead of a single subspace matrix as

in [25, 121].

The studies most related to ours are those in [30,106,176], which also in-

vestigate the tensor tracking problem. However, they consider only outlier-

free streaming tensors. By contrast, we here provide a more unified conver-

gence analysis that is able to deal with both missing data and outliers. Also,

our results are stronger than those of [106, 176], being limited to the case of

third-order streaming tensors with 𝛽 = 1.

6.4 Performance Evaluation

In this section, we provide several experiments on both synthetic and real

data to demonstrate the effectiveness of the proposed algorithms, ACP, ATD,

and RACP. We also compare them with several state-of-the-art algorithms to

provide practical evidences of their effectiveness and efficiency. All experi-

ments are implemented on MATLAB a windows computer with an Intel Core

i5-8300H and 16GB of RAM.
12

6.4.1 Performance of ACP

We assess the performance of ACP w.r.t. the following aspects: (i) impact of

algorithm parameters on its tracking ability; (ii) performance of ACP in non-

stationary and time-varying environments; (iii) effectiveness and efficiency

of ACP as compared with other adaptive CP algorithms.

6.4.1.1 Experiment Setup

According to the setup of OLSTEC [176], a time-varying model for streaming

tensors is constructed as follows.

At 𝑡 = 0, the loading factor U(𝑛)𝑡 is generated at random whose entries

are i.i.d. drawn from the Gaussian distributionN(0, 1). At time 𝑡 > 0, U(𝑛)𝑡 ∈
R𝐼𝑛×𝑟 is varied under the model

U(𝑛)𝑡 = U(𝑛)
𝑡−1

Q𝑡 , (6.101)

12
Our codes are available at: https://github.com/thanhtbt/tensor_tracking/.

CHAPTER 6. ROBUST TENSOR TRACKING 193

whereQ𝑡 ∈ R𝑟×𝑟 is a rotation matrix to control the variation of U(𝑛) between
instances 𝑡 and 𝑡 − 1, which is defined by

Q𝑡 =


I𝑝𝑡−1 0 0 0

0 cos(𝛼𝑡) − sin(𝛼𝑡) 0

0 sin(𝛼𝑡) cos(𝛼𝑡) 0

0 0 0 I𝑟−𝑝𝑡−1


, (6.102)

where 𝑝𝑡 = mod(𝑡 + 𝑟 − 2, 𝑟 − 1) + 1 and 𝛼𝑡 is the rotation angle. Specifically,

the higher value of 𝛼𝑡 is, the faster the loading factor U(𝑛) changes.
The 𝑡-th slice Y𝑡 with missing entries is then derived from the following

model:

Y𝑡 = P𝑡 ⊛

(r{
U(𝑛)𝑡

}𝑁−1

𝑛=1
, u(𝑁)𝑡

z
+ 𝜎N𝑡

)
, (6.103)

where P𝑡 is a binary mask tensor whose entries are generated randomly us-

ing the Bernoulli model with the probability 𝜌 , i.e., 𝜌 represents the missing

density in the measurement; N𝑡 is a Gaussian noise tensor (with zero-mean,

unit power entries) of the same size of Y𝑡 and the factor 𝜎 is to control the

noise level; and the weight vector u(𝑁)𝑡 is a Gaussian random vector living on

R𝑟 space.

In order to evaluate estimation accuracy, we measure the relative error

(RE) metric defined by

RE(A𝑡𝑟 ,A𝑒𝑠) =
∥A𝑡𝑟 − A𝑒𝑠 ∥𝐹
∥A𝑡𝑟 ∥𝐹

, (6.104)

where A𝑡𝑟 (resp. A𝑒𝑠) refers to the ground truth (resp. estimation)
13
.

6.4.1.2 Effect of Forgetting Factor 𝛽

The choice of 𝛽 plays a central role in how effective and efficient ACP can

be in nonstationary environments. In order to investigate the effect of the

forgetting factor, we vary the value of 𝛽 from 0 to 1 and measure estimation

accuracy of ACP in different tests with regard to the rotational angle𝛼 . Fig. 6.3

illustrates the experimental results of applying ACP to a synthetic 4-order

tensor whose size is 20 × 20 × 20 × 500 and its rank 𝑟 = 5. The noise level 𝜎

is set at 10
−3
, while the sketching parameter𝑚 is fixed at 10. It is clear that

13
Due to the permutation and scaling indeterminacy of the CP decomposition, we can find

U𝑒𝑠 which is matched with U𝑡𝑟 from U𝑡 , as follows: U𝑒𝑠 = U𝑡P⊤D−1
, where the permuta-

tion matrix P ∈ R𝑟×𝑟 and the diagonal matrix D ∈ R𝑟×𝑟 are derived from minimizing the

optimization argminD,P

U𝑡 − U𝑡𝑟DP

2

𝐹
.

CHAPTER 6. ROBUST TENSOR TRACKING 194

10
-2

0.9
/10

10
-1

0.6 /45

10
0

/900.3
/180

0 /360

10
-2

10
-1

10
0

10
-2

0.9
/10

10
-1

0.6 /45

10
0

/900.3
/180

0 /360

10
-2

10
-1

10
0

Figure 6.3: Effect of the forgetting factor 𝛽 on the performance of ACP versus

the rotation angle 𝛼 .

0 200 400 600 800 1000

10
-16

10
-8

10
0

(a) 𝜎 = 0

0 200 400 600 800 1000

10
-16

10
-8

10
0

(b) 𝛽 = 1

Figure 6.4: Performance of ACP in stationary environments: Y𝑡 ∈
R20×20×20×1000

, the true rank 𝑟 = 5, an abrupt change at 𝑡 = 500.

the optimal value of 𝛽 depends not only on the rotation angle 𝛼 , but also on

the missing density 𝜌 . When 𝛽 increases from 0 to 1, the performance of ACP

goes up first and then drops. As can be seen in Fig. 6.3 that the value of 𝛽

should be around 0.5 for reasonable performance. Thus, we fix 𝛽 = 0.5 in the

next experiments for. It is worth noting that in stationary environments, we

can set the value of 𝛽 = 1 to achieve the best performance, please see Fig. 6.4

for an illustration.

6.4.1.3 Asymptotic Convergence Behavior

We next illustrate the convergence behavior of ACP in terms of the varia-

tion ∥U𝑡+1 − U𝑡 ∥𝐹 and the objective value 𝑓𝑡 (U𝑡). We use the same 4-order

tensor above but with 1000 tensor slices. Two noise levels are considered (in-

cluding 𝜎 = 0 and 𝜎 = 10
−3
), while the missing density 𝜌 is chosen among

{10%, 30%, 50%}. The experiment results are shown as in Fig. 6.5. We can

see that convergence results agree with those stated in the proof sketch of

Lemma 9.

CHAPTER 6. ROBUST TENSOR TRACKING 195

0 200 400 600 800 1000
10

-40

10
-20

10
0

(a) 𝑓𝑡 (U𝑡): Noise-free

0 200 400 600 800 1000
10

-20

10
-10

10
0

(b) ∥U𝑡+1 − U∥𝐹 : Noise-free

0 200 400 600 800 1000

10
-5

10
0

10
5

(c) 𝑓𝑡 (U𝑡): 𝜎 = 10
−3

0 200 400 600 800 1000
10

-5

10
-2

10
1

(d) ∥U𝑡+1 − U∥𝐹 : 𝜎 = 10
−3

Figure 6.5: Convergence behavior of ACP in terms of the objective values

𝑓𝑡 (U𝑡) and ∥U𝑡+1 − U𝑡 ∥𝐹 .

6.4.1.4 Noisy and Dynamic Environments

First, the robustness of ACP is investigated against the noise variance. We test

ACP’s tracking ability on the same static 4-order tensor above with different

values of the noise level 𝜎 . Fig. 6.6 shows that the value of𝜎 does not affect the

convergence rate of ACP, but only its estimation error. Specifically, when we

increase the noise level 𝜎 , the relative error (RE) between the ground truth

and estimation goes up gradually, but towards an error bound.

Next, we use the same tensor, but the number of slices is double for illus-

trating the robustness of ACP against time-varying environments. In par-

ticular, the proposed algorithm is evaluated in two scenarios, including a

slow time-varying case (i.e., 𝛼 = 𝜋/360) and a fast time-varying case (i.e.,

𝛼 = 𝜋/45). Also, at time 𝑡 = 600, we make an abrupt change in these models.

In addition, the missing density 𝜌 is chosen among {10%, 30%, 50%}.
Experimental results indicate that ACP is capable of tracking streaming

tensors in dynamic environments, as shown in Fig. 6.7. In both scenarios,

the relative error (RE) between the ground truth and estimation always con-

verges towards a steady state error bound. The missing density 𝜌 has only an

CHAPTER 6. ROBUST TENSOR TRACKING 196

0 100 200 300 400 500
10

-10

10
-5

10
0

0 100 200 300 400 500
10

-10

10
-5

10
0

Figure 6.6: Effect of the noise level 𝜎 on the performance of ACP.

0 200 400 600 800 1000

10
-2

10
-1

10
0

0 200 400 600 800 1000

10
-2

10
-1

10
0

Figure 6.7: Time-varying scenarios: ACP’s tracking ability versus the miss-

ing density 𝜌 and the rotation angle 𝛼 : The noise level 𝜎 = 10
−3

and an abrupt

change at 𝑡 = 600.

influence on the convergence rate of ACP. Specifically, the lower the missing

density 𝜌 is, the faster ACP converges.

6.4.1.5 Evaluation of Effectiveness and Efficiency

To demonstrate the effectiveness and efficiency of our algorithm, we compare

performance of ACP in terms of estimation accuracy and running time with

the state-of-the-art adaptive CP decompositions for incomplete tensors, in-

cluding OLSTEC [176], CP-PETRELS [215], TeCPSGD [106]. For a fair com-

parison, parameters of these algorithms are fine-tuned carefully to achieve

good performance. Particularly, the forgetting factor 𝜆 is set at 0.7, 0.001,

and 0.98, respectively, for OLSTEC, TeCPSGD and CP-PETRELS. Moreover,

OLSTEC and TeCPSGD are also dependent on a regularization parameter 𝜇

CHAPTER 6. ROBUST TENSOR TRACKING 197

0 200 400 600 800 1000

10
-2

10
-1

10
0

0 200 400 600 800 1000

10
-2

10
-1

10
0

Figure 6.8: Tracking ability of four adaptive CP algorithms in a time-varying

scenario with 50% missing observations: The tensor of size 20× 20× 1000, the

noise level 𝜎 = 10
−3
, the rotation angle 𝛼 = 𝜋/360 and an abrupt change at

𝑡 = 600.

20 200 20 200 20 200 20 200

0

0.3

0.6

0.9

20 200 20 200 20 200 20 200

0

30

60

90

Figure 6.9: Performance of four adaptive CP algorithms on synthetic 3-order

tensors: The noise level 𝜎 = 10
−3

and the rotation angle 𝛼 = 𝜋/360.

which is set at 10
−3

and 10
−1

respectively.

Since these algorithms are capable of tracking 3-order tensors only, we

use synthetic streaming tensors of size 𝑁 × 𝑁 × 1000 in this task. The noise

level is fixed at 𝜎 = 10
−3
. Performance of these algorithms is evaluated on

a small tensor 20 × 20 × 1000 and a big tensor 200 × 200 × 1000. Results

are shown in Figs. 6.8 and 6.9. We can see that OLSTEC and ACP provide

comparative estimation accuracy. In terms of running time, ACP is several

times faster than OLSTEC, especially in big tensor tests. TeCPSGD is a fast

adaptive algorithm, but yields lower estimation accuracy as compared to ACP

and OLSTEC, while CP-PETRELS gives the worst accuracy as well as running

time.

CHAPTER 6. ROBUST TENSOR TRACKING 198

6.4.2 Performance of ATD

The following experiments will evaluate the ability of ATD for the problem

of tensor tracking.

6.4.2.1 Experimental Setup

Follow the setup above, the incomplete slice Y𝑡 at time 𝑡 is generated ran-

domly using the following model:

Y𝑡 = P𝑡 ⊛

(r
G𝑡 ;

{
U(𝑛)𝑡

}𝑁−1

𝑡=1
, u(𝑁)𝑡

z
+ 𝜎N𝑡

)
, (6.105)

where the loading factor U(𝑛)𝑡 and the core tensor G𝑡 are updated by the

following rules

U(𝑛)𝑡 = U(𝑛)
𝑡−1
+ 𝜀N(𝑛)𝑡 and G𝑡 = G𝑡−1

+ 𝜀V𝑡 , (6.106)

where U(𝑛)
0
,N(𝑛)𝑡 ∈ R𝐼𝑛×𝑟𝑛 and V𝑡 ∈ R𝑟1×𝑟2×···×𝑟𝑁

are the Gaussian noises

whose entries are distributed i.i.d fromN(0, 1) and the time-varying factor 𝜀

is to control their variation.

Besides the relative error (RE)metric, we also use the subspace estimation

performance (SEP) [62] metric to evaluate the subspace estimation accuracy,

which is defined by

SEP(U𝑡𝑟 ,U𝑒𝑠) =
tr

(
U#

𝑒𝑠 (I − U𝑡𝑟U#

𝑡𝑟)U𝑒𝑠
)

tr

(
U#

𝑒𝑠 (U𝑡𝑟U#

𝑡𝑟)U𝑒𝑠
) , (6.107)

where U𝑡𝑟 (resp. U𝑒𝑠) refers to the true loading factor (resp. estimated factor).

The lower value of SEP is, the better accuracy the algorithm achieves.

6.4.2.2 Robustness of ATD

In order to demonstrate the robustness of ATD against data corruption, we

change the number of missing entries in the measurement by varying the

value of 𝜌 and evaluate its performance on different noise levels. We also com-

pare ATDwith three well-known batch Tucker algorithms for tensor comple-

tion, including iHOOI [344], ALSaS [344], and WTucker [345]. These algo-

rithms are iterative-based, so their procedure will be stopped when the accu-

racy tolerance 𝑡𝑜𝑙 or the maximum iteration ITERmax has been met. For con-

vergence guarantee, we fix the value of 𝑡𝑜𝑙 at 10
−4
, while the value of ITERmax

is set at 500, 500, and 100, respectively, for iHOOI, ALSaS and WTucker. For

ATD, the forgetting factor 𝜆 is fixed at 0.7 in the following experiments.

CHAPTER 6. ROBUST TENSOR TRACKING 199

0 100 200 300 400 500

10
-4

10
-2

10
0

0 100 200 300 400 500

10
-8

10
-4

10
0

Figure 6.10: Performance of ATD versus the missing density 𝜌 and the noise

level 𝜎 : On the 4-order tensor of size 20 × 20 × 20 × 500 and its Tucker rank

rTD = [3, 3, 3, 3].

In this task, we use a static tensor of size 20× 20× 20× 500 (i.e., the time-

varying factor 𝜀 = 0) whose core is generated at random from a Gaussian

distribution of zero-mean and unit variance. Under the Tucker model with

rTD = [3, 3, 3, 3], performance of ATD on the tensor is illustrated in Fig. 6.10.

Results show that ATD can successfully track the multilinear low-rank model

in all test cases. Similar to ACP, the missing density 𝜌 has influence only on

the convergence rate of ATD, i.e., the higher the value of 𝜌 is, the slower

ATD converges. Performance comparison among Tucker algorithms is re-

ported statistically in Tab. 6.1 and shown in Fig. 6.11. Results indicate that

ATD is the fastest algorithm, much faster than the state-of-the-art algorithms.

For instance, when dealing with the case of 50% missing observations and

rTD = [3, 3, 3, 3], the running time of ATD is only 2.51 seconds and 35 times

faster than the second-fastest algorithm, iHOOI. Moreover, ATD always pro-

vides good estimation accuracy in terms of both SEP metric and RE metric as

compared to that of the batch algorithms.

6.4.2.3 Tracking Ability in Dynamic Environments

We continue to investigate the tracking ability of ATD in nonstationary and

time-varying environments by changing the time-varying factor 𝜀 in the range

[10
−4, 10

−1]. We use the same tensor dimensions as in the previous task. Also,

we create a significant subspace change at time 𝑡 = 300 to see how fast ATD

can converge. Fig. 6.12 shows the convergence behavior of ATD versus the

time-varying factor 𝜀. We can see that the convergence rate of ATD is not

affected by 𝜀 but only its estimation error.

CHAPTER 6. ROBUST TENSOR TRACKING 200

Table 6.1: Performance of Tucker algorithms on a static 4-order tensor of size

20 × 20 × 20 × 500 and the noise level 𝜎 = 10
−2
.

Rank [3, 3, 3, 3] [10, 10, 10, 10]

Missing 𝜌 = 50% 𝜌 = 70% 𝜌 = 50% 𝜌 = 70%

Metric RE(X) SEP(U) Time(s) RE(X) SEP(U) Time(s) RE(X) SEP(U) Time(s) RE(X) SEP(U) Time(s)

iHOOI 3.0𝑒-4 4.2𝑒-8 88.1 8.1𝑒-4 4.7𝑒-7 345.3 9.1𝑒-2 5.1𝑒-4 192.9 3.5𝑒-1 1.3𝑒-2 571.5

ALSaS 3.1𝑒-4 4.3𝑒-8 109.9 7.8𝑒-4 4.9𝑒-7 539.5 1.0𝑒-4 2.8𝑒-9 719.1 8.3𝑒-4 3.4𝑒-8 3754.6

WTucker 2.1𝑒-4 2.4𝑒-8 209.1 3.5𝑒-4 1.3𝑒-7 597.4 3.7𝑒-5 2.8𝑒-10 241.2 5.0𝑒-5 3.3𝑒-10 631.7

ATD 6.4e-5 7.6e-9 2.5 1.8e-4 1.4e-8 5.7 1.7e-5 6.8e-11 21.7 3.2e-5 2.5e-10 58.2

6.4.2.4 Orthogonality Constraint

In practice, Tucker decomposition is often consideredwith orthogonality con-

straints on the loading factors. The unconstrained ATD can be recast into

an orthogonal ATD while retaining the equivalent approximation error. To

demonstrate this point, we set up a time-varying scenario and compare the

performance of ATD and ATDwith the orthogonalization step, called ATD-O.

Fig. 6.12 indicates that the convergence rate of ATD-O is slightly better than

that of the unconstrained ATD, but both yield the same error floor. Due to

space limitation, we here omit results with ATD-O and presents only those of

ATD.

6.4.2.5 Real Data

To demonstrate the effectiveness of our algorithms on real datasets, we con-

sider two related applications: video completion and multichannel EEG anal-

ysis.

Video Completion. In this task, four real video surveillance sequences

are used, includingHighway, Hall, Lobby andPark14. Specifically, Highway
contains 1700 frames of size 320 × 240 pixels. Hall has 3584 frames of size

174×144 pixels. Lobby consists of 1546 frames of size 128×160 pixels. Park
includes 600 frames of size 288 × 352 pixels.

We first investigate the effect of the forgetting factor 𝜆 on the reconstruc-

tion performance of the two proposed algorithms for video completion. Par-

ticularly, the value of 𝜆 and the missing ratio 𝜌 are varied from 0.1 to 0.9. The

CP rank and Tucker rank are set at 10 and [10, 10, 10], respectively. Experi-
mental results from Fig. 6.14 indicate that the performance of ACP and ATD

14
Video sequences: http://jacarini.dinf.usherbrooke.ca/

CHAPTER 6. ROBUST TENSOR TRACKING 201

0 100 200 300 400 500

10
-5

10
-2

10
1

0 100 200 300 400 500

10
-8

10
-4

10
0

0 100 200 300 400 500
10

-3

10
-1

10
1

Figure 6.11: Performance of Tucker algorithms in the case where 50% entries

are observed and Tucker rank rTD = [3, 3, 3, 3], and the noise level 𝜎 = 10
−2
.

is not much affected by the forgetting factor. For this task, we therefore keep

the value of 𝜆 at 0.5 as in previous experiments on synthetic data.

We next compare our algorithmswith OLSTEC [176], TeCPSGD [106] and

CP-PETRELS [215]. We set the value of 𝜆 at 0.7, 0.001 and 0.999, respectively,

for OLSTEC, TeCPSGD and CP-PETRELS. Besides, OLSTEC and TeCPSGD

are also depended on the regularization parameter 𝜇 which value is fixed at

0.1. Performance of these algorithms is shown statistically in Tab. 7.1 and

graphically in Fig. 6.15. We can see that ATD outperforms adaptive CP algo-

rithms in almost all tests. ACP also provides reasonable estimation accuracy

on these data as compared to others. CP-PETRELS seems to fail to track video

background and thus recovers missing data unsuccessfully. With respect to

the running time, experimental results indicate that ACP is the fastest adap-

tive tensor decompositions.

Multichannel EEG Analysis. We follow the experimental framework

in [292,346] to illustrate the use of ACP for analyzing multichannel EEG sig-

nals. In this task, we use a public EEG dataset collected on 14 subjects during

the stimulation of hands
15
. The EEG signals are recorded using a system of

64 channels (electrodes) and we have 28 measurements per subject in total.

We construct three-order EEG tensor of measurement × channel × time−
frequency by taking continuouswavelet transform to each EEG channel. Note

that, the resulting time-frequency representations are reshaped into vectors

of length 4392 and hence being streamed. In a nutshell, we have the EEG

15
EEG data: http://www.erpwavelab.org/index.htm

CHAPTER 6. ROBUST TENSOR TRACKING 202

0 100 200 300 400 500

10
-8

10
-4

10
0
0 100 200 300 400 500

10
-3

10
-1

10
1

Figure 6.12: Effect of the time-varying factor 𝜀 on the performance of ATD:

Tucker rank [3, 3, 3, 3], 90% entries are observed, the noise level is 𝜎 = 10
−2

and an abrupt change at 𝑡 = 300.

tensor whose size is 28× 64× 4392 and its rank is set at 3 as provided in [292,

346]. At each time, data of 20 (and 40) channels are supposed to be discarded

randomly for our missing observation purpose.

We evaluate the performance of ACP in a comparison with the adaptive

NL-PETRELS algorithm in [292] and the batch CP-WOPT algorithm in [346].

To have a good initialization for NL-PETRELS, the 1500 first slices are used to

construct the training tensor. Also, the forgetting factor 𝜆 is set at 0.999. By

contrast, ACP is not as sensitive to initialization conditions, so it is initialized

at random. We consider results obtained by using the batch algorithm as our

ground truth.

Under the CP model with 𝑟CP = 3, taking the tensor decomposition to

the EEG tensor results in three loading factors A ∈ R28×3
, B ∈ R64×3

and

C ∈ R4392×3
corresponding to, respectively, the measurement, channel and

time-frequency modes. Fig. 6.16 illustrates the estimation of A,B and C using

CP-WOPT, NL-PETRELS and ACP. In particular, we use bar plots and 3D head

plots to represent the column vectors of A and B, while the time-frequency

representations corresponding to the columns of C are plotted as matrices.

We can see from Fig. 6.16 that both adaptive algorithms are capable of track-

ing three EEG loading factors. Indeed, our ACP provides a slightly better

estimation as compared to that of CP-WOPT. However, in the presence of

highly incomplete observations (e.g. 40 channels are missing), NL-PETRELS

fails to estimate the EEG loading factors while our ACP algorithms still works

well, as shown in Fig 6.17.

CHAPTER 6. ROBUST TENSOR TRACKING 203

0 100 200 300 400 500

10
-2

10
-1

10
0

0 100 200 300 400 500
10

-5

10
-2

10
1

Figure 6.13: Comparison of ATD and ATD-O (orthogonality constraint) in a

dynamic scenario: the time-varying factor 𝜀 = 10
−2
, the noise level 𝜎 = 10

−3
,

70% observations are observed and an abrupt change at 𝑡 = 300.

6.4.3 Performance of RACP

Wehere provide several experiments on both synthetic and real data to demon-

strate the effectiveness of RACP and its variant. In particular, the performance

of ourmethod is evaluated in comparisonwith the-state-of-the-art algorithms

with respect to the following aspects: (i) impact of outliers, (ii) impact of miss-

ing data, and (iii) tracking ability in noisy and time-varying environments.

6.4.3.1 Experiment Setup

At 𝑡 = 0, the loading factor U(𝑛)
0
∈ R𝐼𝑛×𝑟 , 𝑛 = 1, 2, . . . , 𝑁 is randomly initial-

ized whose entries are i.i.d. from a normal distribution N(0, 1). When 𝑡 ≥ 1,

U(𝑛)𝑡 is varied according to the following model:

U(𝑛)𝑡 = U(𝑛)
𝑡−1
+ 𝜖N(𝑛)𝑡 , (6.108)

where N(𝑛)𝑡 is a Gaussian noise matrix (with zero-mean and unit-variance),

and 𝜖 is a positive time-varying factor used to control the variation of U(𝑛)

between 𝑡 and 𝑡 − 1.

The 𝑡-th slice Y𝑡 is then generated under the data model

Y𝑡 = P𝑡 ⊛

(r{
U(𝑛)𝑡

}𝑁−1

𝑛=1
, u(𝑁)𝑡

z
+ O𝑡 + N𝑡

)
, (6.109)

where P𝑡 is a binary observation mask according to a Bernoulli distribution

with probability of observing data 1 − 𝜔miss, N𝑡 is a Gaussian noise tensor

CHAPTER 6. ROBUST TENSOR TRACKING 204

10 20 30 40 50 60 70 80 90

Missing ratio (%)

0.1

0.3

0.5

0.7

0.9
0.15

0.2

0.25

0.3

0.35

(a) ACP: Averaged Reconstruction Error

10 20 30 40 50 60 70 80 90

Missing ratio (%)

0.1

0.3

0.5

0.7

0.9
0.1

0.12

0.14

0.16

(b) ATD: Averaged Reconstruction Error

0 500 1000 1500

10
-1

10
0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

 = 1

(c) ACP: full observations

0 500 1000 1500

10
-1

10
0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

 = 1

(d) ATP: full observations

0 500 1000 1500

10
-1

10
0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

 = 1

(e) ACP: 50% observations

0 500 1000 1500

10
-1

10
0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

 = 1

(f) ATD: 50% observations

Figure 6.14: Effect of the forgetting factor 𝛽 on the video completion accuracy

of ACP and ATC on Lobby data.

with i.i.d. entries N(0, 𝜎2

𝑛), O𝑡 is a sparse outlier tensor whose entries are

drawn uniformly from the range [0, 𝐴outlier] and the indices of outliers also
follow a Bernoulli distribution with probability 𝜔outlier, and u𝑡 ∈ R𝑟×1

is a

standard normal random vector.

6.4.3.2 Robustness of RACP

We first investigate the robustness of RACP against gross data corruptions.

Specifically, we change the density of outliers and missing data, and then

measure the relative error between the ground truth and RACP’s estimation.

In this task, we use a synthetic 4
th
-order streaming tensor of size 20 ×

20 × 20 × 1000 and the CP rank is set at 𝑟 = 2 and 𝑟 = 5. The noise level

𝜎𝑛 and the time-varying factor 𝜖 are fixed at 10
−3

and 10
−2
, respectively. We

CHAPTER 6. ROBUST TENSOR TRACKING 205

(a) Lobby video: 50% missing. (b) Lobby video: Performance of ATD.

(c) Hall video: 50% missing. (d) Hall video: Performance of ATD.

Figure 6.15: Performance of adaptive tensor completion algorithms on the

video sequences.

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-1.0

0

1.0

(a) CP-OPT (Batch)

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

11 7 14 21 28

-1.0

0

1.0

(b) NL-PETRELS (Adaptive)

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-1.0

0

1.0

(c) ACP (Adaptive)

Figure 6.16: Waveform-preserving character of ACP on the EEG tensor: 20

channels are missing.

consider the case where the underlying data is corrupted by strong outliers

with 𝐴outlier = 10. The fraction of outliers (𝜔outlier) and missing data

(𝜔miss) are varied in the range [5%, 95%]. Throughout our experiments, the

forgetting factor 𝜆 is fixed at 0.5 while the window length is 𝐿𝑡 = 𝑡 .

CHAPTER 6. ROBUST TENSOR TRACKING 206

Methods TeCPSGD OLSTEC CP-PETRELS ACP ATD
D
a
t
a
s
e
t

S
i
z
e

M
i
s
s
i
n
g

R
E
(X
)

T
i
m

e
(𝑠
)

R
E
(X
)

T
i
m

e
(𝑠
)

R
E
(X
)

T
i
m

e
(𝑠
)

R
E
(X
)

T
i
m

e
(𝑠
)

R
E
(X
)

T
i
m

e
(𝑠
)

H
i
g
h
w
a
y

3
2
0
×

2
4
0
×

1
7
0
0

10% 0.2057 36.582 0.1693 132.02 0.9250 451.41 0.2178 14.437 0.1484 36.587

50% 0.2111 35.252 0.1709 95.188 0.9346 273.98 0.2251 13.295 0.1526 33.269

90% 0.2256 27.103 0.1849 54.246 0.9224 107.79 0.2725 13.017 0.1964 26.996

H
a
l
l

1
7
4
×

1
4
4
×

3
5
8
4

10% 0.1456 15.060 0.1247 83.789 0.9819 339.10 0.1457 11.852 0.1006 36.293

50% 0.1450 14.916 0.1260 74.869 0.9269 188.15 0.1602 11.808 0.1045 31.576

90% 0.1614 12.532 0.1497 47.235 0.9281 71.576 0.2341 11.897 0.1426 25.047

L
o
b
b
y

1
2
8
×

1
6
0
×

1
5
4
6

10% 0.1324 5.672 0.1213 29.490 0.9161 107.44 0.1258 4.613 0.0868 14.590

50% 0.1452 4.920 0.1228 21.940 0.8596 61.051 0.1881 4.711 0.0884 10.630

90% 0.1733 4.022 0.1530 14.701 0.9736 22.150 0.2602 3.811 0.1333 9.245

P
a
r
k

2
8
8
×

3
5
2
×

6
0
0

10% 0.1057 10.303 0.0905 49.213 0.9945 186.28 0.1270 6.458 0.0686 16.157

50% 0.1246 9.940 0.0916 33.660 0.9892 127.30 0.1441 5.825 0.0759 14.052

90% 0.1369 8.497 0.1006 22.031 0.9627 50.435 0.2001 5.179 0.1122 10.966

Table 6.2: Performance of adaptive tensor decompositions on video data.

Phase transitionsw.r.t. the pair of {𝜔outlier, 𝜔miss} are shown in Fig. 6.18.
The results indicate that there is a large region in which our estimation was

successful. Particularly, RACP worked well when the number of “clean" data

is large enough. In the presence of huge data corruptions (e.g., 𝜔outlier ≥
70% and/or 𝜔miss ≥ 70%), the proposed algorithm failed to track the under-

lying tensor model.

Next, we evaluate the tracking ability of RACP in time-varying environ-

ments. The two synthetic rank-5 tensors of size 20 × 20 × 20 × 1000 and

20 × 20 × 20 × 20 × 1000 are used in this task. The fraction of missing en-

tries and sparse outliers are both set to 5%. The outlier intensity𝐴outlier and

the noise factor 𝜎𝑛 are fixed at 10 and 10
−4
, respectively. The value of the

time-varying factor 𝜖 is varied from [10
−4, 10

−1]. An abrupt change is cre-

ated at 𝑡 = 600 to assess how fast RACP converges. We can see from Fig. 7.12

CHAPTER 6. ROBUST TENSOR TRACKING 207

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-1.0

0

1.0

(a) CP-OPT (Batch)

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60
1 7 14 21 28

-1.0

0

1.0

(b) NL-PETRELS (Adaptive)

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

20

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-1.0

0

1.0

(c) ACP (Adaptive)

Figure 6.17: Waveform-preserving character of ACP on the EEG tensor: 40

channels are missing.

10 30 50 70 90

10

30

50

70

90

(a) 𝑟 = 2

10 30 50 70 90

10

30

50

70

90

(b) 𝑟 = 5

Figure 6.18: Effect of data corruptions (outliers and missing values) on per-

formance of RACP. Black color denotes failure, white color denotes perfect

estimation, and gray color is in between.

that RACP’s convergence rate is not much affected by the value of 𝜖 but its

estimation accuracy.

To demonstrate the effectiveness of the proposed algorithm, we compare

the performance of RACP with the state-of-the-art adaptive CP decomposi-

tions, including TeCPSGD [106], OLSTEC [176], and ACP [30]. To have a fair

comparison, algorithm parameters are set by default as suggested by their

authors. These algorithms are dependent on a forgetting factor; we set its

value at 0.7, 0.001, and 0.5 for OLSTEC, TeCPSGD, and ACP, respectively.

The penalty parameter is set at 10
−3

and 10
−1

for OLSTEC and TeCPSGD,

respectively.

Since OLSTEC and TeCPSGD are only capable of tracking third-order

CHAPTER 6. ROBUST TENSOR TRACKING 208

0 250 500 750 1000

10
-4

10
-2

10
0

(a) 4
th
-order: 20 × 20 × 20 × 1000

0 250 500 750 1000

10
-4

10
-2

10
0

(b) 5
th
-order: 20 × 20 × 20 × 20 × 1000

Figure 6.19: Performance of RACP in time-varying environments.

0 250 500 750 1000
0

0.5

1

0 250 500 750 1000

10
-2

10
0

10
2

(a) 𝐴outlier = 1 (small)

0 250 500 750 1000
0

0.5

1

0 250 500 750 1000

10
-2

10
0

10
2

(b) 𝐴outlier = 10 (strong)

Figure 6.20: Impact of outlier intensity (𝐴outlier) on performance of adaptive

CP algorithms; 𝜔miss = 10%, 𝜔outlier = 20%, 𝜎 = 10
−2
, 𝜀 = 10

−2
.

streaming tensors, we here use a synthetic streaming tensor of size 20 × 20 ×
1000 and its rank is fixed at 5. The noise level and time-varying factor are

both kept at 10
−2
. Performance comparison results are shown in Figs. 6.20

and 6.21.

Fig. 6.20 illustrates the impact of the outlier intensity on the performance

of the four adaptive CP algorithms in the presence of 10% missing data and

20% outliers. When the outlier intensity is small, all algorithms could track the

underlying tensormodel over time, as shown in Fig. 6.20(a). Indeed, TeCPSGD

CHAPTER 6. ROBUST TENSOR TRACKING 209

0 250 500 750 1000
0

0.5

1

0 250 500 750 1000

10
-2

10
0

10
2

(a) 𝜔outlier = 10%

0 250 500 750 1000
0

0.5

1

0 250 500 750 1000

10
-2

10
0

10
2

(b) 𝜔outlier = 50%

Figure 6.21: Impact of outlier density (𝜔outlier) on performance of adaptive

CP algorithms: 𝜔miss = 10%, 𝜎 = 10
−2
, 𝜀 = 10

−2
, 𝐴outlier = 10.

yielded a worse estimation than the three remaining adaptive CP algorithms.

In the presence of strong outliers, the state-of-the-art adaptive CP algorithms

failed to update the tensor basis and recover the corrupted tensor slice. By

contrast, our RACP algorithm still worked well, as shown in Fig. 6.20(b).

Fig. 6.21 illustrates the impact of the outlier density on the performance of

RACP against the three adaptive CP algorithms when the missing density

𝜔miss = 10% and outlier intensity 𝐴outlier = 10. We can see that RACP out-

performed OLSTEC, TeCPSGD, and ACP in all testing cases. Similar to the

case study of strong outliers, the state-of-the-art adaptive algorithms were

unable to track the streaming tensors when the number of outliers is large.

We next investigate the performance of RACP when the loading factors

are not normal in comparison with other adaptive CP algorithms. In partic-

ular, the initial factors {U(𝑛)
0
}𝑁𝑛=1

are sampled from a uniform distribution on

the (0, 1) interval instead of Gaussian one. The time-varying model (6.108) is

replaced withU(𝑛)𝑡 = U(𝑛)
𝑡−1
+𝜖N(𝑛)𝑡 whereN(𝑛)𝑡 is also an i.i.d. uniform random

matrix from 0 to 1. The parameter specifications are kept as in the previous

experiment. Results are illustrated in Fig. 6.22. We can see that the proposed

RACP algorithm still tracks successfully the loading factors along the time

while the state-of-the-art CP algorithms failed.

Experimental results in Figs. 6.20, 6.21, and 6.22 suggest that the outlier

rejection step (e.g. Step 1 in RACP) using the ADMM solver plays an impor-

tant role in the tracking process when observations are corrupted by sparse

CHAPTER 6. ROBUST TENSOR TRACKING 210

0 250 500 750 1000

10
-2

10
0

10
2

(a) 𝜔miss = 𝜔outlier = 5%

0 250 500 750 1000

10
-2

10
0

10
2

(b) 𝜔miss = 𝜔outlier = 20%

Figure 6.22: Non-Gaussian loading factors.

outliers. Therefore, we next evaluate the effectiveness of the proposed outlier

rejection by applying the ADMM solver to other trackers: TeCPSGD and OL-

STEC.We here reuse the experiment setup above and create an abrupt change

at 𝑡 = 600. We can see from Fig. 6.23 that the combination of the ADMM

solver and OLSTEC resulted in the best convergence rate and estimation ac-

curacy. This is probably due to the effectiveness of the second-order estimator

in slowly time-varying environments. Our RACP provided a reasonable per-

formance compared to that of OLSTEC, while TeCPSGD tracker did not work

well. It should note that OLSTEC is designed for only 3
rd
-order streaming

tensors and its computational complexity is high indeed. Our tracker is much

faster and capable of dealing with higher-order streaming tensors. We refer

the readers to our companion work in [30] for further comparisons of ACP

against TeSGD and OLSTEC.

Finally, we conduct a performance comparison between the original RACP

and its variant in which the step of re-updating P𝑡 defined as in (6.61) is used.

We reuse the two rank-5 tensors of size 20× 20× 20× 1000 and 20× 20× 20×
20 × 1000. The fraction of missing entries is fixed at 10%. We set the outlier

density and intensity to 10% and 10, respectively. The noise and time-varying

factors are kept at 10
−2

and an abrupt change at 𝑡 = 600 is also created as

in previous experiments. The results are illustrated in Fig. 6.24. As can be

seen the outlier rejection mechanism can help improve the convergence rate

of RACP.

CHAPTER 6. ROBUST TENSOR TRACKING 211

0 250 500 750 1000

10
-2

10
0

10
2

(a) 𝜔miss = 𝜔outlier = 5%

0 250 500 750 1000

10
0

(b) 𝜔miss = 𝜔outlier = 20%

Figure 6.23: Outlier rejection with different trackers.

6.4.3.3 Nonnegative RACP

We reuse the experiment setup in Section 6.4.3.1, but the time variation of

U(𝑛) ⪰ 0 is modified as

U(𝑛)𝑡 = abs

(
U(𝑛)
𝑡−1
+ 𝜖N(𝑛)𝑡

)
, (6.110)

where abs(·) denotes the absolute value, N(𝑛)𝑡 is a Gaussian noise matrix with

i.i.d. entries, and 𝜖 is to control the variation.

We first investigate the performance of NRACP against time-varying en-

vironments. A synthetic rank-5 nonnegative tensor of size 50×50×50×1000

is used in this task. We consider the case where 10% of the measurements are

corrupted by outliers with 𝐴outlier = 10 and the noise level is 𝜎𝑛 = 10
−3
. An

abrupt change at 𝑡 = 600 is created to evaluate how fast NRACP converges.

The results are shown in Fig. 6.25. We can see that the relative error between

the estimation and ground truth converged to an error floor. Furthermore, the

missing density𝜔miss impacted only the convergence rate of NRACP. Specif-

ically, the lower the missing density 𝜔miss was, the faster NRACP converged.

Next, we study the robustness of NRACP against the noise variance in

comparison with NSOAP [174] and NsTEF [347]. Since both two algorithms

are only feasible for third-order tensors without corruptions (outliers and

missing values), we use a synthetic outlier-free tensor of size 50 × 50 × 1000

and rank 5 for this task. The time-varying factor 𝜖 is set at 10
−3
. Performance

comparison results are illustrated in Fig. 6.26. At a low SNR, NSOAP provided

a better estimation accuracy than NRACP and NsTEF. However, the proposed

NRACP outperformed NSOAP and NsTEF at the high SNR, see Fig. 6.26(b).

In the presence of abrupt changes, the convergence rate of NRACP was fast

while NSOAP and NsTEF failed to track the change.

CHAPTER 6. ROBUST TENSOR TRACKING 212

0 250 500 750 1000

10
-2

10
0

10
2

(a) 4
th
-order: 20 × 20 × 20 × 1000

0 250 500 750 1000

10
-2

10
0

10
2

(b) 5
th
-order: 20 × 20 × 20 × 20 × 1000

Figure 6.24: Convergence rate of RACP and its modification with the re-

update of P𝑡 as defined in (6.61): 𝜔miss = 10%, 𝜔outlier = 10%, 𝐴outlier = 10,

𝜎 = 10
−2
, and 𝜀 = 10

−2
.

0 250 500 750 1000
10

-4

10
-2

10
0

10
2

Figure 6.25: Incomplete observations & time-varying scenarios: Perfor-

mance of NRACP on a synthetic rank-5 tensor of size 50 × 50 × 50 × 500;

𝜎𝑛 = 10
−3
, 𝐴outlier = 10, 𝜔outlier = 10%.

6.4.3.4 Real Datasets

To demonstrate the use of RACP with real-world datasets, we consider the

following tasks: (i) tracking the online low-rank approximation of real-world

data streams, (ii) multichannel EEG analysis, and (iii) video background mod-

eling and foreground detection. Please see Tab. 6.3 for a summary of real

datasets used in this paper.

CHAPTER 6. ROBUST TENSOR TRACKING 213

0 250 500 750 1000
10

-3

10
-1

10
1

(a) 𝜎𝑛 = 10
−1, 𝜖 = 10

−3

0 250 500 750 1000
10

-3

10
-1

10
1

(b) 𝜎𝑛 = 10
−3, 𝜖 = 10

−3

Figure 6.26: Nonnegative adaptive CP decompositions: Outliers-free, full ob-

servations and an abrupt change at 𝑡 = 600.

Table 6.3: Real datasets under the study.

Dataset Data size Tasks

Intel Berkeley Lab 54 × 4 × 1152
Tracking the online

low-rank approximation

& online data completion

Internet Traffic 12 × 12 × 48384

Taxi Trip Record 265 × 265 × 3672

Video

Hall 176 × 144 × 3584

Background modeling

& foreground detection

Lobby 128 × 160 × 1546

Highway 240 × 320 × 1700

EEG

ERPWAVELAB 28 × 64 × 4392 Multichannel EEG analysis

& anomaly EEG detectionEpileptic data 19 × 500 × 6929

Task 1: Tracking the online low-rank approximation and online data
completion

Datasets: In this task, we use three real datasets: Intel Berkeley Lab
16
, Inter-

net Traffic
17
, and Taxi Trip Record

18
. The first dataset is a collection of times-

tamped topology information gathered from 54 positions (sensors) in the Intel

Berkeley Research Lab. Specifically, these sensors collected: temperature (in

degree Celsius), humidity (ranging from 0% to 100%), light (in Lux), and volt-

age (in volt, ranging from 2 to 3). Accordingly, we represent the sensor data by

a three-order tensor of size 54×4×1152 (i.e., sensor×measurement×time). The

16
Intel Berkeley Lab: http://db.csail.mit.edu/labdata/labdata.html

17
Internet Traffic: https://roughan.info/project/traffic_matrix/

18
Taxi Record: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

CHAPTER 6. ROBUST TENSOR TRACKING 214

2 4 6 8 10

10
-3

10
-1

10
1

(a) Performance of RACP with different values of tensor rank

0 200 400 600 800 1000

10
-3

10
-1

10
1

(b) Performance of adaptive CP algorithms with tensor rank 𝑟 = 6

Figure 6.27: Experimental results on the Intel Berkeley Lab data.

second dataset is the link traffic data which was collected from the Internet2

backbone network Abilene. The Abilene backbone is relatively small with

12 routers, 15 links, and 144 flow entries in each traffic matrix of size 12× 12.

We concatenate all these traffic matrices into a tensor of size 12× 12× 48384.

The third dataset describes yellow taxis trip records in the pairs of 265 pick-up

and drop-off sites in New York. Each trip record contains several attributes,

such as pick-up/drop-off times and locations, elapsed trip distance, rate type,

and payment method. In this work, we specifically construct a third-order

tensor of size 265 × 265 × 3672 (i.e., origin × destination × time).
Experiments & Results: Following the same experiment setup in subsec-

tion 6.4.3.1, data corruptions are generated as follows. The locations of miss-

ing entries and sparse outliers are randomly generatedwith probabilities𝜔miss

and 𝜔outlier, respectively. Outlier’s values are drawn uniformly from the

range [0,max(X)] where max(X) is the largest absolute value in the under-

lying data X. In this experiment, we choose the value of 𝜔miss and 𝜔outlier

among the range {5%, 10%, 20%, 40%}. As the true rank is unknown, we first

vary its value from 2 to 10 and then choose the “best” one based on the av-

eraged reconstruction error, see Fig. 6.27(a) for an example. We compare the

performance of RACP against the two adaptive CP algorithms TeCPSGD [106]

and OLSTEC [176]. Both algorithms are dependent on the forgetting factor

CHAPTER 6. ROBUST TENSOR TRACKING 215

(5%,5%) (10%,10%) (20%,20%) (40%,40%)
10

-3

10
-1

10
1

(a) Intel Berkeley Lab: Estimated rank 𝑟 = 6

(5%,5%) (10%,10%) (20%,20%) (40%,40%)
10

-3

10
-1

10
1

(b) Internet Traffic: Estimated rank 𝑟 = 3

(5%,5%) (10%,10%) (20%,20%) (40%,40%)
10

-3

10
-1

10
1

(c) Taxi Trip Record: Estimated rank 𝑟 = 8

Figure 6.28: Completion accuracy of adaptive CP algorithms on real-world

data streams.

𝜆, and its value is set at 0.98, 0.001, and 0.7, respectively. The penalty param-

eter 𝜇 is set at 1 for both TeCPSGD and OLSTEC. The experimental result in

Fig. 6.28 indicates that RACP outperforms TeCPSGD and OLSTEC.

Task 2: Multichannel EEG Analysis

Datasets: In this task, we use two public EEG datasets: ERPWAVELAB
19
and

Epileptic EEG Data
20
. The former dataset contains wavelet transformed ver-

19
ERPWAVELAB: http://www.erpwavelab.org/

20
Epileptic EEG Data: https://data.mendeley.com/datasets/5pc2j46cbc/1

CHAPTER 6. ROBUST TENSOR TRACKING 216

0 0.2 0.4 0.6 0.8 1

O1

F4

C3

F7

T4

(a) Normal data

0 0.2 0.4 0.6 0.8 1

O1

F4

C3

F7

T4

(b) Complex partial seizure

Figure 6.29: Epileptic EEG Dataset.

sions of EEG signals that were collected from 14 subjects during the hand

stimulation (i.e., proprioceptive pulls of the left and right hands) for inter-

trial phase coherence analysis. In particular, these EEG signals were recorded

using an electrode system of 64 channels with 28 measurements per subject.

The continuouswavelet transformwas then applied to represent these signals

in the time-frequency domain. The latter dataset includes 20 EEG recordings

of 6 patients diagnosed with epilepsy at the American university of Beirut

medical center. The EEG data were particularly recorded by using a system

of 21 channels with the sampling rate of 500Hz. The dataset includes 3895

normal segments and 3850 abnormal segments in which there are 3034 par-

tial seizures, 705 electrographic seizures, and 111 video-detected seizures with

no visual change over EEG. Figs. 6.29(a) and 6.29(b) illustrate EEG normal

waveforms and complex partial seizures. In what follows, we consider two

common problems inmultichannel EEG analysis: (i) incomplete multichannel

EEG analysis from partial observations and (ii) anomaly EEG detection.

Incomplete Multichannel EEG Analysis: Here, we use the ERPWAVELAB

dataset and follow the same experimental setup in [30, 292, 346] to demon-

strate the use of RACP with real EEG signals. Particularly, we construct an

EEG tensor of size 28×64×4392 (i.e.,measurement×channel×time-frequency).
To generate incomplete observations, signals from some channels at each

time are supposed to be missing at random. As suggested in [292,346], we set

the tensor rank at 𝑟 = 3. Performance of RACP is compared with two adaptive

CP algorithms NL-PETRELS [292] and ACP [30]. We fix the forgetting factor

CHAPTER 6. ROBUST TENSOR TRACKING 217

Table 6.4: Averaged errors of adaptive CP algorithms for multichannel EEG

analysis from incomplete observations.

Missing channels NL-PETRELS ACP RACP (Proposed)

1/64 0.051 0.063 0.056

10/64 0.062 0.025 0.023

20/64 0.077 0.011 0.014

30/64 0.121 0.097 0.086

40/64 0.891 0.132 0.119

50/64 1.325 1.137 0.982

𝜆 at 0.999 and 0.5 for NL-PETRELS and ACP, respectively. As NL-PETRELS

requires a warm start, we run the batch CP-WOPT algorithm [346] with the

first 1500 tensor slices. Meanwhile, we use random initialization for ACP and

RACP. In this experiment, we aim to factorize the EEG tensor into three basis

components w.r.t. spatial domain, time-frequency domain, and measurement

mode. As there is no real ground truth, we use the results (i.e., CP factors) de-

rived from applying the batch CP-ALS algorithm to the EEG tensor with full

observations as benchmarks. Experimental results are shown in Tab. 6.4 and

Fig. 6.30. They indicate that RACP outperforms NL-PETRELS and provides

a slightly better estimation than ACP, especially in the presence of highly

incomplete observations (e.g., ≥ 40 channels are missing).

Anomaly EEG Detection: We demonstrate the use of RACP to detect ab-

normal activities in the brain (i.e., epileptic seizures) with the epileptic EEG

dataset. Here, we adopt a simple but effective way to predict abnormalities in

multidimensional data streams [237]. In particular, we model the abnormality

of a tensor (streaming) slice Y𝑡 by its recovery error

𝑒𝑡 =

P𝑡 ⊛
(
Y𝑡 − Y𝑡

𝑁∏
𝑛=1

×𝑛U(𝑛)𝑡 U(𝑛)𝑡

#
)

𝐹

/

Y𝑡

𝐹
, (6.111)

where {U(𝑛)𝑡 }𝑁𝑛=1
is the set of solutions generated by RACP at time 𝑡 . It is also

worth noting that the error 𝑒𝑡 is relatively proportional to the norm of the

outlier O𝑡 . We label Y𝑡 based on the following rule

𝑒𝑡
abnormal

≷
normal

𝜏𝑡 = mean

(
{𝑒}𝐿𝑡

)
+ 𝛼 std

(
{𝑒}𝐿𝑡

)
, (6.112)

where {𝑒}𝐿𝑡 denotes the set of 𝑒𝜏 with 𝑡 − 𝐿𝑡 < 𝜏 ≤ 𝑡 .

CHAPTER 6. ROBUST TENSOR TRACKING 218

(a) Ground Truth (b) ACP

(c) NL-PETRELS (d) RACP (Proposed)

Figure 6.30: First component of EEG factors when 40/60 EEG channels are

missing.

We follow the method in our companion work on epileptic spike detec-

tion [179] to obtain the time-frequency representation of multichannel EEG

segments (including normal data and seizures), and hence the corresponding

EEG tensors of size 19× 20× 500 (i.e., channel× scale× time).21 The resulting
tensors are then concatenated into a huge tensor whose the last mode is being

streamed. We use the first 100 tensors of normal data to obtain a warm start

and the estimated rank of 9. Experimental results are shown in Fig. 6.31 (the

error 𝑒𝑡 over time) and Tab. 6.5 (prediction accuracy versus the value of 𝛼).

Although the results are not really excellent, it is highly potential to detect

anomalies in EEG signals by monitoring the approximation error. Subsequent

investigations (e.g., type of wavelet, dominant scales, and mother function)

are necessary to obtain a better prediction.

21
As indicated in the EEG dataset description report, data of two channels Cz and Pz were

omitted. Thus, we have 19 EEG channels left and each channel contains 500 samples. Also, 20

wavelet scales are chosen in the range [4, 8].

CHAPTER 6. ROBUST TENSOR TRACKING 219

0 200 400 600 800 1000

0.4

0.6

0.8
False PositiveTrue Anomaly

Figure 6.31: The error 𝑒𝑡 over time with 𝛼 = 1.5 and 𝐿𝑡 = 𝑡 . Normal data which

are inaccurately labelled as abnormal are referred to as “false positive”.

Table 6.5: Anomaly EEG detection results. Sensitivity and specificity mea-

sure the percentage of anomaly and normal data detected correctly, respec-

tively. Accuracy indicates the overall.

Value of 𝛼 Sensitivity Specificity Accuracy

0.1 42.21% 53.02% 47.57%

0.5 59.74% 66.48% 63.09%

1 72.80% 74.38% 73.59%

1.5 81.58% 85.16% 83.36%

2 50.16% 53.54% 51.83%

Task 3: Video Background-Foreground Modeling

To demonstrate the use of RACP for real applications, we consider the prob-

lem of video background modeling and foreground detection. Three real

video sequences are used in this task, including Hall, Lobby, and Highway22

(see Fig. 6.32). In particular, the Hall video is a set of 3584 images taken at

an airport hall, and the image resolution is 176 × 144. The Lobby video con-

tains 1546 images of size 128 × 160 pixels which was captured in an indoor

office with switching on/off lights. The Highway video contains 1700 images

of vehicles on a highway, and each frame is of size 240 × 320 pixels.

Background Modeling. We first measure the video background model-

ing ability of RACP in comparison with a robust subspace tracking algorithm

PETRELS-ADMM [25], and two adaptive CP algorithms (TeCPSGD [106] and

OLSTEC [176]). These algorithms are dependent on the forgetting factor 𝜆,

22
CDNET: http://jacarini.dinf.usherbrooke.ca.

CHAPTER 6. ROBUST TENSOR TRACKING 220

Figure 6.32: Three video surveillance sequences.

Figure 6.33: Qualitative illustration of video background modeling results.

and its value is set at 0.98, 0.001, and 0.7, respectively. The penalty parameter

𝜇 is set at 0.1 for both TeCPSGD and OLSTEC. The CP rank and subspace rank

are set at 10.

We consider the scenario where 50% of pixels are supposed to be miss-

ing at random. Experimental results are illustrated in Fig. 6.33. As we can

see that the two robust algorithms PETRELS-ADMM and RACP were able

to recover the video background. Particularly, the proposed RACP provided

slightly better estimation than PETRELS-ADMM. The two adaptive CP al-

gorithms TeCPSGD and OLSTEC seem to have failed when the video frame

contains moving objects, probably because they do not account for sparse

outliers.

Foreground Detection. Next, we investigate the ability of RACP in

CHAPTER 6. ROBUST TENSOR TRACKING 221

Original Frame RACPPETRELS-ADMMGRASTAOSTD

Figure 6.34: Qualitative illustration of video foreground detection results.

video foreground detection. We also compare the performance of RACP with

3 notable foreground detection algorithms, including GRASTA [50], OSTD

[278] and PETRELS-ADMM [25]. To have a fair comparison, algorithm pa-

rameters are set by default as suggested by their authors. Particularly, the

penalty parameter 𝜌 and constant step-size scale 𝐶 are, respectively, set at

1.8 and 2 in GRASTA. The forgetting factor in PETRELS-ADMM is fixed at

𝜆 = 0.98, while OSTD is a parameter-free algorithm. As can be seen from

Fig. 6.34 that RACP was capable of detecting moving objects in video streams

and provided a competitive performance as compared to GRASTA, OSTD, and

PETRELS-ADMM.

6.5 Conclusions

In this chapter, we have proposed three new low-complexity algorithms (in-

cluding ACP, ATD, and RACP) for adaptive decomposition of higher-order in-

complete and streaming tensors. First, developed based on CP decomposition,

ACP estimates a multilinear LRA of streaming tensors from noisy and high-

CHAPTER 6. ROBUST TENSOR TRACKING 222

dimensional data with high accuracy, even when the decomposition model

may change slowly with time. Second, developed based on Tucker decom-

position, ATD is a fast randomized tracker, able to recover missing entries

from highly incomplete observations. Leveraging the stochastic approxima-

tion and the uniform sampling technique, ATD has been shown to be one of

the fastest Tucker algorithms, much faster than the batch algorithms while

providing good estimation accuracy. Third, a novel robust adaptive CP de-

composition called RACP has been proposed to track the low-rank approxi-

mation of streaming tensors from uncertain, noisy, and imperfect measure-

ments. Its convergence analysis has been established to guarantee that the

solution generated by RACP converges to a stationary point asymptotically.

Experimental results have indicated that all three algorithms could estimate

the tensor factors as well as track their variations over time with high ac-

curacy, and that they outperformed the state-of-the-art tensor tracking algo-

rithms in both simulated and real data tests.

6.6 Appendix

6.6.1 Appendix A: Proof of Lemma 9

Our analysis follows the same framework to derive the asymptotic conver-

gence of adaptive algorithms for problems of online matrix and tensor fac-

torization [25, 106, 120, 121]. In particular, the convergence analysis con-

tains three main stages: (I) we show that the solutions {U𝑡 , u𝑡 }∞𝑡=1
are uni-

formly bounded to justify the well-definedness condition. Their variations

between two successive time instances satisfy ∥U(𝑛)
𝑡+1 − U

(𝑛)
𝑡 ∥𝐹 → O(1/𝑡)

a.s. (II) The sequence of nonnegative surrogate values {𝑔𝑡 (U𝑡)}∞𝑡=1
is quasi-

martingale and convergent almost surely. (III) The empirical loss function

{𝑓𝑡 (U𝑡)}∞𝑡=1
and its surrogate {𝑔𝑡 (U𝑡)}∞𝑡=1

converge to the same limit, i.e.,

𝑔𝑡 (U𝑡) → 𝑓𝑡 (U𝑡) 𝑎.𝑠 . Accordingly, {U𝑡 }∞𝑡=1
converges to a stationary point

of 𝑓𝑡 (U), i.e. ∇𝑓𝑡 (U𝑡)
𝑡→∞−→ 0.

6.6.1.1 Stage I

In order to justify the well-definedness condition, we first indicate that solu-

tions {U𝑡 , u
(𝑁)
𝑡 }∞𝑡=1

are bounded and hence obtain several important propo-

sitions for the next stages
23
.

23
Note that we assume that the underlying tensor slices and their true loading factors are

bounded, while in this analysis, we investigate the bound of solutions generated by the pro-

posed ACP algorithm.

CHAPTER 6. ROBUST TENSOR TRACKING 223

Proposition 12 Solutions {U𝑡 , u𝑡 }∞𝑡=1
generated by ACP are bounded.

Proof. We first note that ACP begins with full column rank and bounded

factors {U(𝑛)
0
}𝑁𝑛=1

. The matrix S(𝑛)
0

is initialized by a scaled identity matrix

S(𝑛)
0

= 𝛿𝑛I𝑟 with 𝛿𝑛 > 0.

At each time 𝑡 > 0, the coefficient vector u(𝑁)𝑡 is achieved by minimizing

the regularized LS problem

u(𝑁)𝑡 = argmin

u∈R𝑟

L(yΩ𝑡
− HΩ𝑡

u)

2

2
+ 𝛼

2

∥u∥2
2
. (6.113)

At u = 0, we obtain

L(yΩ𝑡

)

2

2
≥

L(yΩ𝑡
− HΩ𝑡

u𝑡)

2

2
+ 𝛼

2

∥u𝑡 ∥22 and hence

∥u(𝑁)𝑡 ∥2
2
≤ 2

𝛼

L(yΩ𝑡
)

2

2
< +∞, (6.114)

thanks to the assumption (A-1) that observed slides {Y𝑡 }𝑡≥1 are bounded. It

implies that the solution u𝑡 is bound.
In the following steps, we use the mathematical induction to indicate the

bound of U𝑡 .

The base case. We prove that the set of solutions U1 = {U(𝑛)
1
}𝑁−1

𝑛=1
is

bounded at 𝑡 = 1.

Recall that, the minimizer U(𝑛)
1

is derived from the following optimization

U(𝑛)
1

= argmin

U(𝑛) ∈R𝐼𝑛×𝑟

P(𝑛)
1
⊛

(
Y(𝑛)

1
− U(𝑛)

(
W(𝑛)

1

)⊤)

2

𝐹
, (6.115)

for 𝑛 = 1, 2, . . . , 𝑁 .

We know that for givenM,N ∈ R𝑎×𝑏 , ∥M − N∥𝐹 ≥ abs(∥M∥𝐹 − ∥N∥𝐹) ≥
∥M∥𝐹 − ∥N∥𝐹 . Accordingly, we have

P(𝑛)

1
⊛

(
U(𝑛)

1

(
W(𝑛)

1

)⊤)

𝐹
≤ 2

P(𝑛)
1
⊛ Y(𝑛)

1

𝐹
< +∞, (6.116)

It is therefore that

𝐼𝑛∑︁
𝑖=1

P(𝑛)
1,𝑖

W(𝑛)
1

(
u(𝑛)
𝑖

)⊤

2

2
< +∞, (6.117)

where P(𝑛)
1,𝑖

= diag
(
P(𝑛)

1
(𝑖, :)

)
and u(𝑛)

𝑖
is the 𝑖-th row ofU(𝑛)

1
. Since {U(𝑛)

0
}𝑁𝑛=1

are initialized by full rank and bounded matrices and u1 is bounded, W(𝑛)
1

is a full column rank matrix. Under the Assumption (A-3), the null space

of P(𝑛)
1,𝑖

W(𝑛)
1

admits only 0 as an element. As a result,

u(𝑛)
𝑖

2
< +∞, 𝑖 =

1, 2, . . . , 𝐼𝑛 and hence U(𝑛)
1

is bounded.

CHAPTER 6. ROBUST TENSOR TRACKING 224

The induction step. Assume that {U𝑖}𝑘𝑖=1
generated byACP are bounded

at time 𝑡 = 𝑘 > 1, we will prove that at 𝑡 = 𝑘 + 1, U𝑘+1 is also bounded.

The recursive rule for updating U(𝑛)
𝑘+1 is given by

U(𝑛)
𝑘+1 = U(𝑛)

𝑘
+ 𝚫Y(𝑛)

𝑘+1
(
V(𝑛)
𝑘+1

)⊤
, (6.118)

where

𝚫Y(𝑛)
𝑘+1 = P(𝑛)

𝑘+1 ⊛
(
Y(𝑛)
𝑘+1 − U

(𝑛)
𝜏

(
W(𝑛)
𝑘+1

)⊤)
, (6.119a)

V(𝑛)
𝑘+1 =

(
S(𝑛)
𝑘+1

)−1

, (6.119b)

S(𝑛)
𝑘+1 = 𝛽S

(𝑛)
𝑘
+

(
W(𝑛)
𝑘+1

)⊤W(𝑛)
𝑘+1, (6.119c)

W(𝑛)
𝑘+1 =

(𝑁⊙
𝑖=1,𝑖≠𝑛

U(𝑖)
𝑘

)
⊙ u⊤

𝑘+1, (6.119d)

Since {U(𝑛)
𝑘
}𝑁𝑛=1

are assumed to be bounded and u𝑘+1 is bounded, we ob-
tain that W(𝑛)

𝑘+1 and 𝚫Y(𝑛)
𝑘+1 are bounded. Moreover, S(𝑛)

𝑘+1 can be recursively

expressed by

S(𝑛)
𝑘+1 = 𝜆S

(𝑛)
𝑘
+

∑︁
𝑖

w𝑖w⊤𝑖 , (6.120)

where w𝑖 is the 𝑖-th row ofW(𝑛)
𝑘+1. Thanks to Sherman-Morrison formula and

the initial case S(𝑛)
0

= 𝛿𝑛I, S
(𝑛)
𝑘+1 is a positive definite and invertible matrix and

V(𝑛)
𝑘+1 is always existent (i.e. inverse of the rank 1 update S(𝑛)

𝑘+1). In addition, for

any positive definite and invertible matrixM ∈ R𝑟×𝑟 , we have

∥M∥𝐹 ≤
√
𝑟 ∥M∥2 =

√
𝑟𝜎max(M), and

M−1

2
=

1

𝜎min(M)
< +∞, (6.121)

where 𝜎max(M) and 𝜎min(M) are the largest and smallest singular value ofM,

respectively. Accordingly, we obtain

V(𝑛)
𝑘+1

𝐹
≤ √𝑟CP

V(𝑛)
𝑘+1

2

=

√
𝑟CP

𝜎min

(
S(𝑛)
𝑘+1

) . (6.122)

The lower bound on the minimum singular value of S(𝑛)
𝑘+1 is specified by the

following proposition.

CHAPTER 6. ROBUST TENSOR TRACKING 225

Proposition 13 (Theorem 1 [348] and Theorem 2.1 [349]) Let A
be an 𝑟×𝑟 symmetric matrix with positive eigenvalues 𝜎1(A) ≥ 𝜎2(A) ≥
· · · ≥ 𝜎𝑟 (A) > 0. If w is an 𝑟 -dimensional column vector and Â =

A +ww⊤, we always have

𝜎𝑟 (A) ≤ 𝜎𝑟 (Â) ≤ 𝜎𝑟−1(A) ≤ 𝜎𝑟−1(Â) ≤ . . .
≤ 𝜎1(A) ≤ 𝜎1(Â) ≤ 𝜎1(A) + ∥w∥22. (6.123)

Accordingly, we have

𝜎min

(
S(𝑛)
𝑘+1

)
≥ 𝜆𝜎min

(
S(𝑛)
𝑘

)
≥ 𝜆2𝜎min

(
S(𝑛)
𝑘−1

)
≥ . . .

≥ 𝜆𝑘+1𝜎min(S(𝑛)
0
) = 𝜆𝑘+1𝛿𝑛 ≥ 𝛿𝑛 . (6.124)

The last inequality is when the forgetting factor 𝜆 = 1. As a result, we obtain

V(𝑛)
𝑘+1

𝐹
≤ √𝑟CP𝛿−1

𝑛 < +∞. (6.125)

It implies that V(𝑛)
𝑘+1 is bounded. Therefore, U𝑘+1 is bounded, thanks to the

rule (6.118).

Proposition 14 The surrogate 𝑔𝑡 (.) is a Lipschitz function.

Proof. First, we exploit that 𝑔𝑡+1
(
U(𝑛)
𝑡+1

)
≤ 𝑔𝑡+1

(
U(𝑛)𝑡

)
∀ 𝑡 due to U(𝑛)

𝑡+1 =

argmin𝑔𝑡+1
(
U(𝑛)

)
and hence

𝑔𝑡
(
U(𝑛)
𝑡+1

)
− 𝑔𝑡

(
U(𝑛)𝑡

)
= 𝑔𝑡

(
U(𝑛)
𝑡+1

)
− 𝑔𝑡+1

(
U(𝑛)
𝑡+1

)
+ 𝑔𝑡+1

(
U(𝑛)
𝑡+1

)
− 𝑔𝑡

(
U(𝑛)𝑡

)
≤

(
𝑔𝑡

(
U(𝑛)
𝑡+1

)
− 𝑔𝑡+1

(
U(𝑛)
𝑡+1

))
−

(
𝑔𝑡

(
U(𝑛)𝑡

)
− 𝑔𝑡+1

(
U(𝑛)𝑡

))
Δ
= 𝑑𝑡

(
U(𝑛)
𝑡+1

)
− 𝑑𝑡

(
U(𝑛)𝑡

)
, (6.126)

where 𝑑𝑡 (U) = 𝑔𝑡 (U) − 𝑔𝑡+1(U). The derivative of 𝑑𝑡 (U(𝑛)) is then given by

𝜕𝑑𝑡
(
U(𝑛)

)
𝜕U(𝑛)

= U(𝑛)
(
A𝑡
𝑡
− A𝑡+1
𝑡 + 1

)
+

(
B𝑡
𝑡
− B𝑡+1
𝑡 + 1

)
, (6.127)

where A𝑡 =
∑𝑡
𝜏=1

𝛽𝑡−𝜏
(
W(𝑛)𝜏

)⊤W(𝑛)𝜏 , B𝑡 =
∑𝑡
𝜏=1

𝛽𝑡−𝜏
(
P(𝑛)
𝜏
⊛ X(𝑛)

𝜏

)
W(𝑛)𝜏 . Ac-

cordingly, we have

 𝜕𝑑𝑡 (U(𝑛))𝜕U(𝑛)

𝐹

≤

U(𝑛)

𝐹

A𝑡𝑡 − A𝑡+1
𝑡 + 1

𝐹

+

B𝑡𝑡 − B𝑡+1

𝑡 + 1

𝐹

, (6.128)

CHAPTER 6. ROBUST TENSOR TRACKING 226

thanks to the following inequality ∥MN∥𝐹 ≤ ∥M∥𝐹 ∥N∥𝐹 for all M,N. It

implies that the function 𝑑𝑡 (U(𝑛)) is Lipschitz, i.e.,

𝑔𝑡
(
U(𝑛)
𝑡+1

)
− 𝑔𝑡

(
U(𝑛)𝑡

)
≤ 𝑑𝑡

(
U(𝑛)
𝑡+1

)
− 𝑑𝑡

(
U(𝑛)𝑡

)
≤ 𝑐𝑛

U(𝑛)
𝑡+1 − U

(𝑛)
𝑡

𝐹
, (6.129)

where the Lipschitz constant 𝑐𝑛 = O(1/𝑡) is given by 𝑐𝑛 = 𝜅

A𝑡

𝑡
− A𝑡+1

𝑡+1

𝐹
+

B𝑡

𝑡
− B𝑡+1

𝑡+1

𝐹
, where ∥U(𝑛) ∥𝐹 ≤ 𝜅 is the upper bound for ∥U(𝑛) ∥𝐹 .

In parallel, the surrogate 𝑔𝑡 (U) is a multi-convex function because of its

quadratic form. It is therefore that

𝑔𝑡
(
U(𝑛)
𝑡+1

)
− 𝑔𝑡

(
U(𝑛)𝑡

)
≥ 𝑚𝑛

U(𝑛)
𝑡+1 − U

(𝑛)
𝑡

2

𝐹
, (6.130)

where 𝑚𝑛 is a positive number. From (6.129) and (6.130), we obtain the fol-

lowing nice corollary:

Corollary 3 The asymptotic variation of U𝑡 is given by

U(𝑛)
𝑡+1 − U

(𝑛)
𝑡

𝐹
= O

(
1/𝑡

)
. (6.131)

6.6.1.2 Step II

We then prove that the nonnegative sequence {𝑔𝑡 (U𝑡)}∞𝑡=1
converges almost

surely where {U𝑡 }∞𝑡=1
is generated by our ACP algorithm.

Convergence of {𝑔𝑡 (U𝑡)}∞𝑡=1
can be stated in the following proposition:

Proposition 15 Let {U𝑡 }∞𝑡=1
be a sequence of solutions generated by

ACP, the sequence {𝑔𝑡 (U𝑡)}∞𝑡=1
converges almost surely, i.e.,

∞∑︁
𝑡=1

���E[𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) |F𝑡
] ��� < +∞ 𝑎.𝑠 ., (6.132)

where {F𝑡 }𝑡>0 is the filtration of the past estimations at time instant 𝑡 .

Proof. We begin with the expression

𝑔𝑡+1(U𝑡) =
1

𝑡 + 1

𝑡+1∑︁
𝜏=1

𝛽𝑡+1−𝑘 ℓ̃ (U𝑡 , P𝜏 , Y𝜏 , u𝜏)

=
1

𝑡 + 1

(
ℓ̃ (U𝑡 , P𝑡+1, Y𝑡+1, u𝑡+1) + 𝛽𝑡𝑔𝑡 (U𝑡)

)
=
ℓ̃ (U𝑡 , P𝑡+1, Y𝑡+1, u𝑡+1)

𝑡 + 1

+ 𝑡 (𝛽 − 1)
𝑡 + 1

𝑔𝑡 (U𝑡) +
𝑡

𝑡 + 1

𝑔𝑡 (U𝑡) . (6.133)

CHAPTER 6. ROBUST TENSOR TRACKING 227

where ℓ (U, P, Y) = minu ℓ̃ (U, P, Y, u). We then have

𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)
𝑡 + 1

=

(
𝑔𝑡 (U𝑡) −

𝑡

𝑡 + 1

𝑔𝑡 (U𝑡)
)
− 𝑓𝑡 (U𝑡)

𝑡 + 1

= 𝑔𝑡 (U𝑡) − 𝑔𝑡+1(U𝑡+1) +
ℓ̃ (U𝑡 , P𝑡+1, Y𝑡+1, u𝑡+1) − 𝑓𝑡 (U𝑡)

𝑡 + 1

+ 𝑔𝑡+1(U𝑡+1) − 𝑔𝑡+1(U𝑡)︸ ︷︷ ︸
≤0

+ 𝑡 (𝛽 − 1)
𝑡 + 1

𝑔𝑡 (U𝑡)︸ ︷︷ ︸
≤0

≤ 𝑔𝑡 (U𝑡) − 𝑔𝑡+1(U𝑡+1) +
ℓ̃ (U𝑡 , P𝑡+1, Y𝑡+1, u𝑡+1) − 𝑓𝑡 (U𝑡)

𝑡 + 1

, (6.134)

because 0 < 𝛽 ≤ 1 and 𝑔𝑡+1(U𝑡+1) ≤ 𝑔𝑡+1(U𝑡) for all 𝑡 due to U𝑡+1 =

argmin𝑔𝑡+1(U).
Moreover, we know that u𝑡+1 = argminu ℓ̃ (U𝑡 , P𝑡+1, Y𝑡+1, u), so

ℓ (U𝑡 , P𝑡+1, Y𝑡+1) = ℓ̃ (U𝑡 , P𝑡+1, Y𝑡+1, u𝑡+1) .

Accordingly, we obtain the following inequality

𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) ≤
ℓ (U𝑡 , P𝑡+1, Y𝑡+1) − 𝑓𝑡 (U𝑡)

𝑡 + 1

− 𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)
𝑡 + 1

.

(6.135)

Moreover 𝑓𝑡 (U𝑡) ≤ 𝑔𝑡 (U𝑡) for all 𝑡 , we obtain

𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) ≤
ℓ (U𝑡 , P𝑡+1, Y𝑡+1) − 𝑓𝑡 (U𝑡)

𝑡 + 1

. (6.136)

Taking the expectation of (6.136) conditioned by F𝑡 results in

E
[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) |F𝑡

]
≤ 𝑓 (U𝑡) − 𝑓𝑡 (U𝑡)

𝑡 + 1

, (6.137)

where 𝑓 (U) be the expected cost function, i.e., 𝑓 (U) = lim

𝑡→∞
𝑓𝑡 (U) and

E
[
ℓ (U, P𝑡+1, Y𝑡+1)

]
= 𝑓 (U), for all U. Now, let us define the indicator

function 𝛿𝑡 as follows

𝛿𝑡
Δ
=

{
1 if E

[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) |F𝑡

]
> 0,

0 otherwise.

(6.138)

Accordingly, we have

E
[
𝛿𝑡E

[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) |F𝑡

]]
≤ E

[√
𝑡
(
𝑓 (U𝑡) − 𝑓𝑡 (U𝑡)

)] 1

√
𝑡 (𝑡 + 1)

.

(6.139)

CHAPTER 6. ROBUST TENSOR TRACKING 228

Under the given assumptions that variables are bounded, we exploit that the

set of loss functions {ℓ (U𝑡 , P𝑡 , X𝑡)}𝑡≥1 is P-Donsker [126]. As a result, the

centered and scaled version of 𝑓𝑡 (U𝑡) satisfies the following proposition:

E
[√
𝑡
(
𝑓 (U𝑡)−𝑓𝑡 (U𝑡)

)]
= O(1), thanks to the Donsker theorem [126, Section

19.2].

We then consider the convergence of the sum

∑+∞
𝑡=1

1√
𝑡 (𝑡+1) . In particular,

the Cauchy-MacLaurin integral test [133] is applied for examining the conver-

gence, that is,

∫ +∞
𝑡=1

1√
𝑡 (𝑡+1)𝑑𝑡 =

𝜋
4
< ∞. Accordingly,

{
1√

𝑡 (𝑡+1)

}
𝑡>0

converges.

Therefore, we obtain

∞∑︁
𝑡=1

E
[
𝛿E

[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) |F𝑡

]]
< ∞. (6.140)

According to quasi-martingale theorem [343, Theorem 9.4 & Proposition 9.5],

we can conclude that {𝑔𝑡 (U𝑡)}∞𝑡=1
converges almost surely, i.e.,

∞∑︁
𝑡=1

E
[
𝑔𝑡+1(U𝑡+1) − 𝑔𝑡 (U𝑡) |F𝑡

]
< ∞. (6.141)

We complete the proof.

Stage III

The last stage contains two main steps: (i) we first indicate that the empirical

cost function 𝑓𝑡 (U) is not only continuously differentiable, but also Lipschitz;
(ii) we then prove {𝑓𝑡 (U𝑡)}∞𝑡=1

and {𝑔𝑡 (U𝑡)}∞𝑡=1
converge to the same limit.

As a result, the derivative of 𝑓𝑡 (U) equals to that of 𝑔𝑡 (U) when 𝑡 → ∞,
thanks to the first-order Taylor approximation. Since U𝑡 is the minimizer of

𝑔𝑡 (U), the derivative ∇𝑓𝑡 (U) → 0 𝑎.𝑠 .

To begin with, we provide the following proposition which is a corollary

of Theorem 4.1 in [350]:

Proposition 16 Consider a continuous function 𝑓 : V×U → R. Sup-
pose that ∀u ∈ U, the function 𝑓 (., u) is differentiable and ∇v 𝑓 (v, u)
is continuous on V × U. If 𝑔(v) be the function derived from 𝑔(v) =
minu∈U 𝑓 (v, u), then 𝑔(v) is also differentiable. In addition, if u∗ =

argminu∈U 𝑓 (v, u) be unique, ∇𝑔(v) = ∇v 𝑓 (v, u∗), ∀v ∈ V .

Proof. Its proof is already provided in [350, Theorem 4.1].

Accordingly, we derive the following proposition to verify the differen-

tiable property of ℓ (U, P𝑡 , X𝑡) at time 𝑡 .

CHAPTER 6. ROBUST TENSOR TRACKING 229

Corollary 4 Given an incomplete observation P𝑡 ⊛ X𝑡 and the past
estimation U, let u∗𝑡 be the minimizer of the summand ℓ̃ (U, P𝑡 , X𝑡 , u)

u∗𝑡 = argmin

u𝑡 ∈R𝑟

P𝑡 ⊛

(
Y𝑡 −

z{
U(𝑛) }𝑁−1

𝑛=1
, u(𝑁)𝑡

r)

2

𝐹

. (6.142)

We obtain that ℓ (U, P𝑡 , X𝑡) = minu𝑡 ℓ̃ (U, P𝑡 , X𝑡 , u𝑡) is a continu-
ously differentiable function and its partial derivative w.r.t. U(𝑛) is given
by

𝜕ℓ (U, P𝑡 , X𝑡)
𝜕U(𝑛)

= 2P(𝑛)𝑡 ⊛
(
Y(𝑛)𝑡 − U(𝑛)

(
W∗𝑡

)⊤)W∗𝑡 , (6.143)

where W∗𝑡 =
(𝑁⊙
𝑖=1,𝑖≠𝑛

U(𝑖)
𝑡−1

)
⊙ (u∗𝑡)⊤. (6.144)

As a result, the empirical cost function 𝑓𝑡 (U) = 1

𝑡
𝛽𝑡−𝜏

∑𝑡
𝜏=1

ℓ (U, P𝜏 , Y𝜏)
is continuously differentiable. Applying the same augments in Proposi-

tion 14, we also have

 𝜕 ¯𝑓𝑡

𝜕U(𝑛)

𝐹

≤

U(𝑛)

𝐹

 Ā(𝑛)𝑡

𝑡
−
Ā(𝑛)
𝑡+1

𝑡 + 1

𝐹

+

 B̄(𝑛)𝑡

𝑡
−

B̄(𝑛)
𝑡+1

𝑡 + 1

𝐹

, (6.145)

where
¯𝑓𝑡
(
U(𝑛)

)
= 𝑓𝑡

(
U(𝑛)

)
− 𝑓𝑡+1

(
U(𝑛)

)
, Ā(𝑛)𝑡 =

∑𝑡
𝜏=1

𝛽𝑡−𝜏
(
W∗𝜏

)⊤W∗𝜏 , and
B̄(𝑛)𝑡 =

∑𝑡
𝜏=1

𝛽𝑡−𝜏
(
P(𝑛)
𝜏
⊛Y(𝑛)

𝜏

)
W∗𝜏 . All terms in the right side are bounded, the

partial derivative
¯𝑓𝑡 (U) w.r.t. U(𝑛) is bounded and hence

𝑓𝑡
(
U(𝑛)
𝑡+1

)
− 𝑓𝑡

(
U(𝑛)𝑡

)
≤ 𝑑𝑛

U(𝑛)
𝑡+1 − U

(𝑛)
𝑡

𝐹
, (6.146)

where 𝑑𝑛 is the deterministic positive number. It implies that 𝑓𝑡 (.) is Lipschitz
continuous.

Now, we indicate that the nonnegative sequence

{(
𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)

)
1

𝑡+1
}

converges almost surely. We prove that the empirical cost function {𝑓𝑡 (U𝑡)}∞𝑡=1

and its surrogate {𝑔𝑡 (U𝑡)}∞𝑡=1
converge to the same limit by showing

∞∑︁
𝑡=1

𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡) < +∞. (6.147)

According to (6.174), we recall the following inequality

𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)
𝑡 + 1

≤ 𝑔𝑡 (U𝑡) − 𝑔𝑡+1(U𝑡+1) +
ℓ (U𝑡 , P𝑡+1, Y𝑡+1) − 𝑓𝑡 (U𝑡)

𝑡 + 1

.

(6.148)

CHAPTER 6. ROBUST TENSOR TRACKING 230

To examine the convergence of the right side of (6.148), we exploit the fol-

lowing facts: (i) The convergence of E
[
𝑔𝑡 (U𝑡) − 𝑔𝑡+1(U𝑡+1) |F𝑡

]
is already

provided in Proposition 2, and (ii) The second term also converges, thanks to

the convergence of E[𝑓 (U𝑡) − 𝑓𝑡 (U𝑡)]/(𝑡 + 1) and
E[ℓ (U𝑡 , P, X)] = 𝑓 (U𝑡) for all 𝑡 .

Accordingly, we have that

{(
𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)

)
1

𝑡+1
}
converges

∞∑︁
𝑡=0

(
𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)

)
1

𝑡 + 1

< ∞. (6.149)

Since both 𝑔𝑡 (U) and 𝑓𝑡 (U) are Lipschitz continuous, there always exist a
constant 𝐿 > 0 such that�� (𝑔𝑡+1(U𝑡+1) − 𝑓𝑡+1(U𝑡+1)

)
−

(
𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡)

) �� ≤ 𝐿

U𝑡+1 −U𝑡

𝐹
.

(6.150)

In addition, the real sequence

{
1

𝑡+1
}
𝑡≥0

diverges, i.e.,

∑∞
𝑡=0

1

𝑡+1 = +∞. It implies

that

∑∞
𝑡=0
𝑔𝑡 (U𝑡) − 𝑓𝑡 (U𝑡) < ∞, thanks to [351, Lemma A.5]. It results in

𝑔𝑡 (U𝑡)
𝑎.𝑠→ 𝑓𝑡 (U𝑡), 𝑡 →∞.

In parallel, 𝑔𝑡 (U) is the surrogate function of 𝑓𝑡 (U), we always have

𝑔𝑡 (U + 𝑎𝜏V) ≥ 𝑓𝑡 (U + 𝑎𝜏V), (6.151)

for allV and the nonnegative sequence {𝑎𝜏 }. For short, let us denote𝑔𝑡
(
U(𝑛)

)
Δ
= 𝑔𝑡 (U) and 𝑓𝑡

(
U(𝑛)

) Δ
= 𝑓𝑡 (U) when the remaining loading factors are fixed.

With respect to U(𝑛) , the inequality (6.151) becomes

𝑔𝑡
(
U(𝑛) + 𝑎𝜏V(𝑛)

)
≥ 𝑓𝑡

(
U(𝑛) + 𝑎𝜏V(𝑛)

)
. (6.152)

Thanks to Taylor’s theorem, taking the linear approximation of (6.180) yields

𝑔𝑡
(
U(𝑛)𝑡

)
+ tr

[
𝑎𝜏

(
V(𝑛)

)⊤∇𝑔𝑡 (U(𝑛)𝑡

)]
+ 𝒐

(
𝑎𝜏V(𝑛)

)
≥ 𝑓𝑡

(
U(𝑛)𝑡

)
+ tr

[
𝑎𝜏

(
V(𝑛)

)⊤∇𝑓𝑡 (U(𝑛)𝑡

)]
+ 𝒐

(
𝑎𝜏V(𝑛)

)
. (6.153)

When 𝑡 →∞, we have 𝑔𝑡
(
U(𝑛)𝑡

)
= 𝑓𝑡

(
U(𝑛)𝑡

)
as proved in Lemma 1 and hence

tr

[
𝑎𝜏

(
V(𝑛)

)⊤∇𝑔𝑡 (U(𝑛)𝑡

)]
≥ tr

[
𝑎𝜏

(
V(𝑛)

)⊤∇𝑓𝑡 (U(𝑛)𝑡

)]
. (6.154)

Since the above inequality must hold for all V(𝑛) and {𝑎𝜏 }, we obtain

∇𝑔𝑡
(
U(𝑛)𝑡

)
− ∇𝑓𝑡

(
U(𝑛)𝑡

)
→ 0, when 𝑡 →∞. (6.155)

Because U𝑡 is the minimizer of 𝑔𝑡 (U), we derive ∇𝑓𝑡 (U𝑡) → 0 𝑎.𝑠 . It ends

the proof.

CHAPTER 6. ROBUST TENSOR TRACKING 231

6.6.2 Appendix B: Proof of Lemma 11

Boundedness: {D𝑡 , O𝑡 , u𝑡 }∞𝑡=1
are uniformly bounded.

At each time 𝑡 > 0, the outlier O𝑡 and the coefficient vector u𝑡 are derived
from the minimization (7) in the main manuscript. Accordingly, we always

have

ℓ̃
(
D𝑡−1, P𝑡 , Y𝑡 , O𝑡 , u𝑡

)
≤ ℓ̃

(
D𝑡−1, P𝑡 , Y𝑡 , 0, 0

)
. (6.156)

It is therefore that

∥O𝑡 ∥1 +
𝜌

2

P𝑡 ⊛ (Y𝑡 − O𝑡 −H𝑡−1 ×𝑁 u𝑡)

2

𝐹
≤ 𝜌

2

P𝑡 ⊛ Y𝑡

2

𝐹
. (6.157)

Due to the two facts that ∥M∥𝐹 + ∥N∥𝐹 ≥ ∥M − N∥𝐹 ≥ ∥M∥𝐹 − ∥N∥𝐹 , and
∥M∥𝐹 ≤ ∥M∥1 [9], we then obtain

O𝑡

𝐹
≤

O𝑡

1
≤ 𝜌

2

P𝑡 ⊛ Y𝑡

2

𝐹
≤ 𝜌

2

𝑀2

𝑥 < ∞, (6.158)

P𝑡H𝑡−1u𝑡

2
≤ 2

P𝑡 ⊛ Y𝑡

𝐹
+

P𝑡 ⊛ O𝑡

𝐹
< ∞, (6.159)

where𝑀𝑥 is the upper bound of ∥Y𝑡 ∥𝐹 (seeAssumptionA1). Thanks to (6.158),

O𝑡 is uniformly bound.

We indicate the bound of the solution u𝑡 and D𝑡 =
[
U(1)𝑡 , . . . ,U(𝑁)𝑡

]
by

using the mathematical induction.

We first recall that the proposed RACP algorithm begins with 𝑁 full-rank

matrices

{
U(𝑛)

0

}𝑁
𝑛=1

and a set of matrices S(𝑛)
0,𝑚

= 𝛿𝑛I,𝑚 = 1, 2, . . . , 𝐼𝑛 .

The base case: At 𝑡 = 1, the matrix H0 =
⊙𝑁

𝑛=1
U(𝑛)

0
is then full rank,

i.e., the null space ofH0 admits only 0 as a vector. Accordingly, u1 is bounded,

thanks to (6.159).

To indicate the bound of U(𝑛)
1

for 𝑛 = 1, 2, . . . , 𝑁 , we show that each row

u(𝑛)
1,𝑚

of U(𝑛)
1

is bounded. We first obtain the following inequality

u(𝑛)
1,𝑚

2

≤

u(𝑛)

0,𝑚

2

+

P(𝑛)

1,𝑚

((
x(𝑛)

1,𝑚

)⊤ −W(𝑛)
1

(
u(𝑛)

0,𝑚

)⊤)

2

V(𝑛)
1,𝑚

2

. (6.160)

In fact, three matricesW(𝑛)
1,𝑚

, S(𝑛)
1,𝑚

and V(𝑛)
1,𝑚

for updating u(𝑛)
1,𝑚

are bounded

due to the bound of

{
U(𝑛)

0

}𝑁
𝑛=1

. Accordingly, the right hand side of (6.160) is

finite, thus u(𝑛)
1,𝑚

is bounded for all𝑚. It implies that U(𝑛)
1

is bounded.

The induction step: We assume that {U(𝑛)
𝑖
}𝑘𝑖=1

generated by RACP are

bounded at time 𝑡 = 𝑘 > 1, we will prove that at 𝑡 = 𝑘 + 1, U(𝑛)
𝑘+1 is also

bounded.

CHAPTER 6. ROBUST TENSOR TRACKING 232

Since {U(𝑛)
𝑘
}𝑁𝑛=1

are assumed to be bounded, u𝑘+1 and W(𝑛)
𝑘+1,𝑚 are then

bounded. In parallel, we exploit that S(𝑛)
𝑘+1,𝑚 can be expressed by

S(𝑛)
𝑘+1,𝑚 = 𝜆S(𝑛)𝜏,𝑚 +

∑︁
𝑖

𝑝 (𝑛)
𝑘+1,𝑚

(𝑖)w⊤𝑖 w𝑖 , (6.161)

wherew𝑖 is the 𝑖-th row ofW(𝑛)
𝑘+1,𝑚 . Thanks toWoodburymatrix identity [352]

and S(𝑛)
0,𝑚

= 𝛿Iwith 𝛿 > 0, we obtain S(𝑛)
𝑘+1,𝑚 ≻ 0, i.e., S(𝑛)

𝑘+1,𝑚 is nonsingular with

the smallest eigenvalue 𝜎min

(
S(𝑛)
𝑘+1,𝑚

)
≥ 𝛿 > 0. Thus V(𝑛)

𝑘+1,𝑚 is always existent.

For given M ≻ 0, we always have ∥M∥𝐹 ≤
√
𝑟 ∥M∥2 =

√
𝑟𝜎max(M), and

M−1

2
= 𝜎−1

min
(M) where 𝜎max(M) and 𝜎min(M) are the largest and smallest

eigenvalue of M [9]. Accordingly, we derive ∥V(𝑛)
𝑘+1,𝑚 ∥𝐹 ≤

√
𝑟/𝛿 < ∞, i.e.,

V(𝑛)
𝑘+1,𝑚 is bounded. As a result, u(𝑛)

𝑘+1,𝑚 is bounded for all 𝑚 = 1, 2, . . . , 𝐼𝑛 .

Thanks to themathematical induction, we can conclude that the solutionU(𝑛)𝑡

generated by RACP is bounded for 𝑡 ≥ 1.

Forward Monotonicity: ˜𝑓𝑡 (D𝑡−1) ≥ ˜𝑓𝑡 (D𝑡).

We have

˜𝑓𝑡 (D𝑡−1) − ˜𝑓𝑡 (D𝑡)

=



𝑁∑︁
𝑛=1

˜𝑓𝑡
(
U(1)
𝑡−1
, . . . ,U(𝑛−1)

𝑡−1
,U(𝑛)

𝑡−1
, . . . ,U(𝑁)

𝑡−1

)
[Jacobi]

− ˜𝑓𝑡
(
U(1)
𝑡−1
, . . . ,U(𝑛−1)

𝑡−1
,U(𝑖)𝑡 , . . . ,U(𝑁)

𝑡−1

)
𝑁∑︁
𝑛=1

˜𝑓𝑡
(
U(1)𝑡 , . . . ,U(𝑛−1)

𝑡 ,U(𝑛)
𝑡−1
, . . . ,U(𝑁)

𝑡−1

)
[Gauss-Seidel]

− ˜𝑓𝑡
(
U(1)𝑡 , . . . ,U(𝑛−1)

𝑡 ,U(𝑛)𝑡 , . . . ,U(𝑁)
𝑡−1

)
(6.162)

Recall that U(𝑛)𝑡 is the minimizer of
˜𝑓𝑡
(
U(1)
𝑡−1
, . . . ,U(𝑛−1)

𝑡−1
,U,U(𝑛+1)

𝑡−1
, . . . ,U(𝑁)

𝑡−1

)
if

using Jacobi scheme or
˜𝑓𝑡
(
U(1)𝑡 , . . . ,U(𝑛−1)

𝑡 ,U,U(𝑛+1)
𝑡−1

, . . . ,U(𝑁)
𝑡−1

)
if usingGauss-

Seidel scheme. Therefore, we always have

˜𝑓𝑡
(
. . . ,U(𝑛−1)

𝑡−1
,U(𝑛)

𝑡−1
, . . . ,U(𝑁)

𝑡−1

)
≥ ˜𝑓𝑡

(
. . . ,U(𝑛−1)

𝑡−1
,U(𝑖)𝑡 , . . . ,U(𝑁)

𝑡−1

)
[Jacobi]

˜𝑓𝑡
(
. . . ,U(𝑛−1)

𝑡−1
,U(𝑛)

𝑡−1
, . . . ,U(𝑁)

𝑡−1

)
≥ ˜𝑓𝑡

(
. . . ,U(𝑛−1)

𝑡−1
,U(𝑖)𝑡 , . . . ,U(𝑁)

𝑡−1

)
[Gauss-Seidel]

As a result,
˜𝑓𝑡 (D𝑡−1) ≥ ˜𝑓𝑡 (D𝑡).

Backward Monotonicity: ˜𝑓𝑡 (D𝑡) ≤ ˜𝑓𝑡 (D𝑡+1).

Applying the similar argument above, we also obtain
˜𝑓𝑡 (D𝑡) ≤ ˜𝑓𝑡 (D𝑡+1).

CHAPTER 6. ROBUST TENSOR TRACKING 233

Stability of Estimates: ∥D𝑡 − D𝑡−1∥𝐹 = O(1/𝑡).

We first prove that the surrogate
˜𝑓𝑡 (.) w.r.t. each factor is Lipschitz continu-

ous. Since U(𝑛)𝑡 = argmin
˜𝑓𝑡 (U(𝑛) , .), we have ˜𝑓𝑡 (U(𝑛)𝑡 , .) ≤ ˜𝑓𝑡 (U(𝑛)𝑡−1

, .)∀𝑡 and
hence

˜𝑓𝑡−1

(
U(𝑛)𝑡 , .

)
− ˜𝑓𝑡−1

(
U(𝑛)
𝑡−1
, .
)
≤

{
˜𝑓𝑡−1

(
U(𝑛)𝑡 , .

)
− ˜𝑓𝑡

(
U(𝑛)𝑡 , .

)}
−

{
˜𝑓𝑡−1

(
U(𝑛)
𝑡−1
, .
)
− ˜𝑓𝑡

(
U(𝑛)
𝑡−1
, .
)}
. (6.163)

Lets denote the error function 𝑑𝑡 (U(𝑛) , .) = ˜𝑓𝑡−1(U(𝑛) , .) − ˜𝑓𝑡 (U(𝑛) , .). We have

∇𝑑𝑡
(
U(𝑛) , .

)
= U(𝑛)

(
A𝑡−1

𝑡 − 1

− A𝑡
𝑡

)
+

(
B𝑡−1

𝑡 − 1

− B𝑡
𝑡

)
, (6.164)

whereA𝑡 =
∑𝑡
𝜏=1

𝛽𝑡−𝜏
(
W(𝑛)𝜏

)⊤W(𝑛)𝜏 ,B𝑡 =
∑𝑡
𝜏=1

𝛽𝑡−𝜏
(
P(𝑛)
𝜏
⊛(Y(𝑛)

𝜏
−O (𝑛)𝜏)

)
W(𝑛)𝜏 .

Thanks to the two facts that ∥MN∥𝐹 ≤ ∥M∥𝐹 ∥N∥𝐹 and ∥M +N∥𝐹 ≤ ∥M∥𝐹 +
∥N∥𝐹 [9], we obtain

∇𝑑𝑡 (U(𝑛) , .)

𝐹 ≤ 𝜅𝑈

A𝑡−1

𝑡 − 1

− A𝑡
𝑡

𝐹

+

B𝑡−1

𝑡 − 1

− B𝑡
𝑡

𝐹

= 𝑐𝑛, (6.165)

where 𝜅𝑈 is the upper bound for ∥U(𝑛) ∥𝐹 . As a result, the error function

𝑑𝑡 (U(𝑛)) is Lipschitz with parameter 𝑐𝑛 = O(1/𝑡), i.e.,

˜𝑓𝑡−1

(
U(𝑛)𝑡 , .

)
− ˜𝑓𝑡−1

(
U(𝑛)
𝑡−1
, .
)
≤ 𝑑𝑡

(
U(𝑛)𝑡 , .

)
− 𝑑𝑡

(
U(𝑛)
𝑡−1
, .
)
≤ 𝑐𝑛

U(𝑛)𝑡 − U
(𝑛)
𝑡−1

𝐹
.

(6.166)

Moreover,
˜𝑓𝑡 (U(𝑛) , .) is a𝑚-strongly convex function, i.e.,

˜𝑓𝑡−1

(
U(𝑛)𝑡 , .

)
− ˜𝑓𝑡−1

(
U(𝑛)
𝑡−1
, .
)
≥ 𝑚

U(𝑛)𝑡 − U
(𝑛)
𝑡−1

2

𝐹
.

From that, we obtain the asymptotic variation of U(𝑛) as follows

U(𝑛)𝑡 −
U(𝑛)
𝑡−1

𝐹
≤ 𝑐𝑛

𝑚
= O

(
1/𝑡

)
,Therefore, we can conclude that

∑𝑁
𝑛=1

U(𝑛)𝑡 −U
(𝑛)
𝑡−1

2

𝐹
=

∥D𝑡 − D𝑡−1∥2𝐹 = O
(
1/𝑡2

)
or ∥D𝑡 − D𝑡−1∥𝐹 = O

(
1/𝑡

)
.

Stability of Errors:
��𝑒𝑡 (D𝑡) − 𝑒𝑡−1(D𝑡−1)

�� = O(1/𝑡) .
Webeginwith verifying the differentiable property of the loss function ℓ (D, P𝑡 , Y𝑡)
at time 𝑡 .

CHAPTER 6. ROBUST TENSOR TRACKING 234

Proposition 17 Given an incomplete observation P𝑡 ⊛Y𝑡 and the past
estimation of D, let O𝑡 , u∗𝑡 be the minimizer of ℓ̃ (D, P𝑡 , Y𝑡 , O, u), i.e.,

{u∗𝑡 , O∗𝑡 } = argmin

u,O
∥O∥1 +

𝜌

2

P𝑡 ⊛
(
Y𝑡 − O −H ×𝑁 u

)

2

𝐹
. (6.167)

where H = I
∏𝑁−1

𝑛=1
×𝑛U(𝑛) . We obtain that ℓ (D, P𝑡 , Y𝑡) =

minu,O ℓ̃ (D, P𝑡 , Y𝑡 , O, u) is a continuously differentiable function and
its partial derivative w.r.t. U(𝑛) is given by

𝜕ℓ (D, P𝑡 , Y𝑡)
𝜕U(𝑛)

= 2P(𝑛)𝑡 ⊛
(
Y(𝑛)𝑡 − O

(𝑛)
𝑡 − U(𝑛)

(
W̄(𝑛)𝑡

)⊤)W̄(𝑛)𝑡 ,

(6.168)

where W̄(𝑛)𝑡 =

(𝑁−1⊙
𝑖=1,𝑖≠𝑛

U(𝑖)
𝑡−1

)
⊙ (u∗𝑡)⊤. (6.169)

Proof. The result follows intermediately Theorem 4.1 in [350, page 237].

Accordingly, the sum 𝑓𝑡 (D) = 1/𝐿𝑡
∑𝑡
𝜏=𝑡−𝐿𝑡+1 𝛽

𝑡−𝜏 ℓ (D, P𝜏 , Y𝜏) is contin-
uously differentiable.

Let us denote
¯𝑓𝑡
(
U(𝑛) , .

)
= 𝑓𝑡−1

(
U(𝑛) , .

)
− 𝑓𝑡

(
U(𝑛) , .

)
. Applying the same

arguments in subsection I.4, we also obtain

∇ ¯𝑓𝑡
(
U(𝑛) , .

)

𝐹
≤ 𝜅𝑈

 Ā(𝑛)𝑡−1

𝑡 − 1

−
Ā(𝑛)𝑡

𝑡

𝐹

+

 B̄(𝑛)𝑡−1

𝑡 − 1

−
B̄(𝑛)𝑡

𝑡

𝐹

= 𝑑𝑛, (6.170)

where Ā(𝑛)𝑡 =
∑𝑡
𝜏=1

𝛽𝑡−𝜏
(
W̄(𝑛)𝜏

)⊤W̄(𝑛)𝜏 , and B̄(𝑛)𝑡 =
∑𝑡
𝜏=1

𝛽𝑡−𝜏
(
P(𝑛)
𝜏
⊛ (Y(𝑛)

𝜏
−

O (𝑛)𝜏)
)
W̄(𝑛)𝜏 . Accordingly, ∇ ¯𝑓𝑡

(
U(𝑛) , .

)
is bounded and hence

𝑓𝑡
(
U(𝑛)
𝑡−1
, .
)
− 𝑓𝑡

(
U(𝑛)𝑡 , .

)
≤ 𝑑𝑛

U(𝑛)
𝑡−1
− U(𝑛)𝑡

𝐹
. (6.171)

It implies that 𝑓𝑡 (.) is Lipschitz continuous. Since ˜𝑓𝑡 (D) and 𝑓𝑡 (D) are both

Lipschitz continuous functions, we then have��𝑒𝑡 (D𝑡) − 𝑒𝑡−1(D𝑡−1)
�� = �� (˜𝑓𝑡 (D𝑡) − 𝑓𝑡 (D𝑡)

)
−

(
˜𝑓𝑡−1(D𝑡−1) − 𝑓𝑡−1(D𝑡−1)

) ��
≤

�� ˜𝑓𝑡 (D𝑡) − ˜𝑓𝑡 (D𝑡−1)
�� + ��𝑓𝑡 (D𝑡) − 𝑓𝑡 (D𝑡−1)

��
≤

𝑁∑︁
𝑛=1

(𝑐𝑛 + 𝑑𝑛)

U(𝑛)

𝑡−1
− U(𝑛)𝑡

𝐹
= O(1/𝑡). (6.172)

It ends the proof.

CHAPTER 6. ROBUST TENSOR TRACKING 235

6.6.3 Appendix D: Proof of Lemma 12

Detailed Proof: We apply the similar arguments of Proposition 7 in our com-

panion work [30] to prove Lemma 12.

Almost sure convergence of { ˜𝑓𝑡 (D𝑡)}∞𝑡=1

Main approach: We prove the convergence of the sequence
˜𝑓𝑡 (D𝑡) by show-

ing that the stochastic positive process𝑢𝑡 := ˜𝑓𝑡 (D𝑡) is a quasi-martingale Fisk.

In particular, if the sum of the positive difference of 𝑢𝑡 is bounded, 𝑢𝑡 is a

quasi-martingale, and the sum converges almost surely, thanks to the follow-

ing quasi-martingale theorem:

Proposition 18 (Quasi-martingale Theorem [125, Section 4.4])

Let (Ω, F , P) be a probability space, {𝑢𝑡 }𝑡>0 be a stochastic process on
the probability space and {F𝑡 }𝑡>0 be a filtration by the past information
at time instant 𝑡 . Let us define the indicator function 𝛿𝑡 as follows

𝛿𝑡
Δ
=

{
1 if E[𝑢𝑡+1 − 𝑢𝑡 |F𝑡] > 0,

0 otherwise.

For all 𝑡 , if 𝑢𝑡 ≥ 0 and
∑∞
𝑖=1
E[𝛿𝑖 (𝑢𝑖+1 − 𝑢𝑖) |F𝑖] < ∞, then 𝑢𝑡 is a quasi-

martingale and converges almost surely, i.e.,

∞∑︁
𝑡=1

E[𝑢𝑡+1 − 𝑢𝑡 |F𝑡] < ∞.

Now, we begin with the following relation when 𝐿𝑡 = 𝑡

˜𝑓𝑡+1(D𝑡) =
1

𝑡 + 1

𝑡+1∑︁
𝜏=1

𝛽𝑡+1−𝑘 ℓ̃ (D𝑡 , P𝜏 , Y𝜏 , O𝜏 , u𝜏)

=
ℓ̃ (D𝑡 , P𝑡+1, Y𝑡+1, O𝑡+1, u𝑡+1)

𝑡 + 1

+ 𝑡 (𝛽 − 1)
𝑡 + 1

˜𝑓𝑡 (D𝑡) +
𝑡

𝑡 + 1

˜𝑓𝑡 (D𝑡) . (6.173)

Thanks to Lemma 1 and 𝜆 ≤ 1, we obtain
˜𝑓𝑡+1(D𝑡+1) ≤ ˜𝑓𝑡+1(D𝑡) and

˜𝑓𝑡 (D𝑡) − 𝑓𝑡 (D𝑡)
𝑡 + 1

≤ ˜𝑓𝑡 (D𝑡) − ˜𝑓𝑡+1(D𝑡+1) +
ℓ̃ (D𝑡 , P𝑡+1, Y𝑡+1, O𝑡+1, u𝑡+1) − 𝑓𝑡 (D𝑡)

𝑡 + 1

.

(6.174)

Since 𝑓𝑡 (D𝑡) ≤ ˜𝑓𝑡 (D𝑡) ∀𝑡 , we have

˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡 (D𝑡) ≤
ℓ̃ (D𝑡 , P𝑡+1, Y𝑡+1, O𝑡+1, u𝑡+1) − 𝑓𝑡 (D𝑡)

𝑡 + 1

, (6.175)

CHAPTER 6. ROBUST TENSOR TRACKING 236

Define by {F𝑡 }𝑡>0 a filtration associated to {𝑢𝑡 }𝑡>0 whereF𝑡 = {D𝑘 , O𝑘 , u𝑘 }1≤𝑘≤𝑡
records all past estimates of RACP at time 𝑡 . By definition, for every 𝑖 ≤ 𝑡 ,
F𝑖 ⊆ F𝑡 , and thus, the filtration is interpreted as streams of all historical but

not future information generated by RACP. Now, taking the expectation of

the inequality (D3) conditioned on F𝑡 results in E
[

˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡 (D𝑡) |F𝑡
]
≤

𝑓 (D𝑡) − 𝑓𝑡 (D𝑡)
𝑡 + 1

, where F𝑡 is the filtration of past estimations at each time 𝑡 ;

𝑓 (.) is given by 𝑓 (D) = lim

𝑘→∞
𝑓𝜏 (D), E

[
ℓ (D𝑡 , P𝑘+1X𝑘+1)

]
= 𝑓 (D𝑡),∀D𝑡 and

∀𝑡 ; and ℓ (D𝑡 , P𝑡+1, Y𝑡+1) = ℓ̃ (D𝑡 , P𝑡+1, Y𝑡+1, O𝑡+1, u𝑡+1) due to {O𝑡+1, u𝑡+1} =
arg minO,u ℓ̃ (D, P𝑡+1, Y𝑡+1, O, u) at time 𝑡 .

Next, let us define the following indicator function

𝛿𝑡
Δ
=

{
1 if E

[
˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡 (D𝑡) |F𝑡

]
> 0,

0 otherwise.

(6.176)

Here, the process {𝛿𝑡 }𝑡>0 is adapted to the filtration {F𝑡 }𝑡>0 as 𝛿𝑡 is measur-

able with respect to F𝑡 for very 𝑡 . From (D4), we then obtain Accordingly, we

obtain E
[
𝛿𝑡E

[
˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡 (D𝑡) |F𝑡

]]
≤ E

[√
𝑡
(
𝑓 (D𝑡) − 𝑓𝑡 (D𝑡)

)]
1√

𝑡 (𝑡+1) . We

know that the centered and scaled version of 𝑓𝑡 (D𝑡) satisfies E
[√
𝑡
(
𝑓 (D𝑡) −

𝑓𝑡 (D𝑡)
)]

= O(1), thanks to the Donsker theorem [126, Section 19.2]. We also

derive

∫ ∞

𝑡=1

1

√
𝑡 (𝑡 + 1)

𝑑𝑡 < ∞ after some simple calculations, thus

∞∑︁
𝑡

1

√
𝑡 (𝑡 + 1)

< ∞ too. Accordingly, we obtain

∑∞
𝑡=1
E
[
𝛿𝑡E

[
˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡 (D𝑡) |F𝑡

]]
< ∞.

Therefore, { ˜𝑓𝑡 (D𝑡)}∞𝑡=1
converges almost surely, i.e.,

∞∑︁
𝑡=1

E
[

˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡 (D𝑡) |F𝑡
]
< ∞. (6.177)

thanks to the quasi-martingale theorem [343, Theorem 9.4 & Proposition 9.5]

As 𝑡 →∞, ˜𝑓𝑡 (D𝑡) → 𝑓𝑡 (D𝑡) almost surely

We prove {𝑓𝑡 (D𝑡)}∞𝑡=1
and { ˜𝑓𝑡 (D𝑡)}∞𝑡=1

converge to the same limit by showing

∞∑︁
𝑡=1

˜𝑓𝑡 (D𝑡) − 𝑓𝑡 (D𝑡)
𝑡 + 1

< ∞. (6.178)

According to (6.174), we have 𝑒𝑡 (D𝑡)/𝑡 + 1 is bounded by
˜𝑓𝑡 (D𝑡) − ˜𝑓𝑡+1(D𝑡+1)

and (ℓ (D𝑡 , P𝑡+1, Y𝑡+1) − 𝑓𝑡 (D𝑡))
/
(𝑡 + 1). Moreover, we have

∑∞
𝑡=1

˜𝑓𝑡 (D𝑡)−
˜𝑓𝑡+1(D𝑡+1) < ∞, and the sum of (ℓ (D𝑡 , P𝑡+1, Y𝑡+1)− 𝑓𝑡 (D𝑡))

/
(𝑡 + 1) also con-

verges due to the convergence ofE[𝑓 (D𝑡)−𝑓𝑡 (D𝑡)]
/
(𝑡 + 1) andE[ℓ (D𝑡 , P, X)]

CHAPTER 6. ROBUST TENSOR TRACKING 237

= 𝑓 (D𝑡)∀𝑡 . Since
∑∞
𝑡=1

1

𝑡+1 = ∞ and

��𝑒𝑡 (D𝑡) −𝑒𝑡−1(D𝑡−1)
�� = O(1/𝑡), we obtain∑∞

𝑡=1

˜𝑓𝑡 (D𝑡) − 𝑓𝑡 (D𝑡) < ∞, or

˜𝑓𝑡 (D𝑡) → 𝑓𝑡 (D𝑡) 𝑎.𝑠 ., (6.179)

thanks to [120, Lemma 3].

6.6.4 Appendix D: Proof of Lemma 13

In what follows, we prove that when 𝑡 → ∞, ∇ ˜𝑓𝑡
(
D𝑡

)
→ ∇𝑓𝑡

(
D𝑡

)
and

∇ ˜𝑓𝑡 (D𝑡) → 0 almost surely.

As 𝑡 →∞, ∇ ˜𝑓𝑡
(
D𝑡

)
→ ∇𝑓𝑡

(
D𝑡

)
almost surely

Let D̄ =
[
Ū(1) , Ū(2) , . . . , Ū(𝑁)

]
be the limit point of the sequence of solutions

{U(𝑛)𝑡 }𝑡≥1.

We know that
˜𝑓𝑡 (D) is a majorant function of 𝑓𝑡 (D), i.e.,

˜𝑓𝑡 (D + 𝑎𝑡V) ≥ 𝑓𝑡 (D + 𝑎𝑡V) ∀D,V ∈ D, 𝑎𝑡 . (6.180)

Taking the Taylor expansion of (6.180) at 𝑡 →∞ results in

𝑓∞
(
D̄
)
+ tr

[
𝑎𝑡V⊤∇𝑓∞

(
D̄
)]
+ 𝒐

(
𝑎𝑡V

)
≤ ˜𝑓∞

(
D̄
)
+ tr

[
𝑎𝑡V⊤∇ ˜𝑓∞

(
D̄
)]
+ 𝒐

(
𝑎𝑡V

)
,

(6.181)

where
˜𝑓∞ = lim𝑡→∞ ˜𝑓𝑡 (.). As indicated in Lemma 1,

˜𝑓∞
(
D̄
)
= 𝑓∞

(
D̄
)
and hence

tr

[
𝑎𝑡V⊤∇𝑓∞

(
D̄
)]
≤ tr

[
𝑎𝑡V⊤∇ ˜𝑓∞

(
D̄
)]
. Since the above inequality must hold

for all V and 𝑎𝑡 , we obtain tr

[
∇ ˜𝑓∞

(
D̄
)
− ∇𝑓∞

(
D̄
)]
→ 0 𝑎.𝑠 . or

∇ ˜𝑓∞
(
D̄
)
= ∇𝑓∞

(
D̄
)
almost surely. (6.182)

As 𝑡 →∞, ∇ ˜𝑓∞
(
D̄
)
= 0

This property is proved by applying immediately the following stages:

1. Stage 1: lim

𝑡→∞
tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1

(
D𝑡+1

)]
= 0;

2. Stage 2: tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1

(
D𝑡+1

)]
≤ 𝑐1 tr

[
(D − D𝑡)⊤∇ ˜𝑓𝑡+1

(
D𝑡

)]
+

𝑐2

D𝑡+1 − D𝑡

2

𝐹
∀𝑡,D ∈ D;

3. Stage 3:

(
∇ ˜𝑓𝑡 (D̄)

)⊤(D − D̄) ⪰ 0 ∀D where D̄ is the limited point of the

sequence {D𝑡 }𝑡≥1.

CHAPTER 6. ROBUST TENSOR TRACKING 238

Stage 1:

When 𝐿𝑡 = 𝑡 , we can recast the surrogate function
˜𝑓𝑡 (.) into the following

form

˜𝑓𝑡 (D) =
𝜌

𝑡
tr

[
A𝑡

([
(U(𝑁))⊤U(𝑁)

]
⊛

[
(U(𝑁−1))⊤U(𝑁−1)] ⊛ · · · ⊛ [

(U(1))⊤U(1)
])]

− 2𝜌

𝑡
tr

[
B𝑡

(
U(𝑁) ⊙ U(𝑁−1) ⊙ · · · ⊙ U(1)

)⊤] + RX,O, (6.183)

whereA𝑡 = 𝜆A𝑡−1+u𝑡u⊤𝑡 , and B𝑡 is the (𝑁 +1)-unfolding matrix of the tensor

B𝑡 = 𝜆B𝑡−1 + P𝑡 ⊛ (Y𝑡 − O𝑡) ×𝑁+1 u⊤𝑡 , and RX,O =
𝜌

𝑡

∑𝑡
𝜏=1
∥P𝑡 ⊛ Y𝑡 ∥2𝐹 +

1

𝑡

∑𝑡
𝜏=1

𝛽𝑡−𝜏 ∥O𝜏 ∥1 independent ofD. With respect to each factorU(𝑛) , we can
further express

˜𝑓𝑡 (D) as follows

˜𝑓𝑡 (D) =
𝜌

𝑡
tr

[(
U(𝑛)

)⊤U(𝑛)A𝑡,𝑛] − 2𝜌

𝑡
tr

[(
U(𝑛)

)⊤B𝑡,𝑛] + RX,O . (6.184)

Here, the two matrices A𝑡,𝑛 and B𝑡,𝑛 are given by

A𝑡,𝑛 = A𝑡 ⊛
[
(U(1))⊤U(1)

]
⊛ · · · ⊛

[
(U(𝑛−1))⊤U(𝑛−1)]

(6.185)

⊛
[
(U(𝑛+1))⊤U(𝑛+1)

]
⊛ · · · ⊛

[
(U(1))⊤U(1)

]
,

B𝑡,𝑛 =

𝑟∑︁
𝑗=1

B(𝑗)𝑡 ×1 U(1) (:, 𝑗) ×2 · · · ×𝑛−1 U(𝑛−1) (:, 𝑗) (6.186)

×𝑛+1 U(𝑛+1) (:, 𝑗) · · · ×𝑁 U(𝑁) (:, 𝑗),

where B(𝑗)𝑡 ∈ R𝐼1×𝐼2 · · ·×𝐼𝑁 denote the 𝑗-th mode-(𝑁 + 1) slices of B𝑡 . It is

easy to see that
˜𝑓𝑡 (D) is a multi-block convex and differentiable function and

its partial derivative w.r.t. each block is Lipschitz continuous with constant

𝐿̃𝑡,𝑛 = ∥A𝑡,𝑛 ∥𝐹 . Accordingly, we have��� ˜𝑓𝑡+1
(
D𝑡

)
− ˜𝑓𝑡+1

(
D𝑡+1

)
− tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)

] ��� ≤ 𝐿̃

D𝑡 − D𝑡+1

2

𝐹
,

(6.187)

with 𝐿̃ = max𝑛 (𝐿̃𝑡,𝑛/2). Thanks to the triangle inequality, we then obtain��� tr [
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)

] ��� ≤ 𝐿̃

D𝑡 − D𝑡+1

2

𝐹
+ ˜𝑓𝑡+1(D𝑡) − ˜𝑓𝑡+1(D𝑡+1) .

(6.188)

Accordingly, we have

∞∑︁
𝑡=1

����E[tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)

] ��F𝑡] ����
≤ 𝐿̃

∞∑︁
𝑡=1

E
[

D𝑡 − D𝑡+1

2

𝐹

]
+
∞∑︁
𝑡=1

����E[˜𝑓𝑡+1(D𝑡+1) − ˜𝑓𝑡+1(D𝑡)
��F𝑡] ����. (6.189)

CHAPTER 6. ROBUST TENSOR TRACKING 239

Recall that

D𝑡 − D𝑡+1∥𝐹 = O(1/𝑡) as indicated in Proposition 1, hence

∑∞
𝑡=1

D𝑡 − D𝑡+1∥2𝐹 ≤ 𝑑

∑∞
𝑡=1

1

𝑡2
= 𝑑 𝜋

6
< ∞ for some constant 𝑑 > 0. Together

with (6.177), we obtain that the right hand side of (6.189) is finite.

Also, it is well-known that E[|𝑥 |] < ∞ implies |𝑥 | < ∞ almost surely for

any random variable 𝑥 , thus we obtain

∞∑︁
𝑡=1

��� tr [
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)

] ��� < ∞. (6.190)

Moreover, we always have

∞∑︁
𝑡=1

tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)

]
<

∞∑︁
𝑡=1

��� tr [
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)

] ��� < ∞.
(6.191)

Therefore the series

{
tr[(D𝑡−D𝑡+1)⊤∇ ˜𝑓𝑡+1(D𝑡+1)]

}
𝑡≥1

converges andwe sup-

pose that it converges to 𝐶 < ∞.
Now, we rewrite (6.191) as follows

lim

𝑡→∞

𝑡∑︁
𝜏=1

tr

[
(D𝑘 − D𝑘+1)⊤∇ ˜𝑓𝑘+1(D𝑘+1)

]
= lim

𝑡→∞
tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1

(
D𝑡+1

)]
+ lim

𝑡→∞

𝑡−1∑︁
𝜏=1

tr

[
(D𝑘 − D𝑘+1)⊤∇ ˜𝑓𝑘+1(D𝑘+1)

]
= 𝐶 < ∞. (6.192)

When 𝑡 →∞, the following partial sum also converges to 𝐶 , i.e.,

lim

𝑡→∞

𝑡−1∑︁
𝜏=1

tr

[
(D𝑘 − D𝑘+1)⊤∇ ˜𝑓𝑘+1(D𝑘+1)

]
= 𝐶. (6.193)

It implies that

lim

𝑡→∞
tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1

(
D𝑡+1

)]
= 0. (6.194)

Step 2:

Because U(𝑛)
𝑡+1 = argminU(𝑛)

˜𝑓𝑡+1
(
U(𝑛) , .

)
, we have

˜𝑓𝑡+1
(
U(𝑛)
𝑡+1, .

)
≤ ˜𝑓𝑡+1

(
U(𝑛)𝑡 +

𝑑1

𝑡𝑁

(
U(𝑛) − U(𝑛)𝑡

)
, .

)
∀D ∈ D . (6.195)

Without loss of generality, we suppose that D is arbitrarily chosen inD such

that ∥D − D𝑡 ∥𝐹 = 𝑑1/𝑡𝑁 for some positive constant 𝑑1 > 0, hence ∥U(𝑛) −
U(𝑛)𝑡 ∥𝐹 ≤ 𝑑1/𝑁𝑡 ∀𝑛.

CHAPTER 6. ROBUST TENSOR TRACKING 240

As mentioned in Stage 1, ∇ ˜𝑓 =
[
∇1

˜𝑓 ,∇2

˜𝑓 , . . . ,∇𝑁 ˜𝑓
]
is Lipschitz where

∇𝑛 ˜𝑓 denote the partial derivative of
˜𝑓 w.r.t. the 𝑛-th factor U(𝑛) . Thanks to

Proposition 22, there always exists a constant 𝑑2 > 0 such that

tr

[(
U(𝑛)𝑡 − U

(𝑛)
𝑡+1

)⊤∇𝑛 ˜𝑓𝑡+1
(
U(𝑛)
𝑡+1, .

)]
≤ 𝑑1

𝑡𝑁
tr

[(
U(𝑛) − U(𝑛)𝑡

)⊤∇𝑛 ˜𝑓𝑡+1
(
U(𝑛)𝑡 , .

)]
+ 𝐿̃𝑑2

𝑡2𝑁 2
. (6.196)

Collecting these inequalities with 𝑛 = 1, 2, . . . , 𝑁 together, we derive

tr

[
(D𝑡 − D𝑡+1)⊤

[
∇1

˜𝑓𝑡+1
(
U(1)
𝑡+1, .

)
,∇2

˜𝑓𝑡+1
(
U(2)
𝑡+1, .

)
, . . . ,∇𝑁 ˜𝑓𝑡+1

(
U(𝑁)
𝑡+1 , .

)]]
≤ 𝑑1

𝑡𝑁
tr

[(
D − D𝑡

)⊤ [∇1

˜𝑓𝑡+1
(
U(𝑛)𝑡 , .

)
,∇2

˜𝑓𝑡+1
(
U(𝑛)𝑡 , .

)
, . . . ,∇𝑁 ˜𝑓𝑡+1

(
U(𝑛)𝑡 , .

)]]
+ 𝐿̃𝑑2

𝑡2𝑁 2
. (6.197)

It then follows that

tr

[
(D𝑡 − D𝑡+1)⊤∇ ˜𝑓𝑡+1

(
D𝑡+1

)]
≤ 𝑑1

𝑡𝑁
tr

[
(D − D𝑡)⊤∇ ˜𝑓𝑡+1

(
D𝑡

)]
+ 𝐿̃𝑑2

D𝑡 − D𝑡+1

2

𝐹
, (6.198)

because of ∥D𝑡 − D𝑡+1∥𝐹 = O(1/𝑡). The inequality (6.198) still holds for all

D ∈ D such that ∥D − D𝑡 ∥𝐹 > 𝑑1/𝑡𝑁 .

Step 3:

We use the proof by contradiction to indicate that the limited point D̄ is a

stationary point of
˜𝑓∞(.) over D.

Assume that D̄ is not a stationary point of
˜𝑓𝑡 over D when 𝑡 → ∞. Then

there exists D′ ∈ D and 𝜖1 > 0 such that

tr

[
(D′ − D̄)⊤∇ ˜𝑓∞

(
D̄
)]
≤ −𝜖1 < 0. (6.199)

Thanks to the triangle inequality, we have

(D′ − D𝜏)⊤∇ ˜𝑓𝑘+1(D𝜏) − (D′ − D̄)⊤∇ ˜𝑓∞(D̄)

𝐹

≤

∇ ˜𝑓𝑘+1(D𝜏) − ∇ ˜𝑓∞(D̄)

𝐹

D′ − D𝜏

𝐹 + ∥ ˜𝑓∞(D̄)∥𝐹 ∥D̄ − D𝜏 ∥𝐹 . (6.200)

It is easy to see that the RHS of (6.200) approaches to zero as𝑘 →∞ because of

D𝜏 → D̄ and ∇ ˜𝑓𝑘+1(D𝜏) → ∇ ˜𝑓∞(D̄). In parallel, we know that tr[A] − tr[B] =
tr[A − B] ≤

√
𝑛∥A − B∥𝐹 and hence

tr

[(
D′ − D𝑘

)⊤∇ ˜𝑓𝑘+1
(
D𝑘

)]
≤ −𝜖1 < 0. (6.201)

CHAPTER 6. ROBUST TENSOR TRACKING 241

According to (6.198), we obtain

lim

𝑘→∞
tr

[
(D𝜏 − D𝑘+1)⊤∇ ˜𝑓𝑘+1(D𝑘+1)

]
≤ −𝑑1𝜖

𝑡𝑁 ∥D′ − D𝜏 ∥𝐹
< 0, (6.202)

which is a contradiction in (6.194) in Step 1. Therefore, D̄ is a stationary point

of
˜𝑓∞.

6.6.5 Appendix E: Useful Propositions

In this section, we would provide the following propositions which help us

to derive several important results in the proofs. Their details are provided in

well-known materials.

Proposition 19 ([132, Section 9.1.2]) The function 𝑓 is𝑚-strongly convex,
with a constant𝑚 if and only if for all u, v ∈ dom(𝑓), we always have |𝑓 (v) −
𝑓 (u) | ≥ 𝑚

2
∥v − u∥2 .

Proposition 20 ([132, page 72]) Every norm on R𝑛 is convex and the sum of
convex functions is convex.

Proposition 21 ([132, page 329]) A function 𝑓 : V → R is called Lipschitz
function if there exist a positive number 𝐿 > 0 such that for all A,B ∈ V , we
always have |𝑓 (A) − 𝑓 (B) | ≤ 𝐿∥A − B∥.

Proposition 22 ([353, Lemma 1.2.3]) If a function 𝑓 : V → R is differen-
tiable and its derivative is 𝐿-Lipschitz continuous, then for all A,B ∈ V ,���𝑓 (A) − 𝑓 (B) − (

∇𝑓 (B)
)⊤(A − B)��� ≤ 𝐿

2

∥A − B∥2.

Proposition 23 If {𝑓𝑡 }𝑡≥1 and {𝑔𝑡 }𝑡≥1 are sequences of bounded functions which
converge uniformly on a set E, then {𝑓𝑡 + 𝑔𝑡 }𝑡≥1 and {𝑓𝑡𝑔𝑡 }𝑡≥1 converge uni-
formly on E.

Proof. Since 𝑓𝑡 and 𝑔𝑡 are bounded, we obtain |𝑓𝑡 | < 𝑀 < ∞ and |𝑔𝑡 | < 𝑁 < ∞
for all 𝑡 . The triangle inequality gives |𝑓𝑡 + 𝑔𝑡 | ≤ |𝑓𝑡 | + |𝑔𝑡 | < 𝑀 + 𝑁 for all 𝑡 .

Also, |𝑓𝑡𝑔𝑡 | = |𝑓𝑡 | |𝑔𝑡 | ≤ 𝑀𝑁 . Therefore 𝑓𝑡 + 𝑔𝑡 and 𝑓𝑡𝑔𝑡 are bounded.

Proposition 24 ([120, Lemma 3, page 35]) Let {𝑎𝑡 }∞𝑡=1
and {𝑏𝑡 }∞𝑡=1

be two
nonnegative sequences such that

∑∞
𝑖=1
𝑎𝑖 = ∞ and

∑∞
𝑖=1
𝑎𝑖𝑏𝑖 < ∞, |𝑏𝑡+1 − 𝑏𝑡 | <

𝐾𝑎𝑡 with some constant 𝐾 , then lim𝑡→∞ 𝑏𝑡 = 0 or
∑∞
𝑖=1
𝑏𝑖 < ∞.

CHAPTER 6. ROBUST TENSOR TRACKING 242

Proposition 25 ([350, Theorem 4.1, page 237]) Consider a continuous func-
tion 𝑓 : V × U → R. Suppose that ∀u ∈ U, the function 𝑓 (., u) is differen-
tiable and ∇v 𝑓 (v, u) is continuous on V × U. If 𝑔(v) be the function derived
from 𝑔(v) = minu∈U 𝑓 (v, u), then 𝑔(v) is also differentiable. In addition, if
u∗ = argminu∈U 𝑓 (v, u) be unique, ∇𝑔(v) = ∇v 𝑓 (v, u∗), ∀v ∈ V .

Proposition 26 (P-Donsker classes, Donsker theorem [126, Section 19.2])

Let 𝐹 = {ℓ𝜃 : X → R} be a set of measurable functions defined on a bounded
subset ofR𝑛 . For every 𝜃1, 𝜃2 and 𝑥 , if there exists a constant 𝑐 such that |ℓ𝜃1

(𝑥)−
ℓ𝜃2
(𝑥) | < 𝑐 ∥𝜃1 − 𝜃2∥2 , then 𝐹 is P-Donsker. For any function ℓ in 𝐹 , let us define

the following functions

𝑓𝑡 =
1

𝑡

𝑡∑︁
𝑖=1

ℓ (U𝑖), and 𝑓 = E[𝑓𝑡 (U)] .

Assume that for all ℓ , ∥ℓ ∥∞ < 𝑀 and random variables {U𝑖}𝑖≥1 are Borel-
measurable, we then have E[

√
𝑡 ∥ 𝑓𝑡 − 𝑓 ∥∞] = O(1), where ∥ℓ ∥∞

Δ
= inf{𝐶 ≥

0, |𝑓 (𝑥) | < 𝐶 ∀ 𝑥}.

Proposition 27 (Quasi Martingales [125, Section 4.4]) Let (Ω, F , P) be a
probability space, {𝑢𝑡 }𝑡>0 be a stochastic process on the probability space and
{F𝑡 }𝑡>0 be a filtration by the past information at time instant 𝑡 . Let us define
the indicator function 𝛿𝑡 as follows

𝛿𝑡
Δ
=

{
1 if E[𝑢𝑡+1 − 𝑢𝑡 |F𝑡] > 0,

0 otherwise.

For all 𝑡 , if 𝑢𝑡 ≥ 0 and
∑∞
𝑖=1
E[𝛿𝑖 (𝑢𝑖+1 − 𝑢𝑖) |F𝑖] < ∞, then 𝑢𝑡 is a quasi-

martingale and converges almost surely, i.e.,

∞∑︁
𝑡=1

E[𝑢𝑡+1 − 𝑢𝑡 |F𝑡] < ∞.

Tensor Tracking under

Tensor-Train Format
7

7.1 Introduction . 244

7.2 Streaming Tensor-Train Decomposition 246

7.2.1 Problem Formulation 246

7.2.2 Proposed Method . 248

7.2.2.1 Estimation of g(𝑁)𝑡 248

7.2.2.2 Estimation of TT-cores 250

7.2.2.3 Computational Complexity andMemory Stor-

age Analysis 251

7.3 Streaming Tensor-Train Decomposition with Missing Data . . 252

7.3.1 Problem Formulation 252

7.3.2 Proposed Method . 253

7.3.2.1 Estimation of the temporal TT-core 254

7.3.2.2 Estimation of the non-temporal TT-cores . . 255

7.3.2.3 Complexity Analysis 257

7.4 Streaming Tensor-Train Decomposition with Sparse Outliers . 257

7.4.1 Problem Formulation 258

7.4.2 Proposed Method . 259

7.4.2.1 Estimation of the temporal TT-core andOut-

lier . 259

7.4.2.2 Estimation of TT-cores 261

7.4.2.3 Computational Complexity andMemory Stor-

age . 262

7.5 Experiments . 262

7.5.1 Performance of TT-FOA 263

7.5.1.1 Synthetic Data 263

7.5.1.2 Real Data . 266

7.5.2 Performance of ATT 267

7.5.2.1 Experiment Setup 268

7.5.2.2 Effect of the noise level 𝜎𝑛 269

7.5.2.3 Effect of the time-varying factor 𝜀 269

7.5.2.4 Effect of the missing density 𝜔miss 270

7.5.2.5 Online video completion 270

7.5.3 Performance of ROBOT 271

7.5.3.1 Experiment Setup 272

243

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 244

7.5.3.2 Effect of the noise level 𝜎𝑛 273

7.5.3.3 Effect of the time-varying factor 𝜖 273

7.5.3.4 Effect of the missing density 𝜔𝑚𝑖𝑠𝑠 274

7.5.3.5 Effect of outliers 275

7.5.3.6 Video background/foreground separation . . 275

7.6 Conclusions . 275

Tensor-train (TT) decomposition has been an efficient tool to find low order
approximation of large-scale, high-order tensors. In online setting, TT decom-
position has not gained much attention and popularity as CP and Tucker de-
compositions. In particular, the existing TT decomposition algorithms are ei-
ther of high computational complexity or operating in batch-mode, and hence,
they become inefficient for (near) real-time processing. In this chapter, we in-
troduce three new online algorithms for the problem of streaming tensor-train
decomposition. The first algorithm called TT-FOA is capable of tracking the
low-rank components of high-order tensors from noisy and high-dimensional
data with high accuracy, even when they come from time-dependent observa-
tions. The second algorithm called ATT is specifically designed for handling
incomplete streaming tensors. ATT is scalable, effective, and adept at estimat-
ing low TT-rank component of streaming tensors. To deal with sparse outliers,
we propose the so-called ROBOT algorithm which stands for ROBust Online
Tensor-Train decomposition. Technically, ROBOT has the ability to tracking
streaming tensors from imperfect streams (i.e., due to noise, outliers, and miss-
ing data) as well as tracking their time variation in dynamic environments.
We conduct several experiments on both synthetic and real data to demonstrate
the effectiveness of the proposed algorithms.

7.1 Introduction

Tensor decomposition has received increasing attention from the machine

learning and signal processing community over the years [10,11]. It has been

successfully applied to a broad range of applications, fromwireless communi-

cations [182, 354] and image processing [355, 356] to neuroscience [179, 357].

Tensor-train (TT) decomposition, which is one form of tensor decomposition,

has become a powerful processing tool for multi-dimensional and large-scale

data analysis [12]. Under the tensor-train format, we can factorize a high-

order tensor into a sequence of 3-order tensors, see Fig. 7.1 for an illustration.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 245

 1

1
1

2
1

N
(1)

G (2)
G

(1)N 
G

1

1N  

1 1[]I r 1 2 2[]r I r  2 1 1[]N N Nr I r    1[]N Nr I 

()N
GX

Figure 7.1: Tensor-train decomposition of X ∈ R𝐼1×𝐼2×···×𝐼𝑁 .

TT decomposition offers several advantages compared to the two stan-

dard Tucker and CP/PARAFAC decompositions. First, we can represent any

high-order tensor under TT decomposition and its computation is stable since

it is based on computing low-rank approximations of unfolding matrices of

the tensor [16]. Second, TT-rank can be effectively determined in a stable way

in contrast to CP-rank which is known as an NP-hard problem [195, 358].

Moreover, TT decomposition provides a memory-saving representation for

high-order tensors and can break the curse of dimensionality which limits the

order of the tensors to be analysed [16, 189]. Accordingly, TT decomposition

is expected to be capable of handling big tensors efficiently and effectively.

We refer the readers to [12] for a comprehensive survey on basic properties,

algorithms, and applications of the tensor-train decomposition.

In recent years, the demand for big data stream analysis has been increas-

ing rapidly [2]. In most modern online applications, data acquisition is a time-

varying process where data are sequentially acquired at a large scale with

many attributes over time. This leads to several issues for tensor decompo-

sition in general and TT decomposition in particular: (i) size of the tensor is

growing linearly with time, (ii) time variation in nonstationary environments

where the underlying process generating the tensor can change over time,

and (iii) uncertainties (e.g., imprecise, noisy, and misleading entries) emanate

during data collection, to name a few. In parallel, missing data are ubiqui-

tous in multi-dimensional and large-scale data analysis where collecting all

data attributes at a time is either too expensive or even impossible due to

corruption [359]. Accordingly, it is of great interest to develop adaptive (on-

line) tensor decomposition or tensor tracking algorithms which are capable

of handling these issues. In spite of several successes in batch settings, TT de-

composition has not gained the same popularity in online settings as CP and

Tucker decompositions. Particularly, most of the existing TT methods are

operating in batch-mode and become inefficient for streaming applications.

Related Works: There exist few TT methods related to adaptive ten-

sor decomposition in the literature. In [360–362], Lubich et al. introduced

some dynamical tensor approximation methods under TT format for fac-

torizing time-varying tensors, thanks to the Dirac–Frenkel-McLachlan vari-

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 246

 1

1
1

2
1

N
(1)

tG
(2)

tG (1)N

t


G

()

1

N

tG1

1N  
1tX tY

1 1[]I r 1 2 2[]r I r 
2 1 1[]N N Nr I r    1[]t

N Nr I 

()N

tGtX

Figure 7.2: Streaming Tensor-Train Decomposition of X𝑡 ∈ R𝐼1×···×𝐼𝑁 −1×𝐼 𝑡𝑁 .

ational principle. However, the dynamical tensors of interest are of fixed

size, and hence, their methods indeed belong to the class of batch TT algo-

rithms. In [267], Liu et al. proposed an incremental TT method called iTTD

for decomposing high-order tensors of which one dimension growswith time.

iTTD factorizes new streams as individual tensors into TT-cores and then ap-

pends the estimated cores to old estimates from past observations. In [268],

Wang et al. also developed an incremental TT method for factorizing ten-

sors derived from industrial IoT data streams, namely AITT. By exploiting a

relationship between the directly reshaped matrix and integration of unfold-

ing matrices, AITT can estimate effectively the underlying TT-cores with low

cost. Nevertheless, it is worth noting that the framework of both iTTD and

AITT is not really online streaming learning, but incremental batch learning.

These drawbacks encourage us to develop adaptive methods for factorizing

high-order streaming tensors under the tensor-train format.

7.2 Streaming Tensor-Train Decomposition

7.2.1 Problem Formulation

Consider a streaming 𝑁 -order tensor X𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×𝐼𝑡𝑁 fixing all but the

last “time” dimension 𝐼 𝑡
𝑁
. At time 𝑡 , X𝑡 is particularly obtained by appending

a new slice Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1
to the previous observation X𝑡−1 along the

time dimension, i.e., 𝐼 𝑡
𝑁

= 𝐼 𝑡−1

𝑁
+ 1, please Fig. 7.2 for an illustration. Instead

of recomputing the batch TT decomposition for X𝑡 , we aim to develop an

efficient update, both in computational complexity and memory storage, to

obtain TT-cores of X𝑡 from past estimations.

TT decomposition of X𝑡 can be represented by a multilinear product of

3-order tensors called TT-cores:

X𝑡 = G
(1)
𝑡 ×1

2
G
(2)
𝑡 ×1

3
· · · ×1

𝑁 G
(𝑁)
𝑡 , (7.1)

where rTT = [𝑟1, 𝑟2, . . . , 𝑟𝑁−1] is a vector containing the TT-ranks, G
(1)
𝑡 ∈

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 247

R𝐼1×𝑟1
, G
(𝑁)
𝑡 ∈ R𝑟𝑁 −1×𝐼𝑡𝑁 and G

(𝑛)
𝑡 ∈ R𝑟𝑛−1×𝐼𝑛×𝑟𝑛

, 𝑛 = 2, . . . , 𝑁 − 1, are the TT-

cores. In practice, (7.1) is only an approximate model in a noisy environment,

i.e.,

X𝑡 = G
(1)
𝑡 ×1

2
G
(2)
𝑡 ×1

3
· · · ×1

𝑁 G
(𝑁)
𝑡 + N𝑡 (7.2)

where N𝑡 is a noise tensor. The TT-cores can be estimated by solving the

following minimization:{
G
(𝑛)
𝑡

}𝑁
𝑛=1

= argmin

{G (𝑛) }𝑁
𝑛=1

1

2

X𝑡 − X̃

2

𝐹
s.t. X̃ = G

(1) ×1

2
G
(2) ×1

3
· · · ×1

𝑁 G
(𝑁) .

(7.3)

Problem (7.3) can be rewritten in the adaptive scheme as follows

{
G
(𝑛)
𝑡

}𝑁
𝑛=1

= argmin

{G (𝑛) }𝑁
𝑛=1

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

Y𝜏 − G

(1) ×1

2
· · · ×1

𝑁−1
G
(𝑁−1) ×1

𝑁 g(𝑁)𝜏

2

𝐹
,

(7.4)

where Y𝜏 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1
is the 𝜏-th slice of X𝑡 , g

(𝑁)
𝜏 ∈ R𝑟𝑁 −1×1

is the 𝑖-

th column of the last TT-core G
(𝑛)
𝑡 and a forgetting factor 𝜆 ∈ (0, 1] is to

discount the effect of past observations. The following steps describe the basic

idea of our method for solving (7.4).

Let us denote H𝑡 = G
(1)
𝑡 ×1

2
· · · ×1

𝑁−1
G
(𝑁−1)
𝑡 , and {G (𝑛)

𝑡−1
}𝑁𝑛=1

be the old

estimated TT-cores of X𝑡−1. Under the assumption that TT-cores are either

static or changing slowly, hence H𝑡 ≃ H𝑡−1. Thus, we have

H𝑡 ×1

𝑁 G
(𝑁)
𝑡 = X𝑡−1 ⊞𝑁 Y𝑡

=

(
H𝑡−1 ×1

𝑁 G
(𝑁)
𝑡−1

)
⊞𝑁

(
H𝑡 ×1

𝑁 g(𝑁)𝑡

)
≃ H𝑡 ×1

𝑁

[
G
(𝑁)
𝑡−1

�� g(𝑁)𝑡

]
.

(7.5)

Accordingly, we only need to estimate the last column vector g(𝑁)𝑡 of G
(𝑁)
𝑡 ∈

R𝑟𝑁 −1×𝑡
at time 𝑡 , instead of re-estimating the whole G

(𝑁)
𝑡 which becomes

inefficient for a large 𝑡 :

G
(𝑁)
𝑡 ≃

[
G
(𝑁)
𝑡−1

�� g(𝑁)𝑡

]
. (7.6)

The vector g(𝑁)𝑡 can be updated by minimizing the 𝑡-th summand in (7.4):

g(𝑁)𝑡 = argmin

g(𝑁) ∈R𝑟𝑁 −1
×1

Y𝑡 −H𝑡−1 ×1

𝑛 g
(𝑁)

2

𝐹
. (7.7)

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 248

After that, we update TT-cores {G (𝑛) }𝑁−1

𝑛=1
by

G
(𝑛)
𝑡 = argmin

G (𝑛)

[
𝑓𝑡
(
G
(𝑛)) = 𝑡∑︁

𝜏=1

𝛽𝑡−𝜏

Y𝜏 −A

(𝑛)
𝑡−1
×1

𝑛 G
(𝑛) ×1

𝑘+1 B
(𝑛)
𝜏

2

𝐹

]
,

(7.8)

where the two auxiliary tensors are given by

A
(𝑛)
𝑡−1

= G
(1)
𝑡−1
×1

2
· · · ×1

𝑛−1
G
(𝑛−1)
𝑡−1

, (7.9)

B
(𝑛)
𝜏 = G

(𝑛+1)
𝑡−1

×1

𝑛+2 · · · ×1

𝑁−1
G
(𝑛−1)
𝑡−1

×1

𝑁 g(𝑁)𝜏 . (7.10)

We make the following assumptions for convenience of deploying our

method: (A1) TT-cores {G (𝑛) }𝑁−1

𝑛=1
may change slowly between two con-

secutive instances 𝑡 − 1 and 𝑡 , i.e. G
(𝑛)
𝑡 ≃ G

(𝑛)
𝑡−1

; and (A2) TT-rank vector

rTT = [𝑟1, 𝑟2, . . . , 𝑟𝑁−1] is known and does not change with time.

7.2.2 Proposed Method

In this subsection, we propose an efficient first-order method, namely TT-

FOA (which stands for TT adaptive decomposition using First-Order Approach),

for tensor-train decomposition of streaming tensors by adapting the alternat-

ing minimization framework to the problem (7.46). The proposed algorithm

consists of two main steps: (i) estimate g(𝑁)𝑡 first, given past estimated TT-

cores; (ii) then we update TT-cores G
(𝑛)

in parallel, given g(𝑁)𝑡 and remaining

TT-cores. The pseudocode of TT-FOA is summarized in Algorithm 9.

7.2.2.1 Estimation of g(𝑁)𝑡

Given a new slice Y𝑡 and past estimated TT-cores, g(𝑁)𝑡 can be estimated by

solving (7.7)

g(𝑁)𝑡 = argmin

g(𝑁) ∈R𝑟𝑛−1
×1

Y𝑡 −H𝑡−1 ×1

𝑁 g(𝑁)

2

𝐹
+ 𝜌

2

g(𝑁)

2

2

,

where 𝜌 is a small positive parameter for regularization. It can be reformu-

lated via its matrix-vector representation as follows

g(𝑁)𝑡 = argmin

g(𝑁) ∈R𝑟𝑁 −1
×1

y𝑡 − H𝑡−1g(𝑁)

2

2

+ 𝜌
2

g(𝑁)

2

2

, (7.11)

where y𝑡 = vec(Y𝑡) and H𝑡−1 ∈ R𝐼1 ...𝐼𝑁 −1×𝑟𝑁 −1
is the unfolding matrix of

H𝑡−1.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 249

Input: Observations {Y𝑡 }∞𝑡=1
, Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1

, TT-rank rTT =

[𝑟1, 𝑟2, . . . , 𝑟𝑁−1], forgetting factor 0 < 𝛽 ≤ 1.

Initialization: {G (𝑛)
0
}𝑁−1

𝑛=1
are initialized randomly and {S(𝑛)

0
}𝑁−1

𝑛=1
= I.

Main Program:

for 𝑡 = 1, 2, . . . do

Step 1: Estimate g(𝑁)𝑡

H𝑡−1 = G(1)
𝑡−1
×1

2
G(2)
𝑡−1
×1

3
· · · ×1

𝑁−1
G
(𝑁−1)
𝑡−1

H𝑡−1 = unfolding(H𝑡−1, [𝐼1𝐼2 . . . 𝐼𝑁−1, 𝑟𝑁−1])
Ω = randsample

(
[1, 𝐼1𝐼2 . . . 𝐼𝑁−1]

)
yΩ𝑡

= vec(Y𝑡)

g(𝑁)𝑡 = H#

Ω𝑡−1

yΩ𝑡

𝚫𝑡 = Y𝑡 −H𝑡−1 ×1

𝑁 g(𝑁)𝑡

Step 2: Update TT-cores G𝑘 in parallel

A
(𝑛)
𝑡−1

= G(1)
𝑡−1
×1

2
· · · ×1

𝑛−1
G
(𝑛−1)
𝑡−1

A(𝑛)
𝑡−1

= unfolding
(
A
(𝑛)
𝑡−1
, [𝑟𝑛−1, 𝐼1𝐼2 . . . 𝐼𝑛−1]

)
B
(𝑛)
𝑡 = G

(𝑛+1)
𝑡−1

×1

𝑛+2 · · · ×1

𝑁−1
G
(𝑁−1)
𝑡−1

×1

𝑁 g(𝑁)𝑡

B(𝑛)𝑡 = unfolding
(
B
(𝑛)
𝑡 , [𝑟𝑛, 𝐼𝑛+1𝐼𝑛+2 . . . 𝐼𝑁−1]

)
W(𝑛)𝑡 = B(𝑛)𝑡 ⊗ A(𝑛)

𝑡−1

S(𝑛)𝑡 = 𝛽S(𝑛)
𝑡−1
+W(𝑛)𝑡 W(𝑛)𝑡

⊤

V(𝑛)𝑡 =
(
S(𝑛)𝑡

)−1W(𝑛)𝑡

⊤

𝚫
(𝑛)
𝑡 = unfolding(𝚫𝑡 , [𝐼𝑛, 𝑟𝑛−1𝑟𝑛])

G(𝑛)𝑡 = G(𝑛)
𝑡−1
+ 𝚫(𝑛)𝑡 V(𝑛)𝑡

⊤

G
(𝑛)
𝑡 = reshape(G(𝑛)𝑡 , [𝑟𝑛−1, 𝐼𝑛, 𝑟𝑛])

end

Output: TT-cores {G (𝑛)𝑡 }𝑁𝑛=1
.

Algorithm 9: TT-FOA: First-Order Adaptive Tensor-Train Decomposi-

tion

Problem (7.11) is an overdetermined least-squares (LS) regression, it can

be efficiently solved by using the randomized sketching technique [323], as

g(𝑁)𝑡 = argmin

g(𝑁) ∈R𝑟𝑁 −1
×1

L (
H𝑡−1

)
g(𝑁) − L

(
y𝑡

)

2

2

+ 𝜌
2

g(𝑁)

2

2

, (7.12)

whereL(.) is a sketchingmap. Thanks to the Kronecker structure ofH[𝑡 − 1],
uniform random sampling can provide a good sketch for H𝑡−1. Accordingly,

we can select rows ofH𝑡−1 as well as y𝑡 at random to form the sketchHΩ𝑡−1
∈

R |Ω |×𝑟𝑁 −1
and a sampled vector ∈ R |Ω |×1

, where Ω denotes the set of sam-

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 250

pling rows. Therefore, g(𝑁)𝑡 can be efficiently updated by applying the ridge

regression method to (7.12), whose closed-form is given by

g(𝑁)𝑡 =
(
H⊤Ω𝑡−1

HΩ𝑡−1
+ 𝜌I𝑟𝑁 −1

)−1H⊤Ω𝑡−1

yΩ𝑡
. (7.13)

As a result, the last TT-core G
(𝑁)
𝑡 is updated as follows

G
(𝑁)
𝑡 =

[
G
(𝑁)
𝑡−1

�� g(𝑁)𝑡

]
. (7.14)

7.2.2.2 Estimation of TT-cores

Given the new slice Y𝑡 and past estimations, the 𝑘-th TT-core G
(𝑛)
𝑡 can

be estimated by minimizing the matrix-representation of the objective func-

tion (7.8), as follows

G(𝑛)𝑡 = argmin

G(𝑛) ∈R𝐼𝑛×𝑟𝑛𝑟𝑛−1

[
𝑓 (G(𝑛)) =

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

Y(𝑛)𝜏 − G(𝑛)W(𝑛)𝜏

2

𝐹

]
, (7.15)

where G(𝑛)𝑡 is the mode-2 matricization of G
(𝑛)
𝑡 , Y(𝑛)𝜏 is the mode-𝑛 matri-

cization of Y𝜏 ;W
(𝑛)
𝜏 = B(𝑛)𝜏 ⊗ A(𝑛)

𝑡−1
where ⊗ denotes the Kronecker product,

A(𝑛)
𝑡−1

and B(𝑛)𝜏 are the unfolding matrices of A
(𝑛)
𝑡−1

and B
(𝑛)
𝜏 respectively;

The local optimal G
(𝑛)
𝑡 can be obtained by setting the first derivative of

𝑓 (G(𝑛)) to zero:

G(𝑛)
𝑡∑︁
𝑖=1

𝛽𝑡−𝜏W(𝑛)𝜏 W(𝑛)𝜏

⊤
=

𝑡∑︁
𝑖=1

𝛽𝑡−𝜏Y(𝑛)𝜏 W(𝑛)𝜏

⊤
. (7.16)

From that, we can obtain G(𝑛)𝑡 in the recursive way as follows:

Let us denote S(𝑛)𝑡 =
∑𝑡
𝜏=1

𝛽𝑡−𝜏W(𝑛)𝜏 W(𝑛)𝜏

⊤
and R(𝑛)𝑡 =

∑𝑡
𝜏=1

𝛽𝑡−𝜏Y(𝑛)𝜏 W(𝑛)𝜏

⊤
.

The two matrices R(𝑛)𝑡 and S(𝑛)𝑡 can be updated recursively:

S(𝑛)𝑡 = 𝛽S(𝑛)
𝑡−1
+W(𝑛)𝑡 W(𝑛)𝑡

⊤
, (7.17)

R(𝑛)𝑡 = 𝛽R(𝑛)
𝑡−1
+ X̄(𝑘)𝑡 W(𝑛)𝑡

⊤
. (7.18)

Therefore, (7.16) can be rewritten as

G(𝑛)S(𝑛)𝑡 = 𝛽R(𝑛)
𝑡−1
+ Y(𝑛)𝑡 W(𝑛)𝑡

⊤

= 𝛽G(𝑛)
𝑡−1

S(𝑛)
𝑡−1
+ Y(𝑛)𝑡 W(𝑛)𝑡

⊤

= G(𝑛)
𝑡−1

S(𝑛)𝑡 +
(
Y(𝑛)𝑡 − G

(𝑛)
𝑡−1

W(𝑛)𝑡

)
W(𝑛)𝑡

⊤
. (7.19)

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 251

Let the residual matrix 𝚫
(𝑛)
𝑡 and coefficient matrix V(𝑛)𝑡 be

𝚫
(𝑛)
𝑡 = Y(𝑛)𝑡 − G

(𝑛)
𝑡−1

W(𝑛)𝑡 , (7.20)

V(𝑛)𝑡 = W(𝑛)𝑡

⊤ (
S(𝑛)𝑡

)−1

. (7.21)

We obtain a simple rule for updating G(𝑛)𝑡 as follows

G(𝑛)𝑡 = G(𝑛)
𝑡−1
+ 𝚫(𝑛)𝑡 V(𝑛)𝑡 . (7.22)

After that, the TT-core G
(𝑛)
𝑡 will be derived from reshapingG(𝑛)𝑡 into a 3-way

tensor of size 𝑟𝑛−1 × 𝐼𝑛 × 𝑟𝑛 .
We also note that when dealing with large-scale and high-rank tensors

(i.e. 𝑟𝑛 ≈ 𝐼𝑛), TT-FOA can be sped up by using its stochastic approximation.

We refer to this method as the stochastic TT-FOA. Particularly, the gradient

∇𝑓 (G(𝑛)) can be approximated by the instantaneous gradient of the last sum-

mand of 𝑓 (G(𝑛)). Thus, S(𝑛)𝑡 can be computed by

S(𝑛)𝑡 ≃W(𝑛)𝑡 (W
(𝑛)
𝑡)⊤. (7.23)

Accordingly, the matrix V(𝑛)𝑡 in (7.21) can be derived directly from the right

inverse of W(𝑛)𝑡 . As a result, the stochastic TT-FOA not only skips several

operations, but also saves a memory storage of O(𝑟 2

𝑛−1
𝑟 2

𝑛) for storing S(𝑛)𝑡 at

time 𝑡 . However, the stochastic approximation achieves a lower convergence

rate than the original TT-FOA, see Fig. 7.7 for an illustration.

7.2.2.3 Computational Complexity and Memory Storage Analysis

For convenience of the analysis, we assume that the fixed dimensions of the

tensor are equal to 𝐼 while its TT-rank is rTT = [𝑟, 𝑟, . . . , 𝑟]. In terms of com-

putational complexity, TT-FOA first requires O(|Ω |𝑟 2) flops for computing

g(𝑁)𝑡 by using the randomized LS method at time 𝑡 . The cost for updating

the 𝑘-th TT-core, G
(𝑛)
𝑡 , comes from matrix-matrix products except an in-

verse operation for S(𝑛)𝑡 , hence it costs O(𝐼𝑁−1𝑟 2) flops in general. It is due to

that the matrix S(𝑛)𝑡 is of size 𝑟 2 × 𝑟 2
, thus the computation of (S(𝑛)𝑡)−1

is not

expensive and independent of the tensor dimension. Therefore, the overall

computational complexity is O(𝐼𝑁−1𝑟 2). In term of memory storage, TT-FOA

does not require to save the observation data at each time, it totally costs

O
(
(𝑁 − 1) (𝐼𝑟 2 + 𝑟 4)

)
words of memory for storing 𝑛 − 1 TT-cores and 𝑁 − 1

matrices S(𝑛)𝑡 . When the stochastic TT-FOA is applied, the memory storage

is only O
(
(𝑁 − 1)𝐼𝑟 2

)
words of memory.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 252

7.3 Streaming Tensor-TrainDecompositionwith
Missing Data

In this subsection, we propose a novel adaptive algorithm called ATT (which

stands for Adaptive Tensor-Train) for decomposing high-order incomplete

streaming tensorswith time under the tensor-train format. By utilizing the re-

cursive least-squares method in adaptive filtering, ATT minimizes effectively

a weighted least-squares objective function accounting for both missing val-

ues and time-variation constraints on the underlying tensor-train cores. The

proposed ATT algorithm is scalable, effective, and technically adept at es-

timating low-rank components of streaming tensors from noisy, imperfect,

and incomplete observations as well as tracking their time variation in non-

stationary environments. Besides, ATT can support parallel and distributed

computing. To the best of our knowledge, ATT is the first TT algorithmwhich

is capable of dealingwith time-dependent streaming tensorswithmissing val-

ues.

7.3.1 Problem Formulation

In this work, we consider the streaming tensor-train decomposition of an 𝑁 -

th order incomplete streaming tensor X𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×𝐼𝑡𝑁 fixing all but the

last time (temporal) dimension 𝐼 𝑡
𝑁
. Particularly, X𝑡 is derived from appending

the incoming stream Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×𝑊
(with𝑊 ≥ 1) to the last obser-

vation X𝑡−1 along the time dimension, i.e., X𝑡 = X𝑡−1 ⊞𝑁 Y𝑡 with 𝐼 𝑡
𝑁

=

𝐼 𝑡−1

𝑁
+𝑊 .We suppose that X𝑡 is generated under the following model:

Y𝑡 = P𝑡 ⊛
(
L𝑡 + N𝑡

)
. (7.24)

Here, P𝑡 is a binary (mask) tensor, N𝑡 is a Gaussian noise tensor, and both

tensors are of the same size with X𝑡 . The low-rank component L𝑡 of X𝑡 has

the form

L𝑡 = G
(1)
𝑡 ×1

2
G
(2)
𝑡 ×1

3
· · · ×1

𝑁 G(𝑁)𝑡 , (7.25)

where G
(𝑛) ∈ R𝑟𝑛−1×𝐼𝑛×𝑟𝑛

for 𝑛 = 1, 2, . . . , 𝑁 with 𝑟0 = 𝑟𝑁 = 1 is the 𝑛-th TT-

core (the first and last TT-cores are indeed matrices); [𝑟1, 𝑟2, . . . , 𝑟𝑁−1] is the
TT-rank; and G(𝑁)𝑡 ∈ R𝑟𝑁 −1×𝑊

contains the last𝑊 columns of the temporal

TT-core G
(𝑁)
𝑡 , i.e., G

(𝑁)
𝑡 =

[
G
(𝑁)
𝑡−1

�� G(𝑁)𝑡

]
.

Conventionally, TT-cores

{
G
(𝑁)
𝑡 }𝑁𝑛=1

can be obtained from:

{G (𝑛)𝑡 }𝑁𝑛=1
= argmin

{G (𝑛) }𝑁
𝑛=1

 ˆP𝑡 ⊛
(
X𝑡 − G

(1) ×1

2
G
(2) ×1

3
· · · ×1

𝑁 G
(𝑁)

)

2

𝐹
, (7.26)

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 253

where
ˆP𝑡 is the observation mask of the underlying tensor X𝑡 . In online

settings, retaking the batch TT methods to solve (7.26) becomes inefficient

due to inherent time-variation and non-stationarity of data streams as well as

their high complexity in both computation and storage cost. Therefore, we

aim to develop a low cost and effective tracker to estimate the TT-cores of X𝑡

in time.

Specifically, we propose tominimize the following exponentiallyweighted

least-squares objective function, instead of (7.26):

{G (𝑛)𝑡 }𝑁𝑛=1
= argmin

{G (𝑛) }𝑁
𝑛=1

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P𝜏 ⊛

(
Y𝜏 − G

(1) ×1

2
· · · ×1

𝑁−1
G
(𝑁−1)

×1

𝑁 G(𝑁)𝜏

)

2

𝐹
+ 𝜌

𝑁−1∑︁
𝑛=1

G (𝑛) − G
(𝑛)
𝑡−1

2

𝐹
, (7.27)

where 𝛽 ∈ (0, 1] is a forgetting factor aimed at reducing the effect of distant

observations as well as facilitating the tracking process in dynamic environ-

ments; and 𝜌 is a regularization parameter for controlling the time variation

of TT-cores between two consecutive instances. Note that, when 𝛽 = 1 and

𝜌 = 0, the objective function of (7.46) boils down to the batch one of (7.26).

To support our deployment in Section III, we make two mild assumptions

on the data model: TT-cores {G (𝑛) }𝑁−1

𝑛=1
may either be static or vary slowly

with time, i.e., G
(𝑛)
𝑡 ≃ G

(𝑛)
𝑡−1

; and TT-rank is supposed to be known.

7.3.2 Proposed Method

In this section, we propose an adaptivemethod calledATT for adaptive tensor-

train decomposition with missing data. Thanks to the block-coordinate de-

scent (BCD) framework, we particularly decompose (7.46) into twomain stages:

first, update the temporal G
(𝑁)
𝑡 given old estimations

{
G
(𝑛)
𝑡−1

}𝑁−1

𝑛=1
; and sec-

ond, estimate the non-temporal G
(𝑛)
𝑡 given G

(𝑁)
𝑡 and remaining TT-cores,

for 𝑛 = 1, 2, . . . , 𝑁 − 1. In stage 1, we apply the well-known regularized least-

squaresmethod for estimatingG
(𝑁)
𝑡 . An elegant recursive least-squares (RLS)

adaptive filter is specifically developed to update the non-temporal TT-cores

{G (𝑛)𝑡 }𝑁−1

𝑛=1
in an effective way. Main steps of the proposed ATT method are

summarized in Algorithm 10.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 254

Input: Streams {P𝑡 ⊛ Y𝑡 }∞𝑡=1
, P𝑡 , Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×𝑊

, TT-rank rTT =

[𝑟1, 𝑟2, . . . , 𝑟𝑁−1], forgetting factor 0 < 𝛽 ≤ 1, regularized parameters 𝜌, 𝜆 > 0.

Initialization: {G (𝑛)
0
}𝑁−1

𝑛=1
are initialized at random, {S(𝑛)

0
}𝑁−1

𝑛=1
= 0 and

{𝚫G
(𝑛)
0
}𝑁−1

𝑛=1
= 0.

Main Program:

for 𝑡 = 1, 2, . . . do

Stage 1: Estimate the temporal TT-core G
(𝑁)
𝑡

H𝑡−1 = G
(1)
𝑡−1
×1

2
· · · ×1

𝑁−1
G
(𝑁−1)
𝑡−1

H𝑡−1 = reshape
{
H𝑡−1, [𝐼1𝐼2 . . . 𝐼𝑁−1, 𝑟𝑁−1]

}
for 𝑖 = 1, 2, . . . ,𝑊 do

y𝑡,𝑖 = vec
{
Y𝑡 (:, . . . , :, 𝑖)

}
P̄𝑡,𝑖 = diag

{
P𝑡 (:, . . . , :, 𝑖)

}
G(𝑁)𝑡 (:, 𝑖) =

(
H⊤
𝑡−1

P̄𝑡,𝑖H𝑡−1 + 𝜆I𝑟𝑁 −1

)−1H⊤
𝑡−1

P̄𝑡,𝑖y𝑡,𝑖
𝜹y𝑡,𝑖 = P̄𝑡,𝑖

(
y𝑡,𝑖 − H𝑡−1G

(𝑁)
𝑡 (:, 𝑖)

)
𝚫Y𝑡,𝑖 = reshape

{
𝜹y𝑡,𝑖 , [𝐼1, 𝐼2, . . . , 𝐼𝑁−1, 1]

}
end

G
(𝑁)
𝑡 =

[
G
(𝑁)
𝑡−1

G(𝑁)𝑡

]
𝚫Y𝑡 = 𝚫Y𝑡,1 ⊞𝑁 𝚫Y𝑡,2 ⊞𝑁 · · · ⊞𝑁 𝚫Y𝑡,𝑊

Stage 2: Estimate the non-temporal TT-cores

{
G
(𝑛)
𝑡

}𝑁−1

𝑛=1

for 𝑛 = 1, 2, . . . , 𝑁 − 1 do

A
(𝑛)
𝑡−1

= G
(1)
𝑡−1
×1

2
· · · ×1

𝑛−1
G
(𝑛−1)
𝑡−1

A(𝑛)
𝑡−1

= reshape
{
A
(𝑛)
𝑡−1

, [𝑟𝑛−1, 𝐼1𝐼2 . . . 𝐼𝑛−1]
}

B
(𝑛)
𝑡 = G

(𝑛+1)
𝑡−1

×1

𝑛+2 . . . G
(𝑁−1)
𝑡−1

×1

𝑁
G(𝑁)𝑡

B(𝑛)𝑡 = reshape
{
B
(𝑛)
𝑡 , [𝑟𝑛, 𝐼𝑛+1𝐼𝑛+2 . . . 𝐼𝑁−1]

}
W(𝑛)𝑡 = B(𝑛)𝑡 ⊗ A(𝑛)

𝑡−1

S(𝑛)𝑡 = 𝛽S(𝑛)
𝑡−1
+W(𝑛)𝑡 (W

(𝑛)
𝑡)⊤

𝚫G(𝑛)𝑡 =

((
P(𝑛)𝑡 ⊛ 𝚫Y(𝑛)𝑡

) (
W(𝑛)𝑡

)⊤ + 𝛽𝜌𝚫G(𝑛)
𝑡−1

) (
S(𝑛)𝑡 + 𝜌I𝑟𝑛−1𝑟𝑛

)−⊤
G(𝑛)𝑡 = G(𝑛)

𝑡−1
+ 𝚫G(𝑛)𝑡

G
(𝑛)
𝑡 = reshape

{
G(𝑛)𝑡 , [𝑟𝑛−1, 𝐼𝑛, 𝑟𝑛]

}
end

Stage 3 (Optional): Re-estimate G
(𝑁)
𝑡 with updated

{
G
(𝑛)
𝑡

}𝑁−1

𝑛=1
as in Stage

1.

end

Output: TT-cores

{
G
(𝑛)
𝑡

}𝑁
𝑛=1

.

Algorithm 10: ATT - Adaptive Tensor-Train Decomposition

7.3.2.1 Estimation of the temporal TT-core

On the arrival of Y𝑡 , we obtain G
(𝑁)
𝑡 from

G(𝑁)𝑡 = argmin

G(𝑁)

P𝑡 ⊛
(
Y𝑡 −H𝑡−1 ×1

𝑁 G(𝑁)
)

2

𝐹
+ 𝜆

G(𝑁)

2

𝐹
, (7.28)

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 255

where H𝑡−1 = G
(1)
𝑡−1
×1

2
· · · ×1

𝑁−1
G
(𝑁−1)
𝑡−1

and 𝜆 > 0 is a small regularized

parameter. Here, the first term of (7.28) is aimed at minimizing the residual

error between observation and estimation for 𝑡-th temporal slice, while the

introduction of 𝜆∥G(𝑁) ∥2
𝐹
is for avoiding the ill-posed computation in prac-

tice. Particularly, we can rewrite (7.28) as follows

G(𝑁)𝑡 = argmin

G(𝑁)

P𝑡 ⊛ (
Y𝑡 − H𝑡−1G(𝑁)

)

2

2

+ 𝜆

G(𝑁)

2

𝐹
, (7.29)

where Y𝑡 , P𝑡 ∈ R𝐼1 ...𝐼𝑁 −1×𝑊
, andH𝑡−1 ∈ R𝐼1 ...𝐼𝑁 −1×𝑟𝑁 −1

are the unfolding matri-

ces of Y𝑡 , P𝑡 and H𝑡−1, respectively. Furthermore, (7.29) can be decomposed

into𝑊 subproblems w.r.t.𝑊 columns of G(𝑁) :

G(𝑁)𝑡 (:, 𝑖) = argmin

g𝑖

P̄𝑡,𝑖 (y𝑡,𝑖 − H𝑡−1g𝑖
)

2

2

+ 𝜆

g𝑖

2

2
. (7.30)

where y𝑡,𝑖 = Y𝑡 (:, 𝑖) and P̄𝑡,𝑖 = diag{P𝑡 (:, 𝑖)}. The closed-form solution of

the regularized least-squares (7.48) can be given by

G(𝑁)𝑡 (:, 𝑖) =
(
H⊤𝑡−1

P̄𝑡,𝑖H𝑡−1 + 𝜆I𝑟𝑁 −1

)−1

H⊤𝑡−1
P̄𝑡,𝑖y𝑡,𝑖 . (7.31)

Then, the temporal TT-coreG
(𝑁)
𝑡 is simply updated asG

(𝑁)
𝑡 =

[
G
(𝑁)
𝑡−1

��G(𝑁)𝑡

]
.

Note that, we can re-updateG(𝑁)𝑡 in the sameway abovewhen other TT-cores

{G (𝑛)𝑡 }𝑁−1

𝑛=1
are updated.

7.3.2.2 Estimation of the non-temporal TT-cores

We update {G (𝑛) }𝑁−1

𝑛=1
by minimizing

G
(𝑛)
𝑡 = argmin

G (𝑛)

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P𝜏 ⊛

(
Y𝜏 −A

(𝑛)
𝑡−1
×1

𝑛 G
(𝑛) ×1

𝑛+1 B
(𝑛)
𝜏

)

2

𝐹

+ 𝜌

G (𝑛) − G

(𝑛)
𝑡−1

2

𝐹
, (7.32)

where A
(𝑛)
𝑡−1

= G
(1)
𝑡−1
×1

2
· · · ×1

𝑛−1
G
(𝑛−1)
𝑡−1

and B
(𝑛)
𝜏 = G

(𝑛+1)
𝑡−1

×1

𝑛+2 · · · ×1

𝑁−1

G
(𝑁−1)
𝑡−1

×1

𝑁
G(𝑁)𝜏 . For a better interpretation, we further recast (7.32) as

G(𝑛)𝑡 = argmin

G(𝑛)

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P(𝑛)𝜏

⊛
(
Y(𝑛)
𝜏
− G(𝑛)W(𝑛)𝜏

)

2

𝐹
+ 𝜌

G(𝑛) − G(𝑛)𝑡−1

2

𝐹
,

(7.33)

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 256

whereG(𝑛)𝑡 = reshape
{
G
(𝑛)
𝑡 , [𝐼𝑛, 𝑟𝑛−1𝑟𝑛]

}
; P(𝑛)
𝜏
,Y(𝑛)
𝜏

are themode-𝑛 unfold-

ing matrices of P𝜏 and Y𝜏 ; W
(𝑛)
𝜏 = B(𝑛)𝜏 ⊗ A(𝑛)

𝑡−1
where

A(𝑛)
𝑡−1

= reshape
{
A
(𝑛)
𝑡−1
, [𝑟𝑛−1, 𝐼1𝐼2 . . . 𝐼𝑛−1]

}
(7.34)

B(𝑛)𝜏 = reshape
{
B
(𝑛)
𝑡 , [𝑟𝑛, 𝐼𝑛+1𝐼𝑛+2 . . . 𝐼𝑁−1]

}
(7.35)

Similar to the update of G(𝑁)𝑡 in the first stage, we can update indepen-

dently each row g(𝑛)𝑡,𝑚 of G(𝑛)𝑡 as follows:

g(𝑛)𝑡,𝑚 = argmin

g(𝑛)𝑚

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P̄(𝑛)𝜏,𝑚

(
y(𝑛)𝜏,𝑚 − g(𝑛)𝑚 W(𝑛)𝜏

)⊤

2

2

+ 𝜌

g(𝑛)𝑚 − g(𝑛)

𝑡−1,𝑚

2

2

,

(7.36)

where y(𝑛)𝜏,𝑚 = Y(𝑛)
𝜏
(𝑚, :) and P̄(𝑛)𝜏,𝑚 = diag

{
P(𝑛)
𝜏
(𝑚, :)

}
.

Specifically, g(𝑛)𝑡,𝑚 can be derived from setting the gradient of the function

in (7.36) to zero:(
𝜌I𝑟𝑛−1𝑟𝑛 +

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏W(𝑛)𝜏 P̄(𝑛)𝜏,𝑚

(
W(𝑛)𝜏

)⊤) (g(𝑛)𝑚

)⊤
= 𝜌

(
g(𝑛)
𝑡−1,𝑚

)⊤ + 𝑡∑︁
𝜏=1

𝛽𝑡−𝜏W(𝑛)𝜏 P̄(𝑛)𝜏,𝑚

(
y(𝑛)𝜏,𝑚

)⊤
. (7.37)

The closed-form solution of (7.37) is then given by

g(𝑛)𝑡,𝑚 =

[(
S(𝑛)𝑡,𝑚 + 𝜌I𝑟𝑛−1𝑟𝑛

)−1
(
d(𝑛)𝑡,𝑚 + 𝜌

(
g(𝑛)
𝑡−1,𝑚

)⊤)]⊤
, (7.38)

where S(𝑛)𝑡,𝑚 and d(𝑛)𝑡,𝑚 can be recursively updated as

S(𝑛)𝑡,𝑚 = 𝛽S(𝑛)
𝑡−1,𝑚

+W(𝑛)𝑡 P̄(𝑛)𝑡,𝑚

(
W(𝑛)𝑡

)⊤
(7.39)

d(𝑛)𝑡,𝑚, = 𝛽d
(𝑛)
𝑡−1,𝑚

+W(𝑛)𝑡 P̄(𝑛)𝑡,𝑚

(
y(𝑛)𝑡,𝑚

)⊤
. (7.40)

After doing some simple calculations, we can rewrite (7.38) as

g(𝑛)𝑡,𝑚 = g(𝑛)
𝑡−1,𝑚

+
(
𝜹y(𝑛)𝑡,𝑚 P̄

(𝑛)
𝑡,𝑚

(
W(𝑛)𝑡

)⊤ + 𝛽𝜌𝜹g(𝑛)
𝑡−1,𝑚

) (
S(𝑛)𝑡,𝑚 + 𝜌I𝑟𝑛−1𝑟𝑛

)−⊤
, (7.41)

where 𝜹y(𝑛)𝑡,𝑚 = P̄(𝑛)𝑡,𝑚

(
y(𝑛)𝑡,𝑚 − g(𝑛)

𝑡−1,𝑚
W(𝑛)𝑡

)⊤
and 𝜹g(𝑛)

𝑡−1,𝑚
= g(𝑛)

𝑡−1,𝑚
− g(𝑛)

𝑡−2,𝑚
.

Accordingly, a recursive rule with a lower space complexity for updating the

whole matrix G(𝑛)𝑡 at the same time can be given by

G(𝑛)𝑡 = G(𝑛)
𝑡−1
+

((
P(𝑛)𝑡 ⊛ 𝚫Y(𝑛)𝑡

) (
W(𝑛)𝑡

)⊤ + 𝜌𝚫G(𝑛)
𝑡−1

) (
S(𝑛)𝑡 + 𝜌I𝑟𝑛−1𝑟𝑛

)−⊤
,

(7.42)

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 257

where 𝚫Y(𝑛)𝑡,𝑚 = Y(𝑛)𝑡 − G
(𝑛)
𝑡−1

W(𝑛)𝑡 and 𝚫G(𝑛)
𝑡−1

= G(𝑛)
𝑡−1
− G(𝑛)

𝑡−2
.

Then, we simply set G
(𝑛)
𝑡 = reshape

{
G(𝑛)𝑡 , [𝑟𝑛−1, 𝐼𝑛, 𝑟𝑛]

}
. The rule (7.42)

also suggests that we can incrementally update {G (𝑛)𝑡 }𝑁−1

𝑛=1
in parallel with-

out disrupting other each. In other words, ATT can support parallel and dis-

tributed computing.

7.3.2.3 Complexity Analysis

For brevity, we assume that 𝐼𝑛 = 𝐼 and 𝑟𝑛 = 𝑟 for all 𝑛 = 1, 2, . . . , 𝑁 − 1. At

time 𝑡 , ATT requires a cost of O(𝑊 |Ω𝑡 |𝑟 2) flops for updatingG(𝑁)𝑡 where |Ω𝑡 |
denotes the number of observed data. Most of operations for updating G

(𝑛)
𝑡

are matrix-matrix products except an inverse operation of a 𝑟 2 × 𝑟 2
matrix.

Thus, ATT requires an extra cost of O
(
(𝑁 − 1)𝐼𝑁−1𝑟 4

)
flops. The overall

complexity of ATT is O
(
𝑟 2

max

{
(𝑁 − 1)𝐼𝑁−1𝑟 2,𝑊 |Ω𝑡 |

})
flops. In term of

memory storage, ATT needs O
(
(𝑁 − 1) (2𝐼𝑟 2 + 𝑟 4)

)
words of memory for

storing

{
G
(𝑛)
𝑡

}𝑁−1

𝑛=1
,

{
𝚫G

(𝑛)
𝑡

}𝑁−1

𝑛=1
, and

{
S(𝑛)𝑡

}𝑁−1

𝑛=1
.

Compared to batch TT methods (e.g., TT-SVD [16] and TT-HSVD [363]),

the cost of ATT is much cheaper as it is independent of the temporal dimen-

sion. Besides, its computation involves only cheap matrix-matrix products

and inverse operations of small matrices, and hence, it avoids the expen-

sive computation of SVD on the tensor’s unfolding matrices. Compared to

TT-FOA that is the first and only adaptive algorithm for streaming TT de-

composition in the literature, ATT shares the same computational and space

complexity.

7.4 Streaming Tensor-TrainDecompositionwith
Sparse Outliers

In this paper, we introduce a new tensor-train method for factorizing incom-

plete high-order streaming tensors possibly corrupted by sparse outliers. The

proposed method is referred to as ROBOT which stands for ROBust Online

Tensor-Train decomposition. ROBOT involves two well-known optimization

methods: block-coordinate descent (BCD) and recursive least-squares (RLS).

Thanks to the BCD framework, ROBOT decomposes the main optimization

into two stages: (i) online outlier rejection and (ii) tracking of TT-cores in

time. In the former stage, we apply an effective ADMM solver to estimate

the last (temporal) TT-core and sparse outliers living in observations. In the

latter stage, we present an efficient RLS solver to minimize an exponential

weighted least-squares objective function accounting for missing entries and

time variations of TT-cores. Technically, ROBOT is capable of estimating the

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 258

Figure 7.3: Temporal slice Y𝑡 with missing data and outliers.

low-rank components of the underlying tensor from imperfect streams (i.e.,

due to noise, outliers, and missing data) and tracking their time variation in

dynamic environments. To the best of our knowledge, ROBOT is the first

streaming TT decomposition robust to sparse outliers, missing data, and time

variation.

7.4.1 Problem Formulation

In this paper, we study the robust adaptive tensor-train decomposition of a𝑁 -

order streaming tensor X𝑡 in the presence of both sparse outliers and missing

data. Without loss of generality, we suppose the last dimension of X𝑡 is tem-

poral, while the others remain constant with time, i.e., X𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×𝐼𝑡𝑁 .
Specifically, at time 𝑡 , X𝑡 is obtained by concatenating the incoming data

stream Y𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁 −1×𝑊
(with 𝑊 ≥ 1) to the old observation X𝑡−1

along the temporal dimension 𝐼 𝑡
𝑁
, i.e.,

X𝑡 = X𝑡−1 ⊞𝑁 Y𝑡 and 𝐼 𝑡𝑁 = 𝐼 𝑡−1

𝑁 +𝑊 . (7.43)

The temporal slice Y𝑡 is supposed to have the form

Y𝑡 = P𝑡 ⊛
(
L𝑡 + O𝑡 + N𝑡

)
, (7.44)

see Fig. 7.3 for an illustration. Particularly, P𝑡 is a binary mask tensor, O𝑡 is a

sparse outlier tensor, N𝑡 is a Gaussian noise tensor, and they share the same

size as Y𝑡 . The low-rank component L𝑡 of Y𝑡 is expressed as

L𝑡 = G
(1)
𝑡 ×1

2
G
(2)
𝑡 ×1

3
· · · ×1

𝑁 G(𝑁)𝑡 , (7.45)

where G
(𝑛)
𝑡 ∈ R𝑟𝑛−1×𝐼𝑛×𝑟𝑛

for 𝑛 = 1, 2, . . . , 𝑁 with 𝑟0 = 𝑟𝑁 = 1 is the 𝑛-th

TT-core; [𝑟1, 𝑟2, . . . , 𝑟𝑁−1] is called TT-rank; and G(𝑁)𝑡 ∈ R𝑟𝑁 −1×𝑊
contains

the last𝑊 columns of G
(𝑁)
𝑡 .

In online settings, we propose to minimize the following objective func-

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 259

tion:

argmin

{G (𝑛) }𝑁
𝑛=1

,O

𝑡∑︁
𝑘=1

𝛽𝑡−𝑘
(

P𝑘 ⊛

(
G
(1) ×1

2
· · · ×1

𝑁−1
G
(𝑁−1) ×1

𝑁 G(𝑛)𝜏 + O𝑘 − Y𝑘

)

2

𝐹

+ 𝜌1

O𝑘

1

)
+ 𝜌2

𝑁−1∑︁
𝑛=1

G (𝑛) − G
(𝑛)
𝑡−1

2

𝐹
. (7.46)

Here, 𝛽 ∈ (0, 1] plays the role of a forgetting factor in adaptive filter theory

which aims to reduce the impact of distant observations as well as deal with

nonstationary environments [364]. The ℓ1-norm enforces the sparsity on O

(the outliers), while the last regularization term of (7.46) is to control the

time variation of TT-cores between two consecutive instances. In addition,

we make two mild assumptions on the data model to support our algorithm

development in Section III: TT-cores {G (𝑛) }𝑁−1

𝑛=1
may either be static or vary

slowlywith time, i.e., G
(𝑛)
𝑡 ≃ G

(𝑛)
𝑡−1

; and the TT-rank is supposed to be known.

7.4.2 Proposed Method

In this section, we propose an adaptive method called ROBOT (which stands

for ROBust Online Tensor-Train) for factorizing tensors derived from data

streams in the presence of sparse outliers and missing data. Particularly, we

decompose the main problem (7.46) into two stages:

■ Stage 1: update G
(𝑁)
𝑡 and O𝑡 given

{
G
(𝑛)
𝑡−1

}𝑁−1

𝑛=1
;

■ Stage 2: estimate G
(𝑛)
𝑡 given G

(𝑁)
𝑡 , O𝑡 , and the remaining TT-cores,

for 𝑛 = 1, 2, . . . , 𝑁 − 1.

7.4.2.1 Estimation of the temporal TT-core and Outlier

At each time 𝑡 , we estimate G(𝑁)𝑡 and O𝑡 by solving{
G(𝑁)𝑡 , O𝑡

}
= argmin

G(𝑁) ,O

P𝑡 ⊛
(
H𝑡−1 ×1

𝑁 G(𝑁) + O − Y𝑡

)

2

𝐹
+ 𝜌1

O

1

+ 𝜌2

G(𝑁)

2

𝐹
, (7.47)

where H𝑡−1 = G
(1)
𝑡−1
×1

2
· · · ×1

𝑁−1
G
(𝑁−1)
𝑡−1

and the term 𝜌2∥G(𝑁) ∥2𝐹 is to miti-

gate ill matrix conditions. Interestingly, we exploit the fact that (7.47) can be

decomposed into𝑊 sub-problems w.r.t.𝑊 columns of G(𝑁)𝑡 , as follows:

argmin

g𝑖 ,o𝑖

P𝑡,𝑖 (H𝑡−1g𝑖 + o𝑖 − y𝑡,𝑖
)

2

2

+ 𝜌1

o𝑖

1
+ 𝜌2

g𝑖

2

2
. (7.48)

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 260

Here, g𝑖 , o𝑖 , and y𝑡,𝑖 are, respectively, the 𝑖-th column ofG(𝑁) , the two unfold-
ing matrices of O and Y𝑡 ; the mask P

𝑡,𝑖
= diag

{
P(𝑁)𝑡 (𝑖, :)

}
; while the matrix

H𝑡−1 ∈ R𝐼1 ...𝐼𝑁 −1×𝑟𝑁 −1
is a matricization of H𝑡−1.

Since both ℓ1-norm and ℓ2-norm are convex, (7.48) can be effectively min-

imized by several methods, e.g., block coordinate descent (BCD) [365] and

alternating direction method of multipliers (ADMM) [114]. In this work, we

adopt the ADMM solver introduced in our companion work on robust sub-

space tracking [25]. Specifically, the update rule at the 𝑗-th iteration of the

solver is given by

g𝑗 =
(
H⊤𝑡−1

P
𝑡,𝑖
H𝑡−1 + 𝜌2I𝑟𝑁 −1

)−1

H⊤𝑡−1
P
𝑡,𝑖

(
y𝑡,𝑖 − o𝑗−1 + e𝑗−1

)
,

z𝑗 = P
𝑡,𝑖

(
H𝑡−1g𝑗 + s𝑗−1 − y𝑡,𝑖

)
,

e𝑗 =
𝜆1

1 + 𝜆1

z𝑗 + 1

1 + 𝜆1

S
1+ 1

𝜆
1

(
z𝑗

)
,

u𝑗 =
1

1 + 𝜆2

(
P
𝑡,𝑖

(
y𝑡,𝑖 − H𝑡−1g𝑗

))
− 𝜆2(o𝑗−1 − r𝑗−1),

o𝑗 = S𝜌1/𝜆2

(
u𝑗 + r𝑗−1

)
,

r𝑗 = r𝑗−1 + u𝑗 − s𝑗 .

Here,

{
z𝑗 , e𝑗 , u𝑗 , r𝑗

}
are dummy variables aiming to accelerate the update ini-

tialized as zeros; the augmented Lagrangian parameters 𝜆1 and 𝜆2 can be cho-

sen in the range [1, 1.8]; and S𝛼 (.) is the soft-thresholding operator defined

as S𝛼 (𝑥) = max(0, 𝑥 − 𝛼) − max(0,−𝑥 − 𝛼). We refer the readers to [25] for

further details. Note that since (7.48) is a biconvex minimization problem, and

thus, we can apply any other existing proved algorithm to obtain its optimal

solution [366].

The temporal TT-core G
(𝑁)
𝑡 is simply obtained by G

(𝑁)
𝑡 = [G (𝑁)

𝑡−1
G(𝑁)𝑡] .

In addition, we can re-updateG(𝑁)𝑡 in the sameway as above when others TT-

cores {G (𝑛)𝑡 }𝑁−1

𝑛=1
are updated. Furthermore, after obtaining the outlier O𝑡 , we

can accelerate the tracking ability of ROBOT by re-updating the observation

mask P𝑡 as follows[
P̃𝑡

]
𝑖1𝑖2 ...𝑖𝑁

=

{
0, if

[
O𝑡

]
𝑖1𝑖2 ...𝑖𝑁

≠ 0,[
P𝑡

]
𝑖1𝑖2 ...𝑖𝑁

, otherwise.

(7.49)

It is motivated by the following observation: In the literature of robust sub-

space tracking (RST), the outlier rejection step can facilitate the tracking abil-

ity of RST estimators because only “clean" data are involved in the tracking

process [25]. Our stage 2 for tracking the TT-cores can be viewed as an ex-

tended version of RST for high-order streaming tensors, so the outlier rejec-

tion mechanism of (7.49) can improve its performance.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 261

7.4.2.2 Estimation of TT-cores

We estimate {G (𝑛) }𝑁−1

𝑛=1
by minimizing

G
(𝑛)
𝑡 = argmin

G (𝑛)

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P̃𝜏 ⊛

(
A
(𝑛)
𝑡−1
×1

𝑛 G
(𝑛) ×1

𝑛+1 B
(𝑛)
𝜏 − Y𝜏

)

2

𝐹

+ 𝜌2

G (𝑛) − G
(𝑛)
𝑡−1

2

𝐹
, (7.50)

where A
(𝑛)
𝑡−1

= G
(1)
𝑡−1
×1

2
· · · ×1

𝑛−1
G
(𝑛−1)
𝑡−1

and B
(𝑛)
𝜏 = G

(𝑛+1)
𝑡−1

×1

𝑛+2 · · · ×1

𝑁−1

G
(𝑁−1)
𝑡−1

×1

𝑁
G(𝑛)𝜏 while the termO𝑘 is discarded due to outlier rejectionmecha-

nism (7.49), i.e., P̃𝑡 ⊛ (Y𝑡−O𝑡) = P̃𝑡 ⊛Y𝑡 . Particularly, (7.50) can be regarded

as the optimization problem of adaptive TT decomposition from incomplete

observations {Y𝑘 }𝑡𝑘=1
with new binary masks {P̃𝑘 }𝑡𝑘=1

. Accordingly, we can

apply the effective recursive least-squares (RLS) method as proposed in our

work [31] for minimizing (7.50). For the sake of completeness, we describe

here the main steps of the RLS solver and refer the readers to [31] for further

details.

For a better interpretation, we first recast (7.50) as

G(𝑛)𝑡 = argmin

G(𝑛)

𝐼𝑛∑︁
𝑚=1

(𝑡∑︁
𝜏=1

𝛽𝑡−𝜏

P̄(𝑛)𝜏,𝑚

(
g(𝑛)𝑚

(
B(𝑛)𝜏 ⊗ A(𝑛)

𝑡−1

)
− y(𝑛)𝜏,𝑚

)

2

2

+ 𝜌2

g(𝑛)𝑚 − g(𝑛)
𝑡−1,𝑚

2

2

)
, (7.51)

where g(𝑛)𝑚 is the𝑚-th row of G(𝑛) ∈ R𝐼𝑛×𝑟𝑛−1𝑟𝑛
which is the transpose of the

mode-2 unfolding matrix of G
(𝑛)

, P̄𝜏,𝑚 = diag
{
P̃
(𝑛)
𝜏
(𝑚, :)

}
, and

A(𝑛)
𝑡−1

= reshape
{
A
(𝑛)
𝑡−1
, [𝑟𝑛−1, 𝐼1𝐼2 . . . 𝐼𝑛−1]

}
, (7.52)

B(𝑛)𝜏 = reshape
{
B
(𝑛)
𝑡 , [𝑟𝑛, 𝐼𝑛+1𝐼𝑛+2 . . . 𝐼𝑁−1]

}
. (7.53)

Let us denote W(𝑛)𝜏 = B(𝑛)𝜏 ⊗ A(𝑛)
𝑡−1

and

S(𝑛)𝜏,𝑚 =

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏W(𝑛)𝑡 P̄(𝑛)𝑡,𝑚

(
W(𝑛)𝑡

)⊤
, (7.54)

d(𝑛)𝑡,𝑚 =

𝑡∑︁
𝜏=1

𝛽𝑡−𝜏W(𝑛)𝜏 P̄(𝑛)𝜏,𝑚

(
y(𝑛)𝜏,𝑚

)⊤
. (7.55)

At time 𝑡 , we then have

S(𝑛)𝑡,𝑚 = 𝛽S(𝑛)
𝑡−1,𝑚

+W(𝑛)𝑡 P̄(𝑛)𝑡,𝑚

(
W(𝑛)𝑡

)⊤
(7.56)

d(𝑛)𝑡,𝑚, = 𝛽d
(𝑛)
𝑡−1,𝑚

+W(𝑛)𝑡 P̄(𝑛)𝑡,𝑚

(
y(𝑛)𝑡,𝑚

)⊤
. (7.57)

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 262

Setting the gradient of (7.51) to zero results in:

𝐼𝑛∑︁
𝑚=1

(
S(𝑛)𝑡,𝑚 + 𝜌2I𝑟𝑛−1𝑟𝑛

) (
g(𝑛)𝑚

)⊤
=

𝐼𝑛∑︁
𝑚=1

(
d(𝑛)𝑡,𝑚 + 𝜌2

(
g(𝑛)
𝑡−1,𝑚

)⊤)
. (7.58)

Therefore, we can express each row g(𝑛)𝑡,𝑚 of G(𝑛)𝑡 separately as(
S(𝑛)𝑡,𝑚 + 𝜌2I𝑟𝑛−1𝑟𝑛

) (
g(𝑛)𝑡,𝑚

)⊤
= d(𝑛)𝑡,𝑚 + 𝜌2

(
g(𝑛)
𝑡−1,𝑚

)⊤
. (7.59)

Thanks to (7.56) and (7.57), we further recast (7.59) as

g(𝑛)𝑡,𝑚 = g(𝑛)
𝑡−1,𝑚

+
(
𝜹y(𝑛)𝑡,𝑚 P̄

(𝑛)
𝑡,𝑚

(
W(𝑛)𝑡

)⊤ + 𝛽𝜌2𝜹g
(𝑛)
𝑡−1,𝑚

) (
S(𝑛)𝑡,𝑚 + 𝜌2I𝑟𝑛−1𝑟𝑛

)−⊤
,

(7.60)

where 𝜹y(𝑛)𝑡,𝑚 = P̄(𝑛)𝑡,𝑚

(
y(𝑛)𝑡,𝑚 − g(𝑛)

𝑡−1,𝑚
W(𝑛)𝑡

)⊤
and 𝜹g(𝑛)

𝑡−1,𝑚
= g(𝑛)

𝑡−1,𝑚
− g(𝑛)

𝑡−2,𝑚
.

Collecting all rows g(𝑛)𝑡,𝑚 together (for 𝑚 = 1, 2, . . . , 𝐼𝑛), we obtain a simpler

recursive rule as

G(𝑛)𝑡 = G(𝑛)
𝑡−1
+

((
P(𝑛)𝑡 ⊛ 𝚫X(𝑛)𝑡

) (
W(𝑛)𝑡

)⊤ + 𝛽𝜌2𝚫G
(𝑛)
𝑡−1

) (
S(𝑛)𝑡 + 𝜌2I𝑟𝑛−1𝑟𝑛

)−⊤
,

(7.61)

where 𝚫X(𝑛)𝑡,𝑚 = X(𝑛)𝑡 − G(𝑛)
𝑡−1

W(𝑛)𝑡 and 𝚫G(𝑛)
𝑡−1

= G(𝑛)
𝑡−1
− G(𝑛)

𝑡−2
, and S(𝑛)𝑡 =

𝛽S(𝑛)
𝑡−1
+W(𝑛)𝑡

(
W(𝑛)𝑡

)⊤
. To enable the recursive update (7.61), we set𝚫G(𝑛)

0
= 0

and S(𝑛)
0

= 𝛿 (𝑛) I𝑟𝑛−1𝑟𝑛 with 𝛿 (𝑛) > 0.

7.4.2.3 Computational Complexity and Memory Storage

For short, we suppose 𝐼𝑛 = 𝐼 and 𝑟𝑛 = 𝑟 for all 𝑛 = 1, 2, . . . , 𝑁 − 1. In

Stage 1, ROBOT requires a cost of O(𝑊 |Ω𝑡 |𝑟 2) flops for estimating bothG(𝑁)𝑡

and O𝑡 where |Ω𝑡 | denotes the number of observed data in Y𝑡 . In Stage 2,

ROBOT needs a cost of O
(
(𝑁 − 1)𝐼𝑁−1𝑟 4

)
flops for tracking 𝑁 − 1 TT-cores

{G (𝑛)𝑡 }𝑁−1

𝑛=1
. Therefore, the overall complexity of ROBOT is O

(
𝑟 2

max

{
(𝑁 −

1)𝐼𝑁−1𝑟 2,𝑊 |Ω𝑡 |
})

flops. With respect to memory storage, ROBOT requires

O
(
(𝑁 −1) (2𝐼𝑟 2+𝑟 4)

)
words of memory for storing

{
G
(𝑛)
𝑡

}𝑁−1

𝑛=1
,

{
𝚫G

(𝑛)
𝑡

}𝑁−1

𝑛=1
,

and

{
S(𝑛)𝑡

}𝑁−1

𝑛=1
.

7.5 Experiments

In this section, we conduct several experiments on both synthetic and real

data to evaluate the performance of TT-FOA, ATT, and ROBOT for adaptive

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 263

0 100 200 300 400 500

10
-15

10
-10

10
-5

10
0

Figure 7.4: Effect of the forgetting factor 𝛽 on the performance of TT-FOA.

TT decomposition. Experiments are implemented in MATLAB platform and

are available online to facilitate replicability and reproducibility.
1

7.5.1 Performance of TT-FOA

We investigate the tracking ability of TT-FOA with respect to the following

aspects: effect of the forgetting factor 𝜆, effect of the noise level 𝜎 , its perfor-

mance in time-varying environments, and its use for real data.

7.5.1.1 Synthetic Data

We generate streaming 4-way tensors X𝑡 ∈ R𝐼1×𝐼2×𝐼3×𝐼
𝑡
4 of a TT-rank vector

rTT = [𝑟1, 𝑟2, 𝑟3] as follows:

Y𝑡 = G
(1)
𝑡 ×1

2
G
(2)
𝑡 ×1

3
G
(3)
𝑡 ×1

4
g(4)𝑡 + 𝜖N𝑡 ,

where the 3-way tensor Y𝑡 ∈ R𝐼1×𝐼2×𝐼3 is the 𝑡-th slice of X𝑡 ; N𝑡 is a Gaussian

noise tensor of the same size with Y𝑡 and 𝜖 controls the noise level; the last

column g(4)𝑡 of TT-core G
(4)
𝑡 is a random vector living on R𝑟3

space; TT-cores

G
(1)
𝑡 , G

(2)
𝑡 and G

(3)
𝑡 are, respectively, of size 𝐼1 × 𝑟1, 𝑟1 × 𝐼2 × 𝑟2 and 𝑟2 × 𝐼3 × 𝑟3

given by

G
(𝑛)
𝑡 = (1 − 𝜎)G (𝑛)

𝑡−1
+ 𝜎N (𝑛)𝑡 ,

1
https://github.com/thanhtbt/ATT & https://github.com/thanhtbt/ATT-miss &

https://github.com/thanhtbt/ROBOT

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 264

0 100 200 300 400 500

10
-9

10
-6

10
-3

10
0

Figure 7.5: Effect of the noise level 𝜖 on the performance of TT-FOA.

where 𝜎 controls the variation of the TT-cores between two consecutive in-

stances, N
(𝑛)
1
∈ R𝐼1×𝑟1

and N
(𝑛)
𝑡 ∈ R𝑟𝑛−1×𝐼𝑛×𝑟𝑛

are noise tensors whose en-

tries are i.i.d from theGaussian distributionwith zero-mean and unit-variance.

To measure the estimation accuracy, we use the relative error (RE) metric

given by

RE(X𝑡𝑟 , X𝑒𝑠) =

X𝑡𝑟 − X𝑒𝑠

𝐹

X𝑡𝑟

𝐹

, (7.62)

where X𝑡𝑟 (resp. X𝑒𝑠) refers to the true tensor (resp. estimated tensor).

The choice of forgetting factor 𝜆 plays a central role in how fast TT-FOA

converges. Fig. 7.4 shows the experimental results of applying the algorithm

to a static and free-noise tensor whose size is 10 × 12 × 15 × 500 and its TT-

rank is rTT = [2, 3, 5]. We can see that the relative error is minimized when 𝜆

is round 0.7. TT-FOA fails when 𝜆 is close to its infimum or supremum. We

then fix 𝜆 = 0.7 in the next experiments.

To study the effect of noise on the performance of our algorithm, we vary

the value of the noise level 𝜖 and access its estimation on the same tensor

above. The result is shown in Fig. 7.11. When we reduce the noise, relative

error (RE) between the ground truth and estimation degrades gradually and

converges towards a steady state error bound. Note that the convergence rate

of the algorithm is not affected by the noise level but only its estimation error.

We next consider a scenario where TT-cores change slowly with time

and abruptly at instant 𝑡 = 300. Fig. 7.6 shows the performance of TT-FOA

applying to the same free-noise tensor versus the time-varying factor 𝜎 . In

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 265

0 100 200 300 400 500

10
-6

10
-4

10
-2

10
0

Figure 7.6: Effect of the time-varying factor 𝜎 on the performance of TT-FOA

in the case of noise-free.

0 100 200 300 400 500

10
-3

10
-2

10
-1

10
0

10
1

Figure 7.7: Performance of three TT decomposition algorithms in a time-

varying scenario: The noise level 𝜖 = 10
−1

and the time variance factor 𝜎 =

10
−4
.

the same manner to the effect of the noise level, TT-FOA’s estimation ac-

curacy goes down when 𝜎 increases, but converges towards a steady state

error. Fig. 7.7 shows a performance comparison among three TT decompo-

sition algorithms when the value of the noise level 𝜖 and the time-varying

factor 𝜎 are 10
−1

and 10
−4

respectively. The batch algorithm TT-SVD fails

in this time-varying scenario, while TT-FOA and its stochastic version can

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 266

0 500 1000 1500

10
-1

10
0

10
1

Figure 7.8: Track surveillance video: TT-rank rTT = [15, 15] and CP-rank

𝑟CP = 15.

track successfully the variation of the tensor along the time, which yields to

an estimation accuracy very close to the error bound (i.e. steady state error).

The result also indicates that the convergence rate of TT-FOA is faster than

that of its stochastic version. This is probably because the convergence rate

of the stochastic TT-FOA is limited by its noisy/stochastic approximation of

the true gradient.

7.5.1.2 Real Data
In order to provide empirical evidences of applying TT-FOA to real data, we

use a surveillance video sequence
2
, and a functional MRI data

3
. The video

data contains 1546 frames of size 128 × 160, while the fMRI data includes 20

abdominal scans of size 256 × 256 × 14.

The first task is to track surveillance video. We compare TT-FOA against

the two state-of-the-art adaptive CP tensor decompositions, including PARAFAC-

SDT [211] and OLCP [175]. In order to apply these algorithms effectively,

color video frames are converted into grayscale. The CP-rank and TT-rank

are set at 15 and [15, 15] respectively. Moreover, the 100 first video frames

are trained to obtain the good initialization for PARAFAC-SDT and OLCP.

The results indicate that TT-FOA outperforms these adaptive CP decomposi-

tions, as shown in Fig. 7.8 and Fig. 7.9. In particular, PARAFAC-SDT fails to

track video frame while OLCP achieves a worse estimation accuracy than our

2
http://www.changedetection.net/

3
https://github.com/colehawkins/

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 267

(a) Original Frame (b) PARAFAC-SDT

(c) OLCP (d) TT-FOA

Figure 7.9: Reconstructed 1345-th frame.

algorithm.

The second task is to demonstrate the effect of TT-rank rTT on the low-

rank approximation of the fMRI tensor. The abdominal scans are seen as

tensor slices in the online setting. Results of tracking the low-rank component

of the last scan are shown in Fig. 7.10. The estimated low-rank fMRI scan

deviates from its ground truth when the TT-rank decreases, and hence the

relative error increases.

7.5.2 Performance of ATT

We investigate the tracking ability of ATT with respect to the following as-

pects: additive noise effect, and its performance in nonstationary environ-

ments. Its effectiveness for real data is demonstrated with the problem of on-

line video completion in comparison with the state-of-the-art tensor tracking

algorithms.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 268

(a) Grouth Truth (b) RE = 0.077

(c) RE = 0.036 (d) RE = 0.007

Figure 7.10: Effect of TT-rank on the low-rank approximation of fMRI scans:

(a) original MRI scan, (b)-(d) low-rank approximation images for rTT of

[10, 10], [20, 20] and [50, 50] respectively.

7.5.2.1 Experiment Setup

At time 𝑡 , the 𝑡-th incomplete slice Y𝑡 is generated at random under the fol-

lowing model:

Y𝑡 = P𝑡 ⊛
(
G
(1)
𝑡 ×1

2
G
(2)
𝑡 ×1

3
G
(3)
𝑡 ×1

4
g(4)𝑡 + N𝑡

)
. (7.63)

Here, P𝑡 ∈ R𝐼1×𝐼2×𝐼3×1
is a binary tensor whose entries are i.i.d. Bernoulli

random variables with probability 1 − 𝜔miss, i.e., 𝜔miss represents the miss-

ing density of Y𝑡 . Entries of the noise tensor N𝑡 are i.i.d. from N(0, 𝜎2

𝑛).
g(4)𝑡 ∈ R𝑟3×1

is a Gaussian vector of zero-mean and unit-variance. TT-cores

G
(1)
𝑡 , G

(2)
𝑡 , and G

(3)
𝑡 are of size 𝐼1 × 𝑟1, 𝑟1 × 𝐼2 × 𝑟2, and 𝑟2 × 𝐼3 × 𝑟3, respec-

tively. Their time variation is modelled as follows G
(𝑛)
𝑡 = G

(𝑛)
𝑡−1
+ 𝜀V (𝑛)𝑡 , for

𝑛 = 1, 2, 3, where 𝜀 plays a role as the time-varying factor, V
(𝑛)
𝑡 is of the same

size as G
(𝑛)
𝑡 and its entries are also i.i.d from N(0, 1).

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 269

0 250 500 750 1000

10
-6

10
-4

10
-2

10
0

Figure 7.11: Effect of the noise level 𝜎𝑛 on the tracking ability of ATT.

We use the following relative error (RE) metric to evaluate the estimation

accuracy:

RE
(
Y𝑡𝑟 , Y𝑒𝑠

)
=

Y𝑡𝑟 − Y𝑒𝑠

𝐹

Y𝑡𝑟

𝐹

, (7.64)

where Y𝑡𝑟 (resp. Y𝑒𝑠) refers to the true tensor (resp. reconstructed tensor).

7.5.2.2 Effect of the noise level 𝜎𝑛

In this task, we vary the value of 𝜎𝑛 and evaluate the performance of ATT.

Here, we used a static tensor (i.e., 𝜀 = 0) of size 20 × 20 × 20 × 1000 and

rank rTT = [5, 5, 5]. The missing density 𝜔miss was set to 10%. We fixed the

forgetting factor 𝛽 and the two regularized parameters 𝜌, 𝜆 at 0.5, 1, and 1,

respectively. A significant change was also created at 𝑡 = 600 (i.e., we set

𝜖 = 1 when 𝑡 = 600 and 𝜀 = 0 otherwise) to investigate how fast ATT could

converge. The result is illustrated in Fig. 7.11. We can see that the noise level

𝜎𝑛 does not affect the convergence rate of ATT but only its estimation error.

7.5.2.3 Effect of the time-varying factor 𝜀

We next investigate the tracking ability of ATT in nonstationary environ-

ments. Similar to the previous experiment, we also vary the value of 𝜀 and

then evaluate its estimation accuracy. Most of experimental parameters were

kept as above, except the noise level 𝜎𝑛 which was set to 10
−3
. Fig. 7.12 il-

lustrates the performance of ATT versus the value of 𝜀. We can see that the

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 270

0 250 500 750 1000
10

-5

10
-3

10
-1

10
1

Figure 7.12: Effect of the time-varying factor 𝜀 on the tracking ability of ATT.

estimation accuracy of ATT goes down when 𝜀 increases, but converges to-

wards a steady-state error in the similar manner as in the previous case. In-

tuitively, the time-varying factor has an influence on the convergence rate

of tracking algorithms. However, as shown in Fig. 7.12, the value of 𝜀 does

not affect ATT’s convergence rate. This “phenomenon" thus deserves further

investigations.

7.5.2.4 Effect of the missing density 𝜔miss

Here, wemeasure the performance of ATT in the presence of differentmissing

densities. Particularly, the value of𝜔miss was chosen among {20%, 40%, 80%}.
We reused the same 4-order streaming tensor above with 𝜎𝑛 = 𝜀 = 10

−3
.

Fig. 7.13 shows that the number of missing entries in X𝑡 has an impact on

both convergence rate and estimation accuracy of ATT, i.e., the lower the

value of 𝜔miss is, the better performance ATT achieves. However, even with

80% of missing data, ATT is still able to achieve relatively good performance.

7.5.2.5 Online video completion

Three real video sequences are used in this task, including “Lobby", “High-

way", and “Hall". Their sizes are summarized in Table 7.1.

We compare ATT with other online tensor algorithms: TeCPSGD [106],

ACP [30], and ATD [30]. To have a fair comparison, colour video frames were

converted into grayscale ones. The CP-rank, Tucker-rank, and TT-rank were

set to 10, [10, 10, 10], and [10, 10], respectively. The results in Table 7.1 (i.e.,

averaged relative errors) and Fig. 7.14 indicate that ATT provided a competi-

tive video completion performance.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 271

0 250 500 750 1000

10
-4

10
-3

10
-2

10
-1

Figure 7.13: Effect of themissing density𝜔miss on the tracking ability of ATT.

Figure 7.14: The 500-th video frame of “Hall” data: 80% pixels are missing.

7.5.3 Performance of ROBOT

We here evaluate the performance of ROBOT in terms of the following as-

pects: (i) impact of noise, (ii) its tracking ability in nonstationary environ-

ments, (iii) impact of missing observations, (iv) impact of outliers, and (v) its

use for the problem of video background and foreground separation.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 272

Table 7.1: Averaged relative error of adaptive tensor decompositions on in-

complete video sequences.

D
a
t
a
s
e
t

S
i
z
e

M
i
s
s
i
n
g

Online Tensor Completion Methods

TeCPSGD ACP ATD ATT

H
al
l

1
7
4
×

1
4
4
×

×3
5
8
4

20% 0.1351 0.1500 0.1366 0.1264

40% 0.1412 0.1562 0.1370 0.1272

80% 0.1547 0.1868 0.1472 0.1336

Lo
bb

y

1
2
8
×

1
6
0
×

×1
5
4
6

20% 0.1307 0.1320 0.1220 0.1214

40% 0.1327 0.1375 0.1241 0.1223

80% 0.1705 0.2142 0.1432 0.1263

H
ig
hw

ay

3
2
0
×

2
4
0
×

×1
7
0
0

20% 0.2056 0.2204 0.1980 0.1777

40% 0.2119 0.2206 0.2001 0.1836

80% 0.2133 0.2481 0.2089 0.2043

7.5.3.1 Experiment Setup

We follow the problem formulation in Section II to simulate temporal slices

{Y𝑡 }𝑡≥1. In particular, Y𝑡 is randomly generated under the model

Y𝑡 = P𝑡 ⊛
(
L𝑡 + O𝑡 + N𝑡

)
, (7.65)

where L𝑡 = G
(1)
𝑡 ×1

2
G
(2)
𝑡 ×1

3
G
(3)
𝑡 ×1

4
g(4)𝑡 . Here, P𝑡 ∈ R𝐼1×𝐼2×𝐼3×1

is a binary

mask tensor whose entries are obtained by a Bernoulli model with proba-

bility 1 − 𝜔𝑚𝑖𝑠𝑠 (i.e., 𝜔𝑚𝑖𝑠𝑠 represents the missing density). N𝑡 is a Gaus-

sian noise tensor whose entries are i.i.d. from N(0, 𝜎2

𝑛). O𝑡 is a sparse ten-

sor containing outliers whose amplitude is uniformly chosen in the interval

[0, fac-outlier] while their indices (locations) follow another Bernoulli

model with probability𝜔𝑜𝑢𝑡𝑙𝑖𝑒𝑟 . L𝑡 is the low-rank component of Y𝑡 in which

g(4)𝑡 ∈ R𝑟3×1
is a standard normal random vector. At time 𝑡 , TT-cores are var-

ied under the model G
(𝑛)
𝑡 = G

(𝑛)
𝑡−1
+ 𝜀V (𝑛)𝑡 , where 𝜀 denotes the time-varying

factor, V
(𝑛)
𝑡 shares the same size as G

(𝑛)
𝑡 ∈ R𝑟𝑛−1×𝐼𝑛×𝑟𝑛

and its entries are

derived from N(0, 1). At 𝑡 = 0, G
(𝑛)
0

is initialized by a Gaussian distribution

with zero mean and unit variance.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 273

0 250 500 750 1000
10

-9

10
-6

10
-3

10
0

Figure 7.15: Effect of the noise level 𝜎𝑛 on the performance of ROBOT.

To evaluate the performance of ROBOT, we use the following relative

error:

RE
(
X𝑡𝑟 , X𝑒𝑠

)
=

X𝑡𝑟 − X𝑒𝑠

𝐹

X𝑡𝑟

𝐹

, (7.66)

where X𝑡𝑟 (resp. X𝑒𝑠) refers to the true low-rank component (resp. estima-

tion).

7.5.3.2 Effect of the noise level 𝜎𝑛

We change the value of 𝜎𝑛 and measure the estimation accuracy of ROBOT.

We used a streaming tensor of size 10×15×20×1000 and rank rTT = [5, 5, 5].
Parameters of the data model were set as: time-varying factor 𝜖 = 0, miss-

ing density 𝜔𝑚𝑖𝑠𝑠 = 0%, and outlier density 𝜔𝑜𝑢𝑡𝑙𝑖𝑒𝑟 = 0% (i.e. outliers free

observations). We fixed algorithmic parameters of ROBOT as follows: the

forgetting factor 𝛽 = 0.5 and two penalty parameters 𝜌1 = 𝜌2 = 1. The re-

sult is shown in Fig. 7.15. Clearly, the value of 𝜎𝑛 does not affect ROBOT’s

convergence rate but its relative error.

7.5.3.3 Effect of the time-varying factor 𝜖

Next, we evaluate the performance of ROBOT in dynamic and nonstationary

environments. We reused the streaming tensor above with 90% observations

(i.e., 𝜔𝑚𝑖𝑠𝑠 = 10%). The noise level 𝜎𝑛 was fixed at 10
−3
. We set the outlier

density and intensity to 10% and 1, respectively. The forgetting factor and two

penalty parameters were kept as above. Also, an abrupt change was made at

𝑡 = 600 to assess how fast ROBOT converges. Fig. 7.16 illustrates the effect of 𝜖

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 274

0 250 500 750 1000

10
-4

10
-3

10
-2

10
-1

Figure 7.16: Effect of the varying factor 𝜖 on the performance of ROBOT.

0 250 500 750 1000
10

-4

10
-3

10
-2

10
-1

10
0

Figure 7.17: Effect of the missing density 𝜔𝑚𝑖𝑠𝑠 on the tracking ability of

ROBOT.

on the performance of ROBOT. We can see that the performance of ROBOT

increases when 𝜖 decreases and converges towards a steady-state error.

7.5.3.4 Effect of the missing density 𝜔𝑚𝑖𝑠𝑠

We then investigate the tracking ability of ROBOT in the presence of missing

data. The value of 𝜔𝑚𝑖𝑠𝑠 was chosen among {10%, 50%, 90%}. We kept all

experimental parameters as above, except the time-varying factor 𝜖 which

was set to 10
−3
. We can see from Fig. 7.17 that both convergence rate and

estimation accuracy of ROBOT are affected by the value of 𝜔𝑚𝑖𝑠𝑠 . The lower

𝜔miss is, the better performance ROBOT achieves.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 275

7.5.3.5 Effect of outliers

Here, we measure the robustness of ROBOT against sparse outliers. Most of

experimental parameters were kept as in the previous tasks: 𝜔𝑚𝑖𝑠𝑠 = 10%,

𝛽 = 0.5, 𝜎𝑛 = 𝜖 = 10
−3
, and 𝜌1 = 𝜌2 = 1. We investigated the case when

30% entries were corrupted by outliers. Three levels of the outlier intensity

fac-outlierwere considered, including 0.1, 1, and 10 (resp. low, moderate,

and strong effect). Fig. 7.18 indicates that ROBOT is capable of tensor tracking

from incomplete observations corrupted by sparse outliers.

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

Figure 7.18: Effect of the outliers on the tracking ability of ROBOT.

7.5.3.6 Video background/foreground separation

In this task,
4
we used three video datasets, including “Lobby”, “Highway”,

and “Hall”. The dataset “Lobby” includes 1700 frames of size 144× 176. There

are 1700 frames of size 240 × 320 in the data “Highway, while “Hall” con-

sists of 3584 frames whose size is 174 × 144. The performance of ROBOT

was evaluated in comparison with two online background/foreground sepa-

ration algorithms, including PETRELS-ADMM [25] and GRASTA [50]. The

subspace rank and TT-rank were set to 10 and [10, 10], respectively. The re-
sult from Fig. 7.19 indicates that ROBOT is able to detect moving objects in

real surveillance video sequences with reasonable performance.

7.6 Conclusions

In this chapter, we have considered the problem of tensor tracking under

the tensor-train format. Three novel adaptive tensor-train decomposition al-

4
Here, the foreground plays the role of outliers and its separation from the background is

based on the proposed detection procedure.

CHAPTER 7. TENSOR TRACKING UNDER TENSOR-TRAIN FORMAT 276

Figure 7.19: Background and foreground separation. From bottom to top

row: Highway, Hall, and Lobby. From left to right column: Original video

frame, PETRELS-ADMM, GRASTA, and ROBOT.

gorithms are proposed for factorizing streaming tensors, including TT-FOA,

ATT, and ROBOT. Each algorithm is specifically designed for dealing with a

specific task. In particular, the former algorithm TT-FOA and its stochastic

variant have the capability to track the tensor-train representation of stream-

ing tensors from noisy and high-dimensional data with high accuracy, even

when they come from time-dependent observations. By utilizing the recur-

sive least-squares method in adaptive filtering, the second algorithm ATT

minimizes effectively a weighted least-squares objective function account-

ing for both missing values and time-variation constraints on the underlying

tensor-train cores. The latter algorithm ROBOT – which is a robust version

of ATT – is fully capable of tracking the underlying low-rank component of

incomplete streaming tensors corrupted by sparse outliers in nonstationary

environments. All three algorithms are fast, effective, and requires low com-

putational complexity and memory storage. To the best of our knowledge,

they are the first of their kind that have the potential to handle streaming

tensors under the tensor-train format.

Conclusion and Outlook 8

8.1 Conclusions

In this thesis, we have presented several contributions to the problem of track-

ing the low-rank approximation of big data streams over time.

For Subspace Tracking

■ We provided a survey on recent robust subspace tracking (RLS) al-

gorithms to fill the gap in the literature particularly addressing non-

Gaussian noises (i.e., outliers, impulsive noise, and colored noise) and

sparse constraints. In the context of missing data and outliers, we re-

viewed four main classes of RST algorithms, including Grassmannian,

recursive least-squares (RLS), recursive projected compressive sensing

(ReProCS), and adaptive projected subgradient method (APSM). When

the data streams are corrupted by impulsive noises, we indicated that

most of state-of-the-art subspace tracking algorithms are based on im-

proving the well-known PAST algorithm, together with weighted RLS

and adaptive Kalman filtering. Next, we outlined two main approaches

to deal with subspace tracking in the presence of colored noises, in-

cluding instrumental variable-based and oblique projections. Finally, a

short review on sparse subspace tracking algorithms was presented.

■ Weproposed a probable adaptive algorithm called PETRELS-ADMM for

tracking the underlying subspace from incomplete observations cor-

rupted by sparse outliers. The proposed algorithm contains two main

stages: outlier rejection and subspace estimation. In particular, out-

liers residing in the measurement data are detected and removed by

our ADMM solver in an effective way. Next, we proposed an improved

version of PETRELS, namely iPETRELS. It is observed that PETRELS is

ineffectivewhen the fraction ofmissing data is too large. We thus added

a regularization of the ℓ2,∞-norm, which aims to control the maximum

ℓ2-norm of rows in the subspace matrix, in the objective function to

avoid such performance loss. Moreover, we also introduced an adaptive

step size to speed up the convergence rate as well as enhance the sub-

277

CHAPTER 8. CONCLUSIONS 278

space estimation accuracy. Furthermore, we successfully established a

theoretical convergence which guarantees that the solutions generated

by PETRELS-ADMMwill converge to a stationary point asymptotically.

■ We proposed a novel adaptive algorithm called OPIT for the sparse sub-

space tracking (SST) problem. OPIT takes both advantages of power

iteration and thresholding methods, and hence offers several appeal-

ing features over the state-of-the-art tracking algorithms. First, OPIT

belongs to the class of power methods, and thus its convergence rate

is highly competitive compared to other SST algorithms, especially in

the high SNR regime. Different from the existing two-stage SST algo-

rithms, OPIT has ability to track the sparse principal subspace with

high accuracy in both the classical regime and the HDLSS regime. In

addition, OPIT is flexible and very adaptable for different scenarios. For

example, we can adjust its procedure for dealing with multiple incom-

ing data streams. Also, it is easy to introduce regularization parameters

into OPIT in order to regularize its performance in non-standard envi-

ronments. Moreover, we can recast its update rule into a column-wise

update. Thanks to the deflation transformation, we derived a fast vari-

ant of OPIT called OPITd with lower complexity of both computation

and memory storage. This variant is fast and useful for tracking high-

dimension and large-scale data streams residing in a low-dimensional

space. Together with PETRELS-ADMM, OPIT belongs to the class of

provable subspace tracking algorithms inwhich its convergence is guar-

anteed. Under certain conditions, OPIT can achieve an 𝜖-relative-error

approximation with high probability when the number of observations

is large enough.

For Tensor Tracking

■ We provided a comprehensive survey on the state-of-the-art tensor

tracking algorithms. It begins with basic coverage of five common ten-

sor decompositions and their main features, including CP, Tucker, BTD,

tensor-train, and t-SVD. Two kinds of streaming models were intro-

duced to represent streaming tensors: single-aspect and multi-aspect.

Next, we reviewed fourmain classes of online CP algorithms: subspace-

based, block-coordinate descent, Bayesian inference, and multi-aspect

streaming CP decomposition. Under the Tucker format, we categorized

the current single-aspect tensor tracking algorithms into twomain classes:

online tensor dictionary learning and tensor subspace tracking. Multi-

aspect streaming Tucker decomposition algorithmswere also surveyed.

Moreover, we provided a brief survey on other online techniques for

tracking tensors under tensor-train, t-SVD, and BTD formats.

CHAPTER 8. CONCLUSIONS 279

■ We proposed three efficient adaptive algorithms for tracking the low-

rank component of streaming tensors over time. Under the CP format,

we developed a novel adaptive CP algorithm called ACP for tracking

high-order incomplete streaming tensors. ACP is fast and requires a

low computational complexity and memory storage, thanks to the al-

ternative minimization and randomized sketching. Under the Tucker

format, we proposed the second algorithm, namely adaptive Tucker de-

composition (ATD), more flexible than ACP, for the problem of tensor

tracking. ATD exhibits competitive performance in terms of both esti-

mation accuracy and computational complexity. Third, we introduced

a robust version of ACP called RACP for the problem of tensor track-

ing in the presence of both missing data and outliers. In particular,

RACP aims to learn the low-rank component of streaming tensors in

an online fashion as well as offering robustness against gross data cor-

ruptions. More importantly, we proved that ACP, ATD, and RACP are

provable algorithms with convergence guarantee.

■ We developed three new methods for the problem of tensor tracking

under the tensor-train (TT) format. The first method called TT-FOA

is capable of tracking the low-rank components of high-order tensors

from noisy and high-dimensional data with high accuracy, even when

they come from time-dependent observations. The secondmethod called

ATT is particularly designed for handling incomplete streaming ten-

sors. ATT is scalable, effective, and adept at estimating low TT-rank

component of streaming tensors. Besides, ATT can support parallel

and distributed computing. To deal with sparse outliers, we proposed

the so-called ROBOTwhich stands for ROBust Online Tensor-Train de-

composition. Technically, ROBOT has the ability to tracking streaming

tensors from imperfect streams (i.e., due to noise, outliers, and missing

data) as well as tracking their time variation in dynamic environments.

8.2 ResearchChallenges, OpenProblems, andFu-
ture Directions

In this section, we present several research challenges and open problems that

should be considered for the development of tensor tracking problems in the

future. These problems also cover the subspace tracking problem as it is a

special case of tensor tracking. They are data imperfection and corruption;

rank revealing and tracking; efficient and scalable tensor tracking; and other

aspects such as theoretical analysis, symbolic data, and tracking under some

less common tensor formats. Possible solutions for these challenges are also

CHAPTER 8. CONCLUSIONS 280

discussed.

8.2.1 Data Imperfection and Corruption

Dealing with data imperfection and corruption has been a critical issue in

many applications and tracking problems in particular [367]. We here present

two main types of imperfect data that either remain unsolved or are still chal-

lenging for tensor tracking: (i) non-Gaussian and colored noises; (ii) outliers

and missing data.

Non-Gaussian and Colored Noises

Most of the existing tensor tracking algorithms were proposed under the ad-

ditive white Gaussian noise assumption. This assumption however does not

always hold in practice. For example, impulsive noises (e.g., burst, alpha-

stable, and spherically invariant random variable noise), which are introduced

by human activities and natural sources, are one of the most common non-

Gaussian noises that often appear in tracking applications such as direction of

arrivals [368], OFDM systems [369] and adaptive system identification [370].

This type of noise can significantly impact the tracking ability of estimators

and it requires specific treatments [26]. In parallel, colored noises that indi-

cate types of noise that are correlated in space and/or time may reduce the

performance of tracking algorithms [371]. Accordingly, standard tracking al-

gorithms may be less effective in estimation accuracy in the presence of these

noises. They need to be readapted or redesigned for more robustness.

To the best of our knowledge, we are not aware of any tensor tracking

algorithm capable of handling such noises in the literature. Some potential

approaches have been successfully demonstrated in subspace tracking prob-

lems (i.e., tracking tensors of order 2), see [26] for a brief survey. In particular,

adaptive Kalman filtering and weighted RLS approaches can be adopted for

dealing with impulsive noises. Oblique projection and instrumental variable-

based techniques can handle colored noises. Therefore, it is desirable to ex-

tend these approaches from subspace tracking to tensor tracking.

Outliers and Missing Data

They are now becoming more and more ubiquitous in modern datasets. Out-

liers are data points that appear to be inconsistent with or exhibit abnormal

behaviour different from others. Missing observations are often encountered

during the data acquisition and collection. Both outliers and missing data can

cause several issues (e.g., they introduce bias in estimation) for knowledge dis-

covery from data in general and data streams in particular [6]. Accordingly,

dealing with them is an essential task in the analysis of corrupted datasets

CHAPTER 8. CONCLUSIONS 281

which has been still a hot topic in data mining for decades. In general, han-

dling such corruptions involves removing/ignoring them after detection or

replacing them with alternative values.

There exist few tensor tracking algorithms robust to sparse outliers in

the literature. Under the CP format, SOFIA [222] applies the robust Holt-

Winters forecasting model using a pre-cleaning mechanism to identify and

down-weight outliers. RACP [27] introduces a ℓ1-norm penalty to promote

the sparsity on outliers and then uses an ADMM solver to estimate them. Un-

der the Tucker format, ORLTM [263], OLRTR [264], and D-L1-Tucker [254]

are able to deal with sparse outliers. Both ORLTM and OLRTR propose to reg-

ularize themain objective functionwith a ℓ1-norm regularization. Meanwhile,

D-L1-Tucker adopts a threshold-based method to detect outliers. Except for

RACP, most of the mentioned algorithms above are not designed for dealing

with missing data. In parallel, most of the existing online tensor completion

and tracking are sensitive to outliers, such as TeCPSGD [106], OLSTEC [176],

and ACP [30]. Accordingly, there are plenty of opportunities for us to develop

robust tensor tracking from incomplete observations as it is still in its early

stage.

8.2.2 Rank Revealing and Tracking

Most of the state-of-the-art tensor tracking algorithms suppose that the ten-

sor rank (e.g., CP, Tucker, TT, or tubal rank) is given as prior information.

In practice, it is however a difficult assumption due to the facts that: (i) the

tensor rank may change over time and (ii) a good rank determination at the

initialization stage is not always guaranteed when the number of training

samples is limited and (iii) the exact rank determination may be intractable

(e.g., CP rank is NP-hard [195]). Therefore, it is essential to develop tracking

algorithms that are capable of revealing the rank over time.

In the literature, there have been many heuristic methods developed for

the problem of tensor rank estimation. Most of them adopt the Bayesian ap-

proach to infer the tensor rank from data, such as [372–374]. Theoretically,

Bayesian inference offers a good recipe for the tensor rank estimation as we

can integrate the low-rank promoting prior as well as the tensor rank into

the learning framework. Another possible approach to determine the ten-

sor rank is to use neural networks (NNs), such as [375–377]. Since the rank

can be considered as one type of data feature, NNs which can extract hidden

features within data can be used to solve the tensor rank determination. Al-

though these methods often require the tensor data to be fully observed, it

is possible to readapt or modify them such that their variant are able to han-

dle tensors in an online fashion. For example, we can adopt online Bayesian

inference or online learning algorithms for training NNs.

CHAPTER 8. CONCLUSIONS 282

8.2.3 Efficient and Scalable Tensor Tracking

Chapter 5 indicates that most of the existing tensor tracking algorithms are of

high complexity. When we deal with large-scale and high-multidimensional

streams, they may become less efficient. Thus, it is necessary to develop effi-

cient and scalable tracking techniques of low cost w.r.t. both computational

complexity and memory storage. In what follows, we present three poten-

tial approaches which are theoretically capable of accelerating the tracking

process, namely (a) randomized sketching, (b) parallel and distributed com-

puting, and (c) neural networks-based methods.

Randomized Sketching

It is very well-known that randomizedmethods can reduce the computational

cost of their counterparts while still achieving reasonable estimation [323].

Accordingly, many attempts have been made to take their advantages in com-

putation for tensor decomposition in the literature, we refer the readers to [191]

for a good overview. Among them, there are a few online algorithms uti-

lizing successfully randomized techniques to speed up the tracking process,

such as [30,33,218,378]. Particularly, these algorithms involve solving several

overdetermined least-squares (LS) problems. Thanks to the CP and Tucker

structures, they use random sampling to build the sampled Khatri-Rao and

Kronecker products, and then, recast the original LS problems into random-

ized ones. Solving the new LS problems can save a lot of computational com-

plexity. Other randomized techniques (e.g., random projections and count

sketch) with other tensor formats have not yet been investigated for tensor

tracking and they deserve next investigations in the future.

Parallel and Distributed Computing

The second approach is to develop parallel and distributed computing frame-

works for streaming tensor decomposition. It stems from the fact that we

can leverage several computational resources to facilitate the tracking pro-

cess. Moreover, computing systems in a parallel and distributed environment

can offer more reliability than their counterparts in a central one as they can

avoid the single point of failure which is a fundamental mistake from flaws in

the implementation or design of a system. Besides, another appealing advan-

tage of this computing is the scaling up-and-out process in which we can add

and/or replace computational resources to the system. We refer the readers

to [379] for a good reference.

In the tensor literature, there are several parallel and distributed systems

for processing large-scale tensors. We can list here some efficient tools for:

CHAPTER 8. CONCLUSIONS 283

(a) distributed CP decomposition (e.g., DFacTo [380], SPLATT [381]), (b) dis-

tributed Tucker decomposition (e.g., DHOSVD [246], SGD-Tucker [382]), and

(c) distributed TT decomposition (e.g., ADTT [268], ATTAC [383]), etc. These

tools mainly distribute the unfolding matrices or sub-tensors among several

clusters and integrate their low-rank tensor approximations to find the overall

low-rank approximation of the underlying tensor. However, most of the exist-

ing distributed tensor decompositions are not suitable for handling streaming

data. Therefore, it is of great interest to develop practical distributed systems

for tracking tensors from data streams.

Neural Networks-based Methods

Another potential approach is to incorporate neural networks (NNs) into

tensor factorization to benefit from their significant advances in computa-

tional power. On the one hand, the connection between TDs and NNs has

been established in some studies, such as [384–386]. For example, Cohen et
al. in [384] showed that the convolutional NNs with ReLU activation and

max/average pooling can be represented by tensor decomposition models.

Wang et al. in [386] introduced two NN models for finding the low-tubal-

rank approximation of three-order tensors. Accordingly, NN tools can be

used to model and learn high-order interactions for tensors, and hence, for

tensor factorization and tracking. On the other hand, NNs can directly map

data streams (temporal slices) as input to the approximation result as output

by applying some online learning techniques. In the literature of machine

learning, there exist several kinds of learning capable of dealing with data

streams, such as incremental learning, lifelong learning, and online continual

learning, to name a few. They can be specifically adapted for tensor tracking.

8.2.4 Others

Next, we present some other issues and problems which also deserve future

investigations.

Provable Tensor Tracking

Although the existing tensor tracking methods can provide competitive per-

formancew.r.t. estimation accuracy and/or convergence rate in practice, most

of them lack performance guarantees. The gap between practical uses/imple-

mentations and theoretical results in tensor tracking may be caused by the

fact that most tensor problems are NP-hard [195], e.g., the best rank-1 tensor

approximation is NP-hard even when all observations (temporal slices) are

fully observed. Despite several difficulties, there are still attempts to bridge

CHAPTER 8. CONCLUSIONS 284

the gap in the literature. Under certain conditions (e.g., the underlying low-

rank model remains unchanged over time), some studies established success-

fully theoretical results to analyse the convergence behavior of their methods,

such as [27,30,176,219,251]. These initial results encourage us to investigate

deeper theory aspects in tensor tracking, such as time variation, asymptotic

convergence, and non-asymptotic convergence in low-sample-size settings.

Symbolic Tensor Tracking

In some applications, data may no longer be represented by single (certain)

values, but need to be formatted or groupedwithin sets, intervals, histograms,

etc. It leads to the so-called symbolic data analysis (SDA) paradigm in data

mining and statistics to deal with such data [387]. In SDA, several new vari-

ables types and processing tools have been introduced to represent and anal-

yse symbolic data, such as interval-valued, histogram-valued, and categorical

modal variables, to name a few. The readers are referred to [387] for a good

survey on SDA. In the tensor literature, Mauro et al. in [388] proposed for

the first time a symbolic tensor decomposition for factorizing interval-valued

tensors under the tensor-train format. Specifically, the authors extended a

set of tools aiming to handle interval-valued matrices for high-order tensors

and introduced efficient decomposition and reconstruction strategies. As the

symbolic tensor decomposition is in its very early stage of development in

both batch and online settings, there are a lot of aspects that need to be in-

vestigated in the future.

Tensor TrackingunderBTD, t-SVD, TensorNetwork formats, andother
Variants

As reviewed in the sections above, most of the state-of-the-art tensor track-

ing algorithms are proposed for streaming CP and Tucker decompositions.

Despite great success in the batch setting, BTD, t-SVD, and tensor networks

(e.g., tensor-train, tensor chain, and tensor ring) have not attracted much at-

tention in real-time stream processing until recently. Thus, developing online

methods for tracking tensors under these tensor formats and their variants is

essential advantage from their advantage in representing large-scale tensors

as well as fulfil the gap between the two most common tensor formats and

others.

Résumé de la Thèse

A

A.1 Traitement de Flux deDonnéesVolumineuses

Le traitement de flux a récemment attiré beaucoup d’attention de la part des

universités et de l’industrie en raison du fait que des flux de données massifs

ont été de plus en plus collectés au fil des ans et qu’ils peuvent être exploités

intelligemment pour découvrir de nouvelles idées et des informations pré-

cieuses [1–3]. Par exemple, nous vivons à l’ère de l’Internet des objets où un

grand nombre de dispositifs de détection ont été installés et développés. Ces

appareils ont la capacité de collecter, gérer et transmettre des données via des

réseaux IoT en temps réel. En conséquence, le traitement de flux est néces-

saire pour récupérer des informations importantes à partir de ces données

IoT en quelques secondes ou même plus rapidement pour faciliter la prise de

décision en temps réel [4].

Dans de nombreuses applications en ligne modernes, les flux de don-

nées ont trois caractéristiques en «V»: Volume, Vitesse, et Variété. Comme

ils sont générés en continu, leur volume croît significativement dans le temps

et éventuellement jusqu’à l’infini. Ainsi, l’une des caractéristiques les plus

remarquables des données en continu est qu’il s’agit de séquences illimitées

d’échantillons de données. Vitesse fait référence au taux d’arrivée de données
à grande vitesse et au traitement en temps réel. Les données collectées à partir

des interactions des utilisateurs sur les réseaux sociaux (par ex. Facebook, In-

stagram et Twitter) sont, par exemple, à très grande vitesse. Variété implique

l’adéquation, la crédibilité et la fiabilité des flux de données. Plus précisément,

cette caractéristique concerne le biais, le bruit, l’incertitude, l’incomplétude

et l’anormalité des données. Outre les trois « V », les données en continu ont

d’autres caractéristiques distinctives, notamment la sensibilité/variation tem-

porelle (alias dérive de concept), l’hétérogénéité (différentes sources avec une

diversité de types de données), une propriété volatile et non reproductible,

etc [2, 3, 5, 6]. Ces caractéristiques entraînent plusieurs exigences inhérentes

et des problèmes de calcul pour le traitement des flux, tels que:

■ Faible Latence: Les procédés et systèmes de flux doivent acquérir, gérer

285

APPENDIX A. RÉSUMÉ DE LA THÈSE 286

et traiter efficacement des flux de données sans introduire de retards

supplémentaires.

■ Faible Complexité Spatiale: Les procédés et systèmes de flux doivent

avoir la capacité de fonctionner en ligne avec des ressources de mé-

moire limitées.

■ Évolutivité: Comme les données de streaming augmentent normale-

ment en taille beaucoup plus rapidement que les ressources de calcul,

le traitement de flux nécessite des méthodes et des systèmes évolutifs.

■ Variation Temporelle: Comme les données en continu peuvent évoluer

avec le temps, les méthodes et les systèmes de flux doivent être capables

de suivre leur variation dans le temps.

■ Robustesse: Dans de nombreux cas, les données de flux sont imparfaites

et peu fiables, de sorte que les méthodes et les systèmes de flux de-

vraient avoir le potentiel d’estimer et de calculer les réponses à partir

d’observations corrompues.

Cependant, ce sont également des avantages potentiels du traitement par flux

par rapport au traitement par lots. Nous renvoyons les lecteurs au Tableau. A.1

pour une brève comparaison entre les deux types de traitement.

Table A.1: Principales différences entre le traitement par lots et le traitement

des flux

Caractéristique Traitement par lots Traitement des flux

Input Grands lots/morceaux de données Flux de données (continus)

Taille des données Connu et fini Inconnu et/ou infini

Type de données Statique Dynamique/variant dans le temps

Traitement
Traiter toutes les données à la fois Traiter les flux de données en temps réel
Traitement en plusieurs passes Processus en un ou deux passages

Réponse Fournir après l’achèvement Fournir immédiatement

Hardware
Nécessite beaucoup de stockage Nécessite beaucoup moins ou pas de stockage
Nécessite beaucoup de traitement Nécessite moins de ressources de traitement

Temps Prend plus de temps, latences
Prenez quelques secondes ou plus vite

en minutes à heures

Dans ce travail, nous nous concentrons principalement sur les méthodes

de flux capables de suivre l’approximation de rang inférieur (LRA) des flux de

données volumineuses au fil du temps. Techniquement, l’objectif principal de

APPENDIX A. RÉSUMÉ DE LA THÈSE 287


   1 r

1u
1v

X U

V

 rv

ru

Figure A.1: SVD d’une matrice X.

la LRA est d’approximer les données de grande dimension par une représen-

tation de faible dimension plus compacte avec une perte d’informations lim-

itée [7]. Par conséquent, trouver la LRA est une tâche fondamentale et es-

sentielle pour l’exploration de données en général et l’analyse de données

en continu en particulier. Nous introduisons l’une des techniques d’algèbre

linéaire les plus connues pour trouver le LRA des matrices dans la configura-

tion par lots, la décomposition en valeurs singulières (SVD), puis décrivons sa

connexion à certains types courants de décomposition tensorielle (TD). En-

suite, nous présentons leurs variantes en ligne (adaptatives) pour traiter les

flux de données issus de l’observation unidimensionnelle. (i.e., SVD→ sous-

espace) et observations multidimensionnelles (i.e., TD→ suivi tensoriel).

A.1.1 Approximation de Rang Inférieur: Du SVD au Décom-
position du Tenseur

Il est bien connu que SVD est l’une des techniques d’algèbre linéaire les plus

puissantes et les plus utilisées avec un certain nombre d’applications dans

divers domaines [8, 9]. En particulier, décomposition SVD d’une matrice X ∈
R𝐼1×𝐼2 ima rang 𝑟 est

X SVD

=

[
u1, u2, . . . , u𝑟

]
︸ ︷︷ ︸

U


𝜆1

𝜆2

. . .

𝜆𝑟

︸ ︷︷ ︸
𝚲


v⊤

1

v⊤
2

...

v⊤𝑟

︸︷︷︸
V⊤

=

𝑟∑︁
𝑖=1

𝜆𝑖u𝑖v⊤𝑖 , (A.1)

où U ∈ R𝐼1×𝑟 et V ∈ R𝐼2×𝑟 sont des matrices unitaires; 𝚲 ∈ R𝑟×𝑟 est une

matrice diagonale dont les valeurs diagonales sont positives, c.-à-d. 𝜆1 ≥
𝜆2 ≥ · · · ≥ 𝜆𝑟 > 0, voir Fig. A.1 pour une illustration. Pour le problème

d’approximation de rang inférieur dans la configuration par lots, le théorème

suivant indique que SVD peut donner le meilleur LRA pour n’importe quelle

matrice X.

APPENDIX A. RÉSUMÉ DE LA THÈSE 288

Theorem 5 (Eckart-Young-Mirsky Theorem [9]) Dénoter parX =

U𝚲V⊤ décomposition SVD d’une matrice X ∈ R𝐼1×𝐼2 . Si 𝑘 ≤ rank(X) et
X𝑘 =

∑𝑘
𝑖=1
𝜆𝑖u𝑖v⊤𝑖 , donc

min

A∈R𝐼1×𝐼2
rank(A)≤𝑘

X − A

 =

X − X𝑘

, (A.2)

par rapport à la norme spectrale et à la norme de Frobenius.

Merci au Théorème 5, la meilleure approximation rang-𝑘 de X peut être

obtenue en appliquant la procédure suivante:

■ Étape 1: Calculer X SVD

= U𝚲V⊤, où U ∈ R𝐼1×𝐼1 et V ∈ R𝐼2×𝐼2 sont des ma-

trices unitaires, et la matrice diagonale 𝚲 ∈ R𝐼1×𝐼2 contient des entrées
diagonales positives dans l’ordre décroissant.

■ Étape 2: Sélectionnez les premiers 𝑘 vecteurs singuliers parmi U et V
pour former les matrices suivantes U𝑘 = U(:, 1 : 𝑘) et V𝑘 = V(:, 1 : 𝑘) .

■ Étape 3: Sélectionnez les 𝑘 valeurs singulières les plus fortes dans 𝚲

pour former: 𝚲𝑘 = 𝚲(1 : 𝑘, 1 : 𝑘) .
■ Étape 4: Dérivez la meilleure approximation rang-𝑘 de X à partir de:

X𝑘 = U𝑘𝚲𝑘V⊤𝑘 .

Lorsqu’il s’agit de tenseurs (aka, tableaux multidimensionnels), plusieurs

extensions multivoies du SVD ont été développées pour la décomposition ten-

sorielle (TD) dans la littérature [10–13]. Les cinq types courants de TD sont

CP/PARFAC [14], Tucker/HOSVD [15], tensor-train/network [16], t-SVD [17],

et décomposition en termes de blocs (BTD) [18], voir Fig. A.2 pour des illus-

trations. Plus précisément, ils visent à factoriser un tenseur en un ensem-

ble de composants de base (par exemple, des vecteurs, des matrices ou des

tenseurs plus simples) et offrent donc de bonnes approximations de tenseur

de rang inférieur. Dans ce qui suit, nous décrivons leur connexion à SVD et

renvoyons les lecteurs au Chapitre 5 pour plus de détails sur leurs principales

caractéristiques, propriétés et algorithmes.

Décomposition CP/PARAFAC: Semblable à SVD qui représente X par une

somme de matrices de rang-1 (c.-à-d. 𝜆𝑖u𝑖v⊤𝑖), la décomposition CP factorise

également un tenseur X ∈ R𝐼1×𝐼2×···×𝐼𝑁 en termes de rang-1:

X
CP

=

𝑟∑︁
𝑖=1

𝜆𝑖 u
(1)
𝑖
◦ u(2)

𝑖
◦ · · · ◦ u(𝑁)

𝑖︸ ︷︷ ︸
rank-1 term

, (A.3)

APPENDIX A. RÉSUMÉ DE LA THÈSE 289

(1)
U (2)

U

(
)N

U

1 2

N

G

   

X (2) (: 1),U

  
  

(
) (:

)

N

,r

U

(2) (:),rU

(1) (:),rU





(2)

1U

1

2

N

1G
(1)

1U

()

1

N
U



 VG 1

1
1

2
1

N
(1)

G
(2)

G (1)N 
G

()N
G1

1N   

(1) (: 1),U

CP/PARAFAC

X

Tensor-Train


X

Tucker/HOSVD

T-SVD

X

  

(2) (:),rU

(1) (: 2),U



(
) (:

2
)

N

,

U
BTD

X

(2)

2U

1

2

N

2G
(1)

2U

()

2

N
U



(2)

rU

1

2

N

rG
(1)

rU

()N

rU



(
) (:

1)

N

,

U

U

  

Figure A.2: Multiway extensions of SVD to high-order tensors: CP/-

PARAFAC, Tucker, BTD, tensor-train, and t-SVD.

où u(𝑛)
𝑖
∈ R𝐼𝑛×1

avec 1 ≤ 𝑛 ≤ 𝑁 joue le même rôle que les vecteurs singuliers

de U et V dans le modèle SVD (A.1) (notez que u𝑖v⊤𝑖 = u𝑖 ◦ v𝑖) [14]. La ma-

trice U(𝑛) =
[
u(𝑛)

1
, u(𝑛)

2
, . . . , u(𝑛)𝑟

]
est la 𝑛-ième facteur CP de X et il n’est pas

nécessaire qu’il soit orthogonal. Suivant la définition générale du rang de la

matrice, le plus petit entier 𝑟 satisfaisant (A.3) est appelé le rang du tenseur

(CP) de X. Dans certaines conditions, la décomposition CP est essentielle-

ment unique jusqu’à une permutation et une échelle qui est une propriété

utile dans de nombreuses applications.

Décomposition Tucker/HOSVD: En dehors de la forme classique (A.1), on

peut exprimer la SVD de X comme suit

X SVD

= U𝚲V⊤ = 𝚲︸︷︷︸
core

×1U ×2 V︸ ︷︷ ︸
2 factors

. (A.4)

En conséquence, une extensionmultidirectionnelle directe de (A.4) aux tenseurs

d’ordre élevé peut être donnée par

X
Tucker

= G︸︷︷︸
core

×1U(1) ×2 U(2) ×3 · · · ×𝑁 U(𝑁)︸ ︷︷ ︸
𝑁 factors

, (A.5)

où le noyau G ∈ R𝑟1×𝑟2×···×𝑟𝑁
est un tenseur de taille inférieure à X (i.e.,

𝑟𝑛 ≤ 𝐼𝑛 ∀𝑛) et 𝑁 facteurs tensoriels {U(𝑛) }𝑁𝑛=1
, U(𝑛) ∈ R𝐼𝑛×𝑟𝑛 sont des matri-

ces orthogonales. Le modèle de représentation (A.5) est considéré comme le

APPENDIX A. RÉSUMÉ DE LA THÈSE 290

format SVD d’ordre élevé (HOSVD) ou Tucker [15]. Contrairement au SVD

et au CP, Tucker/HOSVD n’est pas unique en général. Cependant, comme

le sous-espace couvrant U(𝑛) est physiquement unique, son objectif principal

est de trouver les sous-espaces principaux des facteurs tensoriels [11].

Décomposition BTD: BTD factorise X en plusieurs blocs de rang multil-

inéaire faible au lieu de termes rank-1

X
BTD

=

𝑟∑︁
𝑖=1

G𝑖 ×1 U
(1)
𝑖
×2 U

(2)
𝑖
×3 · · · ×𝑁 U(𝑁)

𝑖︸ ︷︷ ︸
low multilinear-rank term

. (A.6)

Le BTD peut être considéré comme une unification et une généralisation des

deux décompositions CP et Tucker bien connues. Plus précisément, lorsque

{G𝑖}𝑟𝑖=1
sont des tenseurs diagonaux, BTD se résume à la décomposition CP. Il

a la forme d’une décomposition de Tucker lorsqu’un seul terme de bloc (c’est-

à-dire 𝑟 = 1) est considéré. De plus, plusieurs fonctionnalités attrayantes du

BTD sont héritées de CP et de Tucker, telles que le calcul stable de Tucker,

l’identification et l’unicité de CP [18]. En parallèle, il convient de rappeler

une remarque dans [18] selon laquelle “le rang d’un tenseur d’ordre supérieur

est en fait une combinaison des deux aspects : il faut préciser le nombre de

blocs et leur taille”. Cela signifie que BTD fournit une approche unifiée pour

généraliser le concept de rang matriciel aux tenseurs.

Décomposition Tensor-Train: Avec (A.1) et (A.4), nous pouvons écrire la

SVD de X comme

X(𝑖1, 𝑖2)
SVD

=

𝑟∑︁
𝑘=1

𝜆𝑘U(𝑖1, 𝑘)V(𝑘, 𝑖2) . (A.7)

En conséquence, chaque élément d’un tenseur d’ordre supérieur X peut être

représenté par

X(𝑖1, 𝑖2, . . . , 𝑖𝑁)
TT

=

𝑟1,𝑟2,...,𝑟𝑁 −1∑︁
𝑘1,𝑘2,...,𝑘𝑁 −1

G
1
(1, 𝑖1, 𝑘1)G2

(𝑘1, 𝑖2, 𝑘2) . . . G𝑁 (𝑘𝑁−1, 𝑖𝑁 , 1) .

(A.8)

où G𝑛 est un 𝑟𝑛−1×𝐼𝑛×𝑟𝑛 tenseur avec 𝑛 = 1, 2, . . . , 𝑁 −1 et 𝑟0 = 𝑟𝑁 = 1. Nous

nous référons au modèle de représentation (A.8) en tant que train de tenseurs

(TT). Comme CP, le format TT offre un modèle d’économie de mémoire pour

représenter les tenseurs d’ordre élevé. Comme Tucker, la décomposition TT

et le rang TT r = [𝑟1, 𝑟2, . . . , 𝑟𝑁−1] de tout tenseur X peuvent être calculés

numériquement de manière stable et efficace.

Décomposition t-SVD: Enfin, une autre extension de SVD aux tenseurs

APPENDIX A. RÉSUMÉ DE LA THÈSE 291

d’ordre élevé est le tenseur SVD (t-SVD) qui est de la forme suivante:

X
t-SVD

= U︸︷︷︸
orthogonal

∗ G︸︷︷︸
𝑓 -diagonal

∗ V︸︷︷︸
orthogonal

, (A.9)

où U et V sont des tenseurs unitaires, et G est un rectangle 𝑓 -tenseur di-

agonal dont les tranches frontales sont des matrices diagonales [17]. Intu-

itivement, le modèle t-SVD (A.9) partage la même forme avec le SVD in (A.1).

Cependant, en raison du t-produit “ ∗ ”, le cadre algébrique utilisé dans le

t-SVD est assez différent de l’algèbre (multi)-linéaire classique dans d’autres

types de TD et SVD. Par exemple, la plupart des ses calculs sont effectués

dans le domaine de Fourier Sous le format t-SVD, le tubal-rank qui est égal

au nombre de tubes non nuls de G est utilisé pour définir le LRA des tenseurs

de la même manière que le SVD.

A.1.2 Approximation de Rang Inférieur en Ligne: Du Sous-
espace au Suivi Tensoriel

Dans le cadre en ligne, des échantillons de données sont collectés en con-

tinu avec le temps. En conséquence, le recalcul des méthodes LRA par lots

(par exemple, les algorithmes SVD ou TD par lots) à chaque pas de temps

devient inefficace en raison de leur grande complexité et de la variation tem-

porelle, c’est-à-dire de la dérive concept/distribution. Cela a conduit à définir

une variante de la LRA appelée LRA en ligne (adaptative) dans laquelle nous

pouvons vouloir suivre le processus sous-jacent qui génère des données en

continu dans le temps.

Lorsque les observations arrivant à chaque instant sont unidimension-

nelles (c’est-à-dire vectorielles), l’intérêt principal de la LRA en ligne est d’estimer

le sous-espace principal qui couvre de manière compacte ces observations

dans le temps. Plus précisément, on parle de problème de suivi de sous-espace

(ST) dans le traitement du signal, qui a été développé pendant plus de trois

décennies [19–21]. En général, à l’arrivée des nouvelles données y𝑡 ∈ R𝐼1×1

au temps 𝑡 , la matrice de sous-espace U𝑡 ∈ R𝐼1×𝑟 peut être dérivé de l’analyse
du spectre de la matrice de covariance suivante

C𝑡 =
𝑡∑︁

𝜏=𝑡−𝐿𝑡+1
𝛽𝑡−𝜏y𝜏y⊤𝜏 , (A.10)

où 𝐿𝑡 est la longueur de la fenêtre et 0 < 𝛽 ≤ 1 est le facteur d’oubli [20].

Lorsque 𝐿𝑡 = 𝑡 et 𝛽 = 1, C𝑡 dans (A.10) se résume à la matrice de covariance

d’échantillon classique. Plus précisément, dans une connexion au batch LRA

utilisant SVD, le vecteur y𝑡 peut être vu comme la 𝑡-ième colonne de lamatrice

APPENDIX A. RÉSUMÉ DE LA THÈSE 292

1tX

tX

Yt1tX

X t

ty

Old Observations New Data

Matrix Tensor

At time t

1X t

X t

1
Yt

2
Yt

3
Yt

Figure A.3: Données en continu.

sous-jacente X𝑡 = [X𝑡−1 y𝑡], voir Fig. A.3 pour une illustration. La matrice

de sous-espace U𝑡 joue le rôle de matrice vectorielle singulière gauche de X𝑡 ,
tandis que le vecteur de coefficients w𝑡 = U⊤𝑡 y𝑡 est bien la 𝑡-ième ligne de la

matrice V𝚲 dans l’expression SVD (A.1). Selon le choix de C𝑡 et la technique
d’estimation de sous-espace, nous pouvons obtenir plusieurs algorithmes de

suivi de sous-espace.

Lorsque les observations arrivant à chaque instant sont multidimension-

nelles (c’est-à-dire tensorielles), le LRA en ligne s’avère être un suivi tenseur

qui peut être considéré comme une généralisation du suivi subspatial. En

particulier, nous souhaitons estimer le dictionnaire de tenseurs (par exemple,

le(s) tenseur(s) central(s) et les facteurs de tenseur) qui génère les données de

flux sous-jacentes X𝑡 au fil du temps:

X𝑡 =

{
X𝑡−1 ⊞ Y𝑡 si streaming mono-aspect

X𝑡−1 ∪ Y𝑡 si streaming multi-aspects

, (A.11)

où “ ⊞ ” et “ ∪ ” désignent la concaténation du tenseur et l’opérateur d’union,

tandis que X𝑡−1 et Y𝑡 représentent respectivement l’ancienne et la nouvelle

observations. Le modèle “single-aspect streaming” et le modèle “multi-aspect

streaming” sont, respectivement, dédiés à représenter des flux de données

ayant une dimension et des dimensionsmultiples variant avec le temps. Lorsque

de nouveaux échantillons de données arrivent, le dictionnaire de tenseurs

de X𝑡 doit être mis à jour de manière incrémentielle sans réutiliser les al-

gorithmes TD par lots. Semblable au suivi de sous-espace, nous pouvons

également obtenir de nombreux algorithmes de suivi de tenseurs basés sur

différents formats de tenseurs, modèles de flux et techniques d’optimisation.

Les lecteurs sont renvoyés au chapitre 5 pour un apercu complet des algo-

rithmes de suivi de tenseur de pointe.

APPENDIX A. RÉSUMÉ DE LA THÈSE 293

Ces dernières années, l’explosion des flux de données volumineuses a posé

des défis importants au problème de la LRA en ligne. Par exemple, l’efficacité

et la robustesse sont très importantes lorsque nous traitons des données en

continu dans des dimensions élevées. De nombreux résultats théoriques dans

la théorie des matrices aléatoires (par exemple, [22–24]) ont indiqué que la

matrice de covariance de l’échantillon (SCM) n’est pas un estimateur efficace

de la matrice de covariance réelle dans l’échantillon de grande dimension et

de faible taille régime où les ensembles de données sont massifs à la fois en

dimension et en taille d’échantillon. Cependant, la plupart des méthodes de

suivi de sous-espace de pointe dans la littérature sont principalement basées

sur l’analyse spectrale du SCM, et donc, elles ne sont pas efficaces dans un tel

régime. En parallèle, les valeurs aberrantes clairsemées et les données man-

quantes deviennent de plus en plus omniprésentes dans les applications de

streaming modernes [6]. Les valeurs aberrantes éparses sont des points de

données qui semblent être incohérents ou qui présentent un comportement

anormal différent des autres. Des données manquantes sont souvent rencon-

trées lors de l’acquisition et de la collecte. Les valeurs aberrantes éparses et les

données manquantes peuvent entraîner plusieurs problèmes pour la décou-

verte des connaissances à partir des données en général et des flux de données

en particulier, voir Fig. A.4 pour une illustration de l’impact des valeurs aber-

rantes sur l’analyse en composantes principales (ACP) standard qui utilise

spécifiquement SVD dans son calcul. Par conséquent, cela nécessite des al-

gorithmes robustes capables de gérer de telles corruptions de données dans

le temps. De plus, des algorithmes de suivi évolutifs sont toujours souhaita-

bles pour gérer les flux de données modernes, en particulier pour les flux de

données à grande échelle et hautement multidimensionnels. Comme indiqué

plus loin, la plupart des algorithmes de suivi existants sont d’une complexité

élevée en ce qui concerne à la fois le calcul et le stockage en mémoire. En

conséquence, il est essentiel de développer des techniques de suivi efficaces

et évolutives à faible coût. Dans ce travail, nous visons à développer des al-

gorithmes de suivi efficients et efficaces qui ont la capacité de faire face à de

tels défis.

A.2 Description de la Thèse

A.2.1 Sommaire et Contributions de la Thèse

Le reste de ma thèse est organisé en deux grandes parties traitant respective-

ment du suivi des sous-espaces et du suivi des tenseurs, suivies de la conclu-

sion et des perspectives, veuillez consulter Fig. 1.6 pour un apercu.

APPENDIX A. RÉSUMÉ DE LA THÈSE 294

True Principal Component (PC)
Estimated PC

Inlier

Outlier

O Ox

y

x

y
Outlier points

Figure A.4: Effet des valeurs aberrantes sur la norme PCA

Partie I: Suivi de Sous-espace

Dans le Chapitre 2, nous fournissons un bref apercu des récents algorithmes

robustes de suivi de sous-espace qui ont été principalement développés au

cours de la dernière décennie. En particulier, nous commencons par intro-

duire les idées de base du problème de suivi de sous-espace. Nous mettons

ensuite en évidence les principales classes d’algorithmes pour traiter les bruits

non gaussiens (par exemple, les valeurs aberrantes éparses, le bruit impulsif

et le bruit coloré). Ces dernières années ont également vu la généralisation de

l’analyse de données de grande dimension dans laquelle des méthodes basées

sur la représentation clairsemée sont appliquées avec succès à de nombreuses

applications de traitement du signal. En conséquence, les algorithmes de suivi

de sous-espace clairsemé de l’état de l’art y sont également passés en revue.

Dans Chapitre 3, nous proposons un nouvel algorithme, à savoir PETRELS-

ADMM, pour traiter le suivi de sous-espace en présence de valeurs aberrantes

et de données manquantes. L’approche proposée consiste en deux étapes

principales: le rejet des valeurs aberrantes et l’estimation du sous-espace.

Dans la première étape, la méthode des multiplicateurs à direction alternée

(ADMM) est efficacement exploitée pour détecter les valeurs aberrantes affec-

tant les données observées. Dans la deuxième étape, nous proposons une ver-

sion améliorée de l’algorithme d’estimation et de suivi parallèles par les moin-

dres carrés récursifs (PETRELS) pour mettre à jour le sous-espace sous-jacent

dans le contexte des données manquantes. Nous présentons ensuite une anal-

yse de convergence théorique de PETRELS-ADMM qui montre qu’il génère

une séquence de solutions de sous-espaces convergeant vers l’optimumde son

homologue batch. L’efficacité de l’algorithme proposé, par rapport aux algo-

rithmes de pointe, est illustrée à la fois sur des données simulées et réelles.

Dans Chapitre 4, nous développons une nouvelle méthode efficace prou-

vable appelée OPIT pour suivre le sous-espace principal clairsemé des flux

APPENDIX A. RÉSUMÉ DE LA THÈSE 295

de données au fil du temps. En particulier, OPIT introduit une nouvelle vari-

ante adaptative d’itération de puissance avec un espace et une complexité de

calcul linéaires à la dimension des données. De plus, un nouvel opérateur de

seuillage basé sur les colonnes est développé pour régulariser la parcimonie

du sous-espace. Utilisant à la fois les avantages de l’itération de puissance et

de l’opération de seuillage, OPIT est capable de suivre le sous-espace sous-

jacent à la fois en régime classique et en régime de grande dimension. Nous

présentons également un résultat théorique sur sa convergence pour vérifier

sa consistance en grandes dimensions. Plusieurs expériences sont menées

sur des données synthétiques et réelles pour démontrer la capacité de suivi

d’OPIT.

Partie II: Suivi Tensoriel

Dans le Chapitre 5, nous proposons une étude contemporaine et complète

des différents types de techniques de suivi des tenseurs. Nous classons en

particulier les méthodes de pointe en trois groupes principaux : les décompo-

sitions CP en continu, les décompositions en continu de Tucker et les décom-

positions en continu sous d’autres formats de tenseurs (c’est-à-dire, train de

tenseurs, t-SVD et BTD). Dans chaque groupe, nous divisons en outre les algo-

rithmes existants en sous-catégories en fonction de leur cadre d’optimisation

principal et des architectures de modèles. Plus précisément, quatre groupes

principaux d’algorithmes de décomposition CP en continu ont été mis en évi-

dence, y compris la descente en coordonnées de bloc basée sur le sous-espace,

l’inférence bayésienne et les décompositions en continu multi-aspects. Nous

catégorisé la décomposition actuelle de Tucker en streaming méthodes en

trois grandes classes en fonction de leur modèle architecture. Il s’agit de

l’apprentissage en ligne du dictionnaire de tenseurs, du suivi du sous-espace

tenseur et des décompositions en continumulti-aspects. Enfin, un bref apercu

des méthodes existantes capables de suivre les tenseurs sous les formats TT,

BTD et t-SVD est présenté.

Dans Chapitre 6, nous proposons trois nouveaux algorithmes adaptatifs

pour suivre les tenseurs de flux d’ordre supérieur avec le temps, y compris

ACP, ATD et RACP. Sous le format CP, ACP minimise une fonction de coût

des moindres carrés récursive pondérée exponentiellement pour obtenir les

facteurs tensoriels de manière efficace, grâce au cadre de minimisation alter-

natif et à la technique d’esquisse aléatoire. Sous le format Tucker, ATD suit

d’abord les sous-espaces sous-jacents de faible dimension couvrant les fac-

teurs tensoriels, puis estime le tenseur central à l’aide d’une approximation

stochastique a. Les deux algorithmesACP et ATD sont rapides et parfaitement

capables de suivre les tenseurs de flux à partir d’observations incomplètes.

Lorsque les observations sont corrompues par des valeurs aberrantes éparses,

APPENDIX A. RÉSUMÉ DE LA THÈSE 296

nous introduisons l’algorithme dit RACP robuste aux corruptions grossières.

En particulier, RACP effectue d’abord le rejet des valeurs aberrantes en ligne

pour détecter et supprimer avec précision les valeurs aberrantes clairsemées,

puis effectue un suivi des facteurs tensoriels pour mettre à jour efficacement

les facteurs tensoriels. L’analyse de convergence pour trois algorithmes est

établie dans le sens où la séquence de solutions générées converge asymp-

totiquement vers un point stationnaire de la fonction objectif. Des expéri-

ences approfondies sont menées sur des données synthétiques et réelles pour

démontrer l’efficacité des algorithmes proposés par rapport aux algorithmes

adaptatifs de pointe.

Dans le Chapitre 7, nous introduisons trois nouvelles méthodes pour le

problème de la décomposition en continu des trains de tenseurs. La pre-

mière méthode appelée TT-FOA est capable de suivre avec une grande pré-

cision les composantes de rang inférieur des tenseurs d’ordre élevé à par-

tir de données bruitées et de grande dimension, même lorsqu’elles provien-

nent d’observations dépendant du temps. La deuxième méthode appelée ATT

est particulièrement concue pour gérer les tenseurs de flux incomplets. ATT

est évolutif, efficace et apte à estimer les composants de faible rang TT des

tenseurs de flux. En outre, ATT peut prendre en charge l’informatique paral-

lèle et distribuée. Pour traiter les valeurs aberrantes éparses, nous proposons

le soi-disant ROBOT qui signifie ROBust Online Tensor-Train decomposition.

Techniquement, ROBOT a la capacité de suivre les tenseurs de streaming à

partir de flux imparfaits (c’est-à-dire en raison du bruit, des valeurs aberrantes

et des donnéesmanquantes) ainsi que de suivre leur variation temporelle dans

des environnements dynamiques.

Conclusion et Perspectives

Le chapitre 8 conclut la thèse avec nos principaux résultats et un apercu des

travaux futurs. En particulier, nous présentons plusieurs défis de recherche et

problèmes ouverts qui devraient être pris en compte pour le développement

du suivi de la composante de rang inférieur des flux de données à l’avenir. Il

s’agit de l’imperfection et de la corruption des données; classement et suivi;

suivi de tenseur efficace et évolutif; et d’autres aspects tels que l’analyse

théorique, les données symboliques et le suivi sous des formats de tenseur

moins courants. Des solutions possibles à ces défis sont également discutées.

A.2.2 Liste des Publications

La plupart des résultats ci-dessus ont été publiés/soumis dans les articles suiv-

ants:

APPENDIX A. RÉSUMÉ DE LA THÈSE 297

Articles de Journaux:

[25] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace
Tracking With Missing Data and Outliers: Novel Algorithm With Convergence
Guarantee”, IEEE Trans. Signal Process., vol. 69, pp. 2070–2085, 2021.

[26] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace
Tracking Algorithms in Signal Processing: A Brief Survey”,REV J. Elect. Com-

mun., vol. 11, no. 1–2, pp. 15–25, 2021.

[27] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor
Tracking with Missing Data and Outliers: Novel Adaptive CP Decomposition and
Convergence Analysis”, IEEE Trans. Signal Process., vol. 70, pp. 4305–4320,

2022.

[28] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Contemporary
and Comprehensive Survey on Streaming Tensor Decomposition”, IEEE Trans.

Knowl. Data. Eng., 2022 (in press).

[29] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “OPIT: A Simple
and Effective Method for Sparse Subspace Tracking in High-dimension and Low-
sample-size Context”, IEEE Trans. Signal Process., 2022 (submitted).

[30] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Tracking On-
line Low-Rank Approximations of Higher-Order Incomplete Streaming Tensors”,
Elsevier Patterns, 2022 (submitted).

[31] L. T. Thanh, K. Abed-Meraim, N. L. Trung andA.Hafiane, “Streaming Tensor-
Train DecompositionWithMissing Data”, Elsevier Signal Process., 2022 (sub-
mitted).

Conférence:

[32] L. T. Thanh, K. Abed-Meraim, N. L. Trung and R. Boyer, “Adaptive Algo-
rithms for Tracking Tensor-Train Decomposition of Streaming Tensors”, in Proc.

28th EUSIPCO, 2020, pp. 995–999.

[33] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Fast Random-
ized Adaptive CP Decomposition for Streaming Tensors”, inProc. 46th ICASSP,

2021, pp. 2910–2914.

[34] L. T. Thanh, K. Abed-Meraim, A. Hafiane and N. L. Trung, “Sparse Subspace
Tracking in High Dimensions”, in Proc. 47th ICASSP, 2022, pp. 5892–5896.

[35] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor
Tracking With Missing Data Under Tensor-Train Format”, in Proc. 30th EU-

SIPCO, 2022, pp. 832–836.

[36] L. T. Thanh, T. T. Duy, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust
Online Tucker Dictionary Learning from Multidimensional Data Streams”, in
Proc. 14th APSIPA-ASC, 2022, pp. 1815–1820.

Contributions en Dehors du Champ de la Thèse

Au cours de mes études de doctorat, j’ai également apporté d’autres contri-

butions à l’identification des systèmes aveugles qui ne sont pas incluses dans

cette thèse:

APPENDIX A. RÉSUMÉ DE LA THÈSE 298

[37] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Misspecified Cramer-Rao
Bounds for Blind Channel Estimation under Channel Order Misspecification”,
IEEE Trans. Signal Process., vol. 69, pp. 5372–5385, 2021.

[38] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Performance Lower Bounds
of Blind System Identification Techniques in the Presence of Channel Order Esti-
mation Error”, in Proc. 29th EUSIPCO, 2021, pp. 1646–1650.

[39] O. Rekik, A. Mokraoui, T. T. T Quynh, L. T. Thanh and K. Abed-Meraim.

“Side Information Effect on Semi-Blind Channel Identification for MIMO-OFDM
Communications Systems”, in Proc. 55th ASILOMAR 2021, pp. 443–448.

Bibliography

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data,” Inf. Sci., vol. 275,
pp. 314–347, 2014.

[2] T. Kolajo, O. Daramola, and A. Adebiyi, “Big data stream analysis: A

systematic literature review,” J. Big Data, vol. 6, no. 1, pp. 1–30, 2019.

[3] M. Bahri, A. Bifet, J. Gama, H. M. Gomes, and S. Maniu, “Data stream

analysis: Foundations, major tasks and tools,”WIREs Data Min. Knowl.
Discov., vol. 11, no. 3, p. 1405, 2021.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and

M. Ayyash, “Internet of things: A survey on enabling technologies, pro-

tocols, and applications,” IEEE Commun. Surv. Tutor., vol. 17, no. 4, pp.
2347–2376, 2015.

[5] A. A. Safaei, “Real-time processing of streaming big data,” Real-Time
Syst., vol. 53, no. 1, pp. 1–44, 2017.

[6] T. Akidau, S. Chernyak, and R. Lax, Streaming Systems: The What,
Where, When, and How of Large-Scale Data Processing, 2018.

[7] I. Markovsky, Low-Rank Approximation: Algorithms, Implementation,
Applications, 2019.

[8] G. W. Stewart, “On the early history of the singular value decomposi-

tion,” SIAM Rev., vol. 35, no. 4, pp. 551–566, 1993.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 2012.

[10] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”

SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[11] N. D. Sidiropoulos, L. D. Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,

and C. Faloutsos, “Tensor decomposition for signal processing and ma-

chine learning,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3551–
3582, 2017.

299

BIBLIOGRAPHY 300

[12] A. Cichocki, N. Lee, I. V. Oseledets, A.-H. Phan, Q. Zhao, and D. P.

Mandic, “Tensor networks for dimensionality reduction and large-scale

optimization: Part 1 low-rank tensor decompositions,” Found. Trends
Mach. Learn., vol. 9, no. 4-5, pp. 249–429, 2016.

[13] Y. Liu, J. Liu, Z. Long, and C. Zhu, Tensor Computation for Data Analysis,
2022.

[14] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and

conditions for an explanatory multimodal factor analysis,” UCLAWork.
Pap. Phon., vol. 16, no. 1-84, 1970.

[15] L. R. Tucker, “Somemathematical notes on three-mode factor analysis,”

Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[16] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, 2011.

[17] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order

tensors,” Linear Algebra Appl., vol. 435, no. 3, pp. 641–658, 2011.

[18] L. De Lathauwer, “Decompositions of a higher-order tensor in block

terms—Part II: Definitions and uniqueness,” SIAM J. Matrix Anal. Appl.,
vol. 30, no. 3, pp. 1033–1066, 2008.

[19] P. Comon andG. H. Golub, “Tracking a few extreme singular values and

vectors in signal processing,” Proc. IEEE, vol. 78, no. 8, pp. 1327–1343,
1990.

[20] J.-P. Delmas, “Subspace tracking for signal processing,” inAdaptive Sig-
nal Processing: Next Generation Solutions, 2010, pp. 211–270.

[21] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust

subspace learning: Robust PCA, robust subspace tracking, and robust

subspace recovery,” IEEE Signal Process. Mag., vol. 35, no. 4, pp. 32–55,
2018.

[22] N. El. Karoui, “Spectrum estimation for large dimensional covariance

matrices using random matrix theory,” Ann. Stat., vol. 36, no. 6, pp.
2757–2790, 2008.

[23] X. Mestre, “On the asymptotic behavior of the sample estimates of

eigenvalues and eigenvectors of covariance matrices,” IEEE Trans. Sig-
nal Process., vol. 56, no. 11, pp. 5353–5368, 2008.

[24] R. Vershynin, “How close is the sample covariance matrix to the actual

covariance matrix?” J. Theor. Probab., vol. 25, no. 3, pp. 655–686, 2012.

BIBLIOGRAPHY 301

[25] L. T. Thanh, N. V. Dung, N. L. Trung, and K. Abed-Meraim, “Robust

subspace trackingwithmissing data and outliers: Novel algorithmwith

convergence guarantee,” IEEE Trans. Signal Process., vol. 69, pp. 2070–
2085, 2021.

[26] ——, “Robust subspace tracking algorithms in signal processing: A brief

survey,” REV J. Elect. Commun., vol. 11, no. 1-2, pp. 16–25, 2021.

[27] L. T. Thanh, K. Abed-Meraim, N. Linh Trung, and A. Hafiane, “Robust

tensor tracking with missing data and outliers: Novel adaptive CP de-

composition and convergence analysis,” vol. 70, pp. 4305–4320, 2022.

[28] ——, “A Contemporary and Comprehensive Survey on Streaming Ten-

sor Decomposition,” IEEE Trans. Knowl. Data Eng., 2022 (submitted).

[29] L. T. Thanh, K. Abed Meraim, N. L. Trung, and A. Hafiane, “OPIT: A

Simple and Effective Method for Sparse Subspace Tracking in High-

dimension and Low-sample-size Context,” IEEE Trans. Signal Process.,
2022 (submitted).

[30] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “Tracking

dynamic low-rank approximations of incomplete high-order streaming

tensors,” Elsevier Patterns, 2022 (submitted).

[31] L. T. Thanh, K. Abed Meraim, N. Linh Trung, and A. Hafiane, “Stream-

ing tensor-train decomposition with missing data,” Signal Process., 2022
(submitted).

[32] L. T. Thanh, K. Abed-Meraim, N. Linh-Trung, and R. Boyer, “Adaptive

algorithms for tracking tensor-train decomposition of streaming ten-

sors,” in Eur. Signal Process. Conf., 2020, pp. 995–999.

[33] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “A fast ran-

domized adaptive CP decomposition for streaming tensors,” in IEEE Int.
Conf. Acoust. Speech Signal Process., 2021, pp. 2910–2914.

[34] L. T. Thanh, K. Abed-Meraim, A. Hafiane, and N. L. Trung, “Sparse

subspace tracking in high dimensions,” in IEEE Int. Conf. Acoust. Speech
Signal Process., 2022, pp. 5892–5896.

[35] L. T. Thanh, K. Abed-Meraim, N. Linh Trung, and A. Hafiane, “Robust

tensor tracking with missing data under tensor-train format,” in Eur.
Signal. Process. Conf., 2022, pp. 832–836.

[36] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “Robust

online tucker dictionary learning frommultidimensional data streams,”

BIBLIOGRAPHY 302

in Proc. 14th Asia-Pacific Signal Inf. Process. Assoc. Ann. Summit Conf.,
2022.

[37] L. T. Thanh, K. Abed-Meraim, and N. L. Trung, “Misspecified

Cramer–Rao Bounds for Blind Channel Estimation Under Channel Or-

der Misspecification,” IEEE Trans. Signal Process., vol. 69, pp. 5372–5385,
2021.

[38] ——, “Performance lower bounds of blind system identification tech-

niques in the presence of channel order estimation error,” in Eur. Signal
Process. Conf., 2021, pp. 1646–1650.

[39] O. Rekik, A. Mokraoui, T. T. Thuy Quynh, T.-T. Le, and K. Abed-

Meraim, “Side Information Effect on Semi-Blind Channel Identifica-

tion for MIMO-OFDM Communications Systems,” in 2021 55th Asilo-
mar Conference on Signals, Systems, and Computers, 2021, pp. 443–448.

[40] I. Jolliffe, Principal Component Analysis, 2002.

[41] L. Balzano, Y. Chi, and Y. M. Lu, “Streaming PCA and Subspace Track-

ing: The Missing Data Case,” Proceed. IEEE, vol. 106, no. 8, pp. 1293–
1310, 2018.

[42] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component

analysis?” J. ACM, vol. 58, no. 3, p. 11, 2011.

[43] N. Vaswani, Y. Chi, and T. Bouwmans, “Rethinking PCA for modern

data sets: Theory, algorithms, and applications,” Proc. IEEE, vol. 106,
no. 8, pp. 1274–1276, 2018.

[44] I. T. Jolliffe and J. Cadima, “Principal component analysis: A review and

recent developments,” Philos. Trans. Royal Soc. A, vol. 374, no. 2065, p.
20150202, 2016.

[45] C. Wang, Y. C. Eldar, and Y. M. Lu, “Subspace estimation from incom-

plete observations: A high-dimensional analysis,” IEEE J. Sel. Top. Sig-
nal Process., vol. 12, no. 6, pp. 1240–1252, 2018.

[46] N. Vaswani and P. Narayanamurthy, “Static and dynamic robust PCA

and matrix completion: A review,” Proc. IEEE, vol. 106, no. 8, pp. 1359–
1379, 2018.

[47] G. Lerman and T. Maunu, “An overview of robust subspace recovery,”

Proc. IEEE, vol. 106, no. 8, pp. 1380–1410, 2018.

BIBLIOGRAPHY 303

[48] S. X. Wu, H. Wai, L. Li, and A. Scaglione, “A review of distributed al-

gorithms for principal component analysis,” Proc. IEEE, vol. 106, no. 8,
pp. 1321–1340, 2018.

[49] H. Zou and L. Xue, “A selective overview of sparse principal component

analysis,” Proc. IEEE, vol. 106, no. 8, pp. 1311–1320, 2018.

[50] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the Grass-

mannian for online foreground and background separation in subsam-

pled video,” in IEEE Conf. Comput. Vis. Pattern Recogn. IEEE, 2012, pp.

1568–1575.

[51] J. Xu, V. K. Ithapu, L. Mukherjee, J. M. Rehg, and V. Singh, “GOSUS:

Grassmannian online subspace updates with structured-sparsity,” in

IEEE Int. Conf. Comput. Vis., 2013, pp. 3376–3383.

[52] F. Seidel, C. Hage, and M. Kleinsteuber, “pROST: A smoothed lp-Norm

robust online subspace tracking method for background subtraction in

video,” Mach. Vis. Appl., vol. 25, no. 5, pp. 1227–1240, 2014.

[53] C. Hage and M. Kleinsteuber, “Robust PCA and subspace tracking from

incomplete observations using ℓ0-Surrogates,” Comput. Stat., vol. 29, no.
3-4, pp. 467–487, 2014.

[54] J. Shen, H. Xu, and P. Li, “Online optimization for max-norm regular-

ization,” in Adv. Neural Inf. Process. Syst., 2014, pp. 1718–1726.

[55] H. Mansour and X. Jiang, “A robust online subspace estimation and

tracking algorithm,” in IEEE Int. Conf. Acoust. Speech Signal Process.,
2015, pp. 4065–4069.

[56] S. Chouvardas, Y. Kopsinis, and S. Theodoridis, “An Adaptive Projected

Subgradient based algorithm for robust subspace tracking,” in IEEE Int.
Conf. Acoust. Speech Signal Process., 2014, pp. 5497–5501.

[57] ——, “Robust subspace tracking with missing entries: The set-theoretic

approach,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5060–5070,
2015.

[58] J. Zhan, B. Lois, H. Guo, and N. Vaswani, “Online (and offline) robust

PCA: Novel algorithms and performance guarantees,” in Artif. Intell.
Stat., 2016, pp. 1488–1496.

[59] B. Hong, L. Wei, Y. Hu, D. Cai, and X. He, “Online robust principal

component analysis via truncated nuclear norm regularization,” Neu-
rocomput., vol. 175, pp. 216–222, 2016.

BIBLIOGRAPHY 304

[60] K. G. Quach, C. N. Duong, K. Luu, and T. D. Bui, “Non-convex online

robust PCA: Enhance sparsity via p-Norm minimization,” Comput. Vis.
Image Underst., vol. 158, pp. 126–140, 2017.

[61] P. P. Markopoulos, M. Dhanaraj, and A. Savakis, “Adaptive L1-norm

principal-component analysis with online outlier rejection,” IEEE J. Sel.
Top. Signal Process., vol. 12, no. 6, pp. 1131–1143, 2018.

[62] N. Linh-Trung, V. D. Nguyen, M. Thameri, T.Minh-Chinh, and K. Abed-

Meraim, “Low-complexity adaptive algorithms for robust subspace

tracking,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 6, pp. 1197–1212,
2018.

[63] P. Narayanamurthy and N. Vaswani, “Provable dynamic robust PCA

or robust subspace tracking,” IEEE Trans. Inf. Theory, vol. 65, no. 3, pp.
1547–1577, 2019.

[64] P. Narayanamurthy, V. Daneshpajooh, and N. Vaswani, “Provable sub-

space tracking from missing data and matrix completion,” IEEE Trans.
Signal Process., pp. 4245–4260, 2019.

[65] Y. Liu, K. Tountas, D. A. Pados, S. N. Batalama, and M. J. Medley, “L1-

subspace tracking for streaming data,” Pattern Recog., vol. 97, p. 106992,
2020.

[66] X. Jia, X. Feng, W. Wang, H. Huang, and C. Xu, “Online Schatten quasi-

norm minimization for robust principal component analysis,” Inf. Sci.,
vol. 476, pp. 83–94, 2019.

[67] P. Narayanamurthy and N. Vaswani, “Fast robust subspace tracking

via PCA in sparse data-dependent noise,” IEEE J. Sel. Areas Inf. Theory,
vol. 1, no. 3, pp. 723–744, 2020.

[68] R. Chakraborty, S. Hauberg, and B. C. Vemuri, “Intrinsic Grassmann

averages for online linear and robust subspace learning,” in IEEE Conf.
Comput. Vis. Pattern Recogn., 2017, pp. 6196–6204.

[69] R. Chakraborty, L. Yang, S. Hauberg, and B. Vemuri, “Intrinsic Grass-

mann averages for online linear, robust and nonlinear subspace learn-

ing,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 1–1, 2020.

[70] L. T. Thanh, N. V. Dung, N. L. Trung, and K. AbedMeraim, “Robust sub-

space tracking with missing data and outliers via ADMM,” in European
Signal Process. Conf., 2019, pp. 1–5.

BIBLIOGRAPHY 305

[71] S. Hauberg, A. Feragen, R. Enficiaud, and M. J. Black, “Scalable robust

principal component analysis using Grassmann averages,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 38, no. 11, pp. 2298–2311, 2016.

[72] L. Balzano, R. Nowak, and B. Recht, “Online identification and track-

ing of subspaces from highly incomplete information,” inAllerton Conf.
Commun. Control Comput., 2010, pp. 704–711.

[73] Y. Chi, Y. C. Eldar, and R. Calderbank, “PETRELS: Parallel subspace

estimation and tracking by recursive least squares from partial obser-

vations,” IEEE Trans. Signal Process., vol. 61, no. 23, pp. 5947–5959, 2013.

[74] B. Yang, “Projection approximation subspace tracking,” IEEE Trans. Sig-
nal Process., vol. 43, no. 1, pp. 95–107, 1995.

[75] K. L. Blackard, T. S. Rappaport, and C. W. Bostian, “Measurements and

models of radio frequency impulsive noise for indoor wireless com-

munications,” IEEE J. Sel. Areas Commun., vol. 11, no. 7, pp. 991–1001,
1993.

[76] W. Ebel and W. Tranter, “The performance of Reed-Solomon codes on

a bursty-noise channel,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp.
298–306, 1995.

[77] Kung Yao, “A representation theorem and its applications to

spherically-invariant random processes,” IEEE Trans. Inf. Theory,
vol. 19, no. 5, pp. 600–608, 1973.

[78] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, “Complex elliptically

symmetric distributions: Survey, new results and applications,” IEEE
Trans. Signal Process., vol. 60, no. 11, pp. 5597–5625, 2012.

[79] C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distribu-
tions and Applications, 1995.

[80] P. G. Georgiou, P. Tsakalides, and C. Kyriakakis, “Alpha-stable model-

ing of noise and robust time-delay estimation in the presence of impul-

sive noise,” IEEE Trans. Multimedia, vol. 1, no. 3, pp. 291–301, 1999.

[81] S.-C. Chan, Y. Wen, and K.-L. Ho, “A robust past algorithm for subspace

tracking in impulsive noise,” IEEE Trans. Signal Process., vol. 54, no. 1,
pp. 105–116, 2006.

[82] J. Zhang and T.-s. Qiu, “A robust correntropy based subspace track-

ing algorithm in impulsive noise environments,” Digit. Signal Process.,
vol. 62, pp. 168–175, 2017.

BIBLIOGRAPHY 306

[83] S. Luan, T. Qiu, L. Yu, J. Zhang, A. Song, and Y. Zhu, “BNC-based pro-

jection approximation subspace tracking under impulsive noise,” IET
Radar Sonar Navig., vol. 11, no. 7, pp. 1055–1061, 2017.

[84] B. Liao, Z. Zhang, and S.-C. Chan, “A new robust Kalman filter-based

subspace tracking algorithm in an impulsive noise environment,” IEEE
Trans. Circuits Syst. II Express Briefs, vol. 57, no. 9, pp. 740–744, 2010.

[85] J.-f. ZHANG, T.-s. QIU, and S. LI, “A robust PAST algorithm based

on maximum correntropy criterion for impulsive noise environments,”

Acta Electonica Sin., vol. 43, no. 3, p. 483, 2015.

[86] J. Zhang and T. Qiu, “A novel tracking method for fast varying sub-

spaces in impulsive noise environments,” in 2016 Int. Conf. Signal Pro-
cess. Commun. Syst., 2016, pp. 1–7.

[87] S. Chan, Z. Zhang, and Y. Zhou, “A new adaptive Kalman filter-based

subspace tracking algorithm and its application to DOA estimation,” in

IEEE Int. Symp. Circuits Systt., 2006, pp. 4 pp.–132.

[88] T. Gustafsson, “Instrumental variable subspace tracking using projec-

tion approximation,” IEEE Trans. Signal Process., vol. 46, no. 3, pp. 669–
681, 1998.

[89] G. Mercère, L. Bako, and S. Lecœuche, “Propagator-based methods for

recursive subspace model identification,” Signal Process., vol. 88, no. 3,
pp. 468–491, 2008.

[90] S. Chan, H. Tan, and J. Lin, “A new variable forgetting factor and vari-

able regularized square root extended instrumental variable PAST al-

gorithm with applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 56,
no. 3, pp. 1886–1902, 2020.

[91] M. Chen and Z. Wang, “Subspace tracking in colored noise based on

oblique projection,” in 2006 IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings, vol. 3, 2006, pp. III–III.

[92] F. Yger, M. Berar, G. Gasso, and A. Rakotomamonjy, “Oblique principal

subspace tracking on manifold,” in IEEE Int. Conf. Acoust. Speech Signal
Process., 2012, pp. 2429–2432.

[93] C. Wang and Y. M. Lu, “Online learning for sparse PCA in high di-

mensions: Exact dynamics and phase transitions,” in IEEE Inf. Theory
Works., 2016, pp. 186–190.

BIBLIOGRAPHY 307

[94] W. Yang and H. Xu, “Streaming Sparse Principal Component Analysis,”

in Int. Conf. Mach. Learn., 2015, pp. 494–503.

[95] X. Yang, Y. Sun, T. Zeng, T. Long, and T. K. Sarkar, “Fast STAP method

based on PAST with sparse constraint for airborne phased array radar,”

IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4550–4561, 2016.

[96] P. V. Giampouras, A. A. Rontogiannis, K. E. Themelis, and K. D.

Koutroumbas, “Online sparse and low-rank subspace learning from in-

complete data: A Bayesian view,” Signal Process., vol. 137, pp. 199–212,
2017.

[97] N. Lassami, K. Abed-Meraim, and A. Aïssa-El-Bey, “Low cost subspace

tracking algorithms for sparse systems,” in Eur. Signal Process. Conf.,
2017, pp. 1400–1404.

[98] N. Lassami, A. Aïssa-El-Bey, and K. Abed-Meraim, “Low cost sparse

subspace tracking algorithms,” Signal Process., vol. 173, p. 107522, 2020.

[99] R. Badeau, G. Richard, and B. David, “Fast and stable YAST algorithm

for principal and minor subspace tracking,” IEEE Trans. Signal Process.,
vol. 56, no. 8, pp. 3437–3446, 2008.

[100] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse rep-

resentation: Algorithms and applications,” IEEE Access, vol. 3, pp. 490–
530, 2015.

[101] T. T. Cai, Z. Ma, Y. Wu et al., “Sparse PCA: Optimal rates and adaptive

estimation,” Ann. Stat., vol. 41, no. 6, pp. 3074–3110, 2013.

[102] D. Papailiopoulos, A. Dimakis, and S. Korokythakis, “Sparse PCA

through low-rank approximations,” in Int. Conf. Mach. Learn., 2013, pp.
747–755.

[103] V. Q. Vu, J. Cho, J. Lei, and K. Rohe, “Fantope projection and selection:

A near-Optimal convex relaxation of sparse PCA,” in Adv. Neural Inf.
Process. Syst., 2013, pp. 2670–2678.

[104] N. Lassami, A. Aïssa-El-Bey, and K. Abed-Meraim, “Fast sparse sub-

space tracking algorithm based on shear and givens rotations,” inAsilo-
mar Conf. Signals Syst. Comput., 2019, pp. 1667–1671.

[105] A. Tulay and H. Simon, Adaptive Signal Processing: Next Generation
Solutions, 2010.

BIBLIOGRAPHY 308

[106] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning and

imputation for streaming big data matrices and tensors,” IEEE Trans.
Signal Process., vol. 63, no. 10, pp. 2663–2677, 2015.

[107] N. V. Dung, K. Abed-Meraim, N. L. Trung, and R. Weber, “Generalized

minimum noise subspace for array processing,” IEEE Trans. Signal Pro-
cess., vol. 65, no. 14, pp. 3789–3802, 2017.

[108] S. Haghighatshoar and G. Caire, “Low-complexity massive MIMO sub-

space estimation and tracking from low-dimensional projections,” IEEE
Trans. Signal Process., vol. 66, no. 7, pp. 1832–1844, 2018.

[109] S. Buzzi and C. D’Andrea, “Subspace tracking and least squares ap-

proaches to channel estimation in millimeter wave multiuser MIMO,”

IEEE Trans. Commun., vol. 67, no. 10, pp. 6766–6780, 2019.

[110] D. Zhang and L. Balzano, “Global convergence of a Grassmannian gra-

dient descent algorithm for subspace estimation.” in Int. Conf. Artif. In-
tell. Stat., Cadiz, Spain, 2016, pp. 1460–1468.

[111] A. Gonen, D. Rosenbaum, Y. C. Eldar, and S. Shalev-Shwartz, “Subspace

learning with partial information,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 1821–1841, 2016.

[112] M. Shor and N. Levanon, “Performances of order statistics CFAR,” IEEE
Trans. Aerosp. Electron. Syst., vol. 27, no. 2, pp. 214–224, 1991.

[113] J. A. Tropp, “Just relax: Convex programming methods for identifying

sparse signals in noise,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1030–
1051, 2006.

[114] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-

timization and statistical learning via the alternating direction method

of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[115] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal pa-

rameter selection for the alternating direction method of multipliers

(ADMM): Quadratic problems,” IEEE Trans. Automat. Contr., vol. 60,
no. 3, pp. 644–658, 2015.

[116] Y. Xu, M. Liu, Q. Lin, and T. Yang, “ADMM without a fixed penalty pa-

rameter: Faster convergence with new adaptive penalization,” in Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1267–1277.

[117] W. Tian and X. Yuan, “An alternating direction method of multipliers

with a worst-case O(1/n$2̂$) convergence rate,”Math. Comput., vol. 88,
no. 318, pp. 1685–1713, 2019.

BIBLIOGRAPHY 309

[118] N. Parikh and S. Boyd, “Proximal Algorithms,” Found. Trends Opt., vol. 1,
no. 3, pp. 127–239, 2014.

[119] W. W. Hager, “Updating the inverse of a matrix,” SIAM Rev., vol. 31,
no. 2, pp. 221–239, 1989.

[120] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix

factorization and sparse coding,” J. Mach. Learn. Res., vol. 11, no. Jan,
pp. 19–60, 2010.

[121] J. Feng, H. Xu, and S. Yan, “Online robust PCA via stochastic optimiza-

tion,” in Adv. Neural Inf. Process. Syst., 2013, pp. 404–412.

[122] J. Shen, H. Xu, and P. Li, “Online optimization for max-norm regular-

ization,” Mach. Learn., vol. 106, no. 3, pp. 419–457, 2017.

[123] G. Li and T. K. Pong, “Global convergence of splitting methods for

nonconvex composite optimization,” SIAM J. Optim., vol. 25, no. 4, pp.
2434–2460, 2015.

[124] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in non-

convex nonsmooth optimization,” J. Sci. Comput., vol. 78, no. 1, pp. 29–
63, 2019.

[125] L. Bottou, “Online learning and stochastic approximations,” -Line
Learn. Neural Netw., vol. 17, no. 9, p. 142.

[126] A. W. Van der Vaart, Asymptotic Statistics, 2000.

[127] D. M. Powers, “Evaluation: From precision, recall and F-measure to

ROC, informedness, markedness and correlation,” J. Mach. Learn. Tech.,
vol. 2, no. 1, pp. 37–63, 2011.

[128] B. Vandereycken, “Low-rank matrix completion by Riemannian opti-

mization,” SIAM J. Optim., vol. 23, no. 2, pp. 1214–1236, 2013.

[129] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust

PCA via gradient descent,” in Adv. Neural Inf. Process. Syst., 2016, pp.
4152–4160.

[130] L. T. Nguyen, J. Kim, and B. Shim, “Low-rank matrix completion: A

contemporary survey,” IEEE Access, vol. 7, pp. 94 215–94 237, 2019.

[131] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “Changede-

tection.Net: A new change detection benchmark dataset,” in IEEE Conf.
Comput. Vis. Pattern Recogn., 2012, pp. 1–8.

BIBLIOGRAPHY 310

[132] S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

[133] K. Knopp, Theory and Application of Infinite Series, 2013.

[134] S. Shalev-Shwartz and Y. Singer, “Online learning: Theory, algorithms,

and applications,” 2007.

[135] K. Fountoulakis and J. Gondzio, “A second-order method for strongly

convex 1 -regularization problems,” Math. Program., vol. 156, no. 1-2,
pp. 189–219, 2016.

[136] D. P. Bertsekas, “Nonlinear programming,” J. Oper. Res. Soc., vol. 48,
no. 3, pp. 334–334, 1997.

[137] J. Gama, I. Zliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A

survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4,
pp. 1–37, 2014.

[138] N. El Karoui, “Operator norm consistent estimation of large-

dimensional sparse covariance matrices,” Ann. Stat., vol. 36, no. 6, pp.
2717–2756, 2008.

[139] C. Lam and J. Fan, “Sparsistency and rates of convergence in large co-

variance matrix estimation,” Ann. Stat., vol. 37, no. 6B, p. 4254, 2009.

[140] I. M. Johnstone and A. U. Lu, “On consistency and sparsity for principal

components analysis in high dimensions,” J. Am. Stat. Assoc., vol. 104,
no. 486, pp. 682–693, 2009.

[141] P. J. Bickel and E. Levina, “Covariance regularization by thresholding,”

Ann. Stat., vol. 36, no. 6, pp. 2577–2604, 2008.

[142] D. Shen, H. Shen, and J. S. Marron, “Consistency of sparse PCA in high

dimension, low sample size contexts,” J. Mult. Anal., vol. 115, pp. 317–
333, 2013.

[143] A. A. Arash and J. W. Martin, “High-dimensional analysis of semidef-

inite relaxations for sparse principal components,” Ann. Stat., vol. 37,
no. 5B, pp. 2877–2921, 2009.

[144] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, “Generalized

powermethod for sparse principal component analysis.” J. Mach. Learn.
Res., vol. 11, no. 2, pp. 517–553, 2010.

[145] Z. Ma, “Sparse principal component analysis and iterative threshold-

ing,” Ann. Stat., vol. 41, no. 2, pp. 772–801, 2013.

BIBLIOGRAPHY 311

[146] T. Cai, Z. Ren, and H. H. Zhou, “Estimating structured high-

dimensional covariance and precision matrices: Optimal rates and

adaptive estimation,” Electron. J. Stat., vol. 10, no. 1, pp. 1–59, 2016.

[147] P. Xiao and L. Balzano, “Online sparse and orthogonal subspace esti-

mation from partial information,” in Allerton Conf. Commun. Control
Comput., 2016, pp. 284–291.

[148] K. Abed-Meraim, S. Attallah, A. Chkeif, and Y. Hua, “Orthogonal Oja

algorithm,” IEEE Signal Process. Lett., vol. 7, no. 5, pp. 116–119, 2000.

[149] Z. Allen-Zhu and Y. Li, “First efficient convergence for streaming k-

PCA: A global, gap-free, and near-optimal rate,” in IEEE Ann. Symp.
Found. Comput. Sci., 2017, pp. 487–492.

[150] Y. Hua, Y. Xiang, T. Chen, K. Abed-Meraim, and Y. Miao, “A new look

at the power method for fast subspace tracking,” Digit. Signal Process.,
vol. 9, no. 4, pp. 297–314, 1999.

[151] K. Abed-Meraim, A. Chkeif, Y. Hua, and S. Attallah, “On a class of or-

thonormal algorithms for principal and minor subspace tracking,” J.
VLSI Signal Process. Syst., vol. 31, no. 1, pp. 57–70, 2002.

[152] X. G. Doukopoulos and G. V. Moustakides, “Fast and stable subspace

tracking,” IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1452–1465, 2008.

[153] R. Wang, M. Yao, D. Zhang, and H. Zou, “A novel orthonormalization

matrix based fast and stable DPM algorithm for principal and minor

subspace tracking,” IEEE Trans. Signal Process., vol. 60, no. 1, pp. 466–
472, 2011.

[154] R. Badeau, B. David, and G. Richard, “Fast approximated power itera-

tion subspace tracking,” IEEE Trans. Signal Process., vol. 53, no. 8, pp.
2931–2941, 2005.

[155] Q. Wu, J. Zheng, Z. Dong, E. Panayirci, Z. Wu, and R. Qingnuobu, “An

improved adaptive subspace tracking algorithm based on approximated

power iteration,” IEEE Access, vol. 6, pp. 43 136–43 145, 2018.

[156] N. Vaswani and P. Narayanamurthy, “Static and dynamic robust PCA

and matrix completion: A review,” Proc. IEEE, vol. 106, no. 8, pp. 1359–
1379, 2018.

[157] J. He, L. Balzano, andA. Szlam, “Incremental gradient on the Grassman-

nian for online foreground and background separation in subsampled

video,” in IEEE Conf. Comput. Vis. Pattern Recogn., 2012, pp. 1568–1575.

BIBLIOGRAPHY 312

[158] S.-C. Chan, Y. Wen, and K.-L. Ho, “A robust PAST algorithm for sub-

space tracking in impulsive noise,” IEEE Trans. Signal Process., vol. 54,
no. 1, pp. 105–116, 2006.

[159] V.-D. Nguyen, N. L. Trung, and K. Abed-Meraim, “Robust subspace

tracking algorithms using fast adaptive Mahalanobis distance,” Signal
Process., vol. 195, p. 108402, 2022.

[160] A. M. Rekavandi, A.-K. Seghouane, and K. Abed-Meraim, “TRPAST:

A tunable and robust projection approximation subspace tracking

method,” IEEE Trans. Signal Process., 2022 (submitted).

[161] L. T. Thanh, A. M. Rekavandi, S. Abd-Krim, and K. Abed-Meraim, “Ro-

bust subspace tracking with contamination via 𝛼-divergence,” in IEEE
Int. Conf. Acoust. Speech Signal Process., 2023 (submitted).

[162] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality

reduction: A comparative review,” J. Mach. Learn. Res., vol. 10, no. 66-
71, p. 13, 2009.

[163] J.-M. Chaufray, W. Hachem, and P. Loubaton, “Asymptotic analysis of

optimum and suboptimum CDMA downlink MMSE receivers,” IEEE
Trans. Inf. Theory, vol. 50, no. 11, pp. 2620–2638, 2004.

[164] X. Mestre and M. Á. Lagunas, “Modified subspace algorithms for DoA

estimation with large arrays,” IEEE Trans. Signal Process., vol. 56, no. 2,
pp. 598–614, 2008.

[165] T. T. Cai, C.-H. Zhang, and H. H. Zhou, “Optimal rates of convergence

for covariance matrix estimation,” Ann. Stat., vol. 38, no. 4, pp. 2118–
2144, 2010.

[166] A. J. Rothman, E. Levina, and J. Zhu, “Generalized thresholding of large

covariance matrices,” J. Am. Stat. Assoc., vol. 104, no. 485, pp. 177–186,
2009.

[167] M. Hardt and E. Price, “The noisy power method: A meta algorithm

with applications,” in Adv. Neural Inf. Process. Syst., vol. 27, 2014.

[168] L. W. Mackey, “Deflation methods for sparse PCA,” in Adv. Neural Inf.
Process. Syst., 2008, pp. 1017–1024.

[169] X.-T. Yuan and T. Zhang, “Truncated Power Method for Sparse Eigen-

value Problems,” J. Mach. Learn. Res., vol. 14, no. Apr, pp. 899–925, 2013.

[170] Y. Deshpande and A. Montanari, “Sparse PCA via covariance thresh-

olding,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 4913–4953, 2016.

BIBLIOGRAPHY 313

[171] T. Wang, Q. Berthet, and R. J. Samworth, “Statistical and computa-

tional trade-offs in estimation of sparse principal components,” Ann.
Stat., vol. 44, no. 5, pp. 1896–1930, 2016.

[172] R. Krauthgamer, B. Nadler, D. Vilenchik et al., “Do semidefinite relax-

ations solve sparse PCA up to the information limit?” Ann. Stat., vol. 43,
no. 3, pp. 1300–1322, 2015.

[173] V. Q. Vu and J. Lei, “Minimax sparse principal subspace estimation in

high dimensions,” Ann. Stat., vol. 41, no. 6, pp. 2905–2947, 2013.

[174] N. V. Dung, K. Abed-Meraim, and N. L. Trung, “Second-order optimiza-

tion based adaptive PARAFAC decomposition of three-way tensors,”

Digit. Signal Process., vol. 63, pp. 100–111, 2017.

[175] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating

online CP decompositions for higher order tensors,” in ACM SIGKDD
Int. Conf. Knowl. Discover. Data Min., 2016, pp. 1375–1384.

[176] H. Kasai, “Fast online low-rank tensor subspace tracking by CP decom-

position using recursive least squares from incomplete observations,”

Neurocomput., vol. 347, pp. 177–190, 2019.

[177] X.-W. Chang, “On the Perturbation of the Q-factor of the QR Factoriza-

tion,” Numer. Linear Algebra Appl., vol. 19, no. 3, pp. 607–619, 2012.

[178] I. Mitliagkas, C. Caramanis, and P. Jain, “Memory limited, streaming

PCA,” in Adv. Neural Inf. Process. Syst., 2013, pp. 2886–2894.

[179] L. T. Thanh, N. T. A. Dao, N. V. Dung, N. L. Trung, and K. Abed-Meraim,

“Multi-channel EEG epileptic spike detection by a new method of ten-

sor decomposition,” J. Neural Eng., vol. 17, no. 1, p. 016023, 2020.

[180] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and T. Ris-

taniemi, “Tensor decomposition of EEG signals: A brief review,” J. Neu-
rosci. Methods, vol. 248, pp. 59–69, 2015.

[181] D. Nion and N. D. Sidiropoulos, “Tensor algebra and multidimensional

harmonic retrieval in signal processing for MIMO radar,” IEEE Trans.
Signal Process., vol. 58, no. 11, pp. 5693–5705, 2010.

[182] H. Chen, F. Ahmad, S. Vorobyov, and F. Porikli, “Tensor decompositions

in wireless communications and MIMO radar,” IEEE J. Sel. Topics Signal
Process., vol. 15, no. 3, pp. 438–453, 2021.

BIBLIOGRAPHY 314

[183] M. Nakatsuji, Q. Zhang, X. Lu, B. Makni, and J. A. Hendler, “Seman-

tic social network analysis by cross-domain tensor factorization,” IEEE
Trans. Comput. Soc. Syst., vol. 4, no. 4, pp. 207–217, 2017.

[184] S. Fernandes, H. Fanaee-T, and J. Gama, “Tensor decomposition for

analysing time-evolving social networks: An overview,” Artif. Intell.
Rev., vol. 54, no. 4, pp. 2891–2916, 2021.

[185] R. Bro, “PARAFAC. Tutorial and applications,” Chemometr. Intell. Lab.
Syst., vol. 38, no. 2, pp. 149–172, 1997.

[186] E. Acar and B. Yener, “Unsupervised multiway data analysis: A litera-

ture survey,” IEEE Trans Knowl. Data Eng., vol. 21, no. 1, pp. 6–20, 2008.

[187] G. Bergqvist and E. G. Larsson, “The higher-order singular value de-

composition: Theory and an application,” IEEE Signal Process. Mag.,
vol. 27, no. 3, pp. 151–154, 2010.

[188] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-

rank tensor approximation techniques,” GAMM-Mitteilungen, vol. 36,
no. 1, pp. 53–78, 2013.

[189] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, “Breaking the

Curse of Dimensionality Using Decompositions of Incomplete Tensors:

Tensor-based scientific computing in big data analysis,” IEEE Signal Pro-
cess. Mag., vol. 31, no. 5, pp. 71–79, 2014.

[190] V. D. Nguyen, K. Abed-Meraim, andN. Linh-Trung, “Fast tensor decom-

positions for big data processing,” in Int. Conf. Adv. Technol. Commun.,
2016, pp. 215–221.

[191] S. A. Asl, A. Cichocki, A. H. Phan, I. Oseledets et al., “Randomized al-

gorithms for computation of Tucker decomposition and higher-order

SVD (HOSVD),” IEEE Access, vol. 9, pp. 28 684–28 706, 2021.

[192] X. Fu, N. Vervliet, L. De Lathauwer, K. Huang, and N. Gillis, “Comput-

ing large-scale matrix and tensor decomposition with structured fac-

tors: A unified nonconvex optimization perspective,” IEEE Signal Pro-
cess. Mag., vol. 37, no. 5, pp. 78–94, 2020.

[193] D. Muti and S. Bourennane, “Survey on tensor signal algebraic filter-

ing,” Signal Process., vol. 87, no. 2, pp. 237–249, 2007.

[194] P. Comon, X. Luciani, and A. L. De Almeida, “Tensor decompositions,

alternating least squares and other tales,” J. Chemom., vol. 23, no. 7-8,
pp. 393–405, 2009.

BIBLIOGRAPHY 315

[195] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM,

vol. 60, no. 6, p. 45, 2013.

[196] P. Comon, “Tensors : A brief introduction,” IEEE Signal Process. Mag.,
vol. 31, no. 3, pp. 44–53, 2014.

[197] A. Zare, A. Ozdemir, M. A. Iwen, and S. Aviyente, “Extension of PCA to

higher order data structures: An introduction to tensors, tensor decom-

positions, and tensor PCA,” Proc. IEEE, vol. 106, no. 8, pp. 1341–1358,
2018.

[198] M. Mørup, “Applications of tensor (multiway array) factorizations and

decompositions in data mining,” Data Min. Knowl. Discov., vol. 1, no. 1,
pp. 24–40, 2011.

[199] A. Cichocki, D. Mandic, L. D. Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,

and H. A. Phan, “Tensor Decompositions for Signal Processing Appli-

cations: From two-way to multiway component analysis,” IEEE Signal
Process. Mag., vol. 32, no. 2, pp. 145–163, 2015.

[200] H. Fanaee-T and J. Gama, “Tensor-based anomaly detection: An inter-

disciplinary survey,” Knowl. Based Syst., vol. 98, pp. 130–147, 2016.

[201] E. E. Papalexakis, C. Faloutsos, andN. D. Sidiropoulos, “Tensors for data

mining and data fusion: Models, applications, and scalable algorithms,”

ACM Trans. Intell. Syst. Technol., vol. 8, no. 2, p. 16, 2017.

[202] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama,

and D. P. Mandic, “Tensor networks for dimensionality reduction and

large-scale optimization: Part 2 applications and future perspectives,”

Found. Trends Mach. Learn., vol. 9, no. 6, pp. 431–673, 2017.

[203] Y. Ji, Q. Wang, X. Li, and J. Liu, “A survey on tensor techniques and ap-

plications in machine learning,” IEEE Access, vol. 7, pp. 162 950–162 990,
2019.

[204] S. Miron, Y. Zniyed, R. Boyer, A. De Almeida, G. Favier, D. Brie, and

P. Comon, “Tensor methods for multisensor signal processing,” IET Sig-
nal Process., vol. 14, no. 10, pp. 693–709, 2021.

[205] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield, M. A. Nicolaou,

A. Anandkumar, and S. Zafeiriou, “Tensor methods in computer vision

and deep learning,” Proc. IEEE, vol. 109, no. 5, pp. 863–890, 2021.

[206] K. Batselier, “Low-rank tensor decompositions for nonlinear system

identification: A tutorial with examples,” IEEE Control Syst. Mag.,
vol. 42, no. 1, pp. 54–74, 2022.

BIBLIOGRAPHY 316

[207] V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best

low-rank approximation problem,” SIAM J. Matrix Anal. Appl., vol. 30,
no. 3, pp. 1084–1127, 2008.

[208] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1

and rank-(r1, r2„ rn) approximation of higher-order tensors,” SIAM J.
Matrix Anal. Appl., vol. 21, no. 4, pp. 1324–1342, 2000.

[209] L. De Lathauwer and D. Nion, “Decompositions of a higher-order ten-

sor in block terms—Part III: Alternating least squares algorithms,” SIAM
J. Matrix Anal. Appl., vol. 30, pp. 1067–1083, 2008.

[210] H. Fanaee-T and J. Gama, “Multi-aspect-streaming tensor analysis,”

Knowl. Based Syst., vol. 89, pp. 332–345, 2015.

[211] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the

PARAFAC decomposition of a third-order tensor,” IEEE Trans. Signal
Process., vol. 57, no. 6, pp. 2299–2310, 2009.

[212] V. D. Nguyen, K. Abed-Meraim, and N. Linh-Trung, “Fast adaptive

PARAFAC decomposition algorithm with linear complexity,” in IEEE
Int. Conf. Acoust. Speech Signal Process., 2016, pp. 6235–6239.

[213] M. Vandecappelle, N. Vervliet, and L. De Lathauwer, “Nonlinear least

squares updating of the canonical polyadic decomposition,” in Eur. Sig-
nal Process. Conf., 2017, pp. 663–667.

[214] Z. Zhang and C. Hawkins, “Variational bayesian inference for robust

streaming tensor factorization and completion,” in IEEE Int. Conf. Data
Min., 2018, pp. 1446–1451.

[215] T. Minh-Chinh, V. D. Nguyen, N. Linh-Trung, and K. Abed-Meraim,

“Adaptive PARAFACdecomposition for third-order tensor completion,”

in IEEE Int. Conf. Commun. Elect., 2016, pp. 297–301.

[216] S. Smith, K. Huang, N. D. Sidiropoulos, and G. Karypis, “Streaming ten-

sor factorization for infinite data sources,” in SIAM Int. Conf. Data Min.,
2018, pp. 81–89.

[217] Y. Du, Y. Zheng, K. Lee, and S. Zhe, “Probabilistic streaming tensor

decomposition,” in IEEE Int. Conf. Data Min., 2018, pp. 99–108.

[218] H.-K. Yang and H.-S. Yong, “Incremental PARAFAC decomposition for

three-dimensional tensors using Apache Spark,” in Int. Conf. Web Eng.,
2019, pp. 63–71.

BIBLIOGRAPHY 317

[219] S. Rambhatla, X. Li, and J. Haupt, “Provable online CP /PARAFAC de-

composition of a structured tensor via dictionary learning,” in Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 1–12.

[220] E. Gujral, G. Theocharous, and E. E. Papalexakis, “SPADE: Streaming

PARAFAC2 decomposition for large datasets,” in SIAM Int. Conf. Data
Min., 2020, pp. 577–585.

[221] T. Kwon, I. Park, D. Lee, and K. Shin, “SliceNStitch: Continuous CP

decomposition of sparse tensor streams,” IEEE Int. Conf. Data Eng., pp.
816–827, 2021.

[222] L. Dongjin and S. Kijung, “Robust factorization of real-world tensor

streams with patterns, missing values, and outliers,” in IEEE Int. Conf.
Data Eng., 2021, pp. 840–851.

[223] D. Ahn, S. Kim, and U. Kang, “Accurate online tensor factorization for

temporal tensor streams with missing values,” in ACM Int. Conf. Inf.
Knowl. Manag., 2021, pp. 2822–2826.

[224] H. Lyu, C. Strohmeier, and D. Needell, “Online nonnegative CP-

dictionary learning for Markovian data,” J. Mach. Learn. Res., pp. 1–41,
2022 (to appear).

[225] R. A. Harshman, “PARAFAC2: Mathematical and technical notes,”

UCLA Work. Pap. Phon., vol. 22, pp. 30–44, 1972.

[226] C. Chatfield, “The holt-winters forecasting procedure,” J. R. Stat. Soc.
Ser. C Appl. Stat., vol. 27, no. 3, pp. 264–279, 1978.

[227] P. Strobach, “Bi-iteration SVD subspace tracking algorithms,” IEEE
Trans. Signal Process., vol. 45, no. 5, pp. 1222–1240, 1997.

[228] C. Zeng and M. K. Ng, “Incremental CP tensor decomposition by alter-

nating minimization method,” SIAM J. Matrix Anal. Appl., vol. 42, no. 2,
pp. 832–858, 2021.

[229] S. Fang, Z. Wang, Z. Pan, J. Liu, and S. Zhe, “Streaming Bayesian deep

tensor factorization,” in Int. Conf. Machine Learn., 2021, pp. 3133–3142.

[230] T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan,

“Streaming variational bayes,” in Advances in Neural Information Pro-
cessing Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

and K. Q. Weinberger, Eds., vol. 26, 2013.

[231] X. Boyen andD. Koller, “Tractable inference for complex stochastic pro-

cesses,” in Conf. Uncertain. Artif. Intell., 1998, pp. 33–42.

BIBLIOGRAPHY 318

[232] Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu, “Multi-aspect stream-

ing tensor completion,” in ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min., 2017, pp. 435–443.

[233] M. Najafi, L. He, and S. Y. Philip, “Outlier-robust multi-aspect stream-

ing tensor completion and factorization.” in IJCAI Int. Joint Conf. Artif.
Intell., 2019, pp. 3187–3194.

[234] H.-K. Yang and H.-S. Yong, “Multi-aspect incremental tensor decom-

position based on distributed in-memory big data systems,” J. Data Inf.
Sci., vol. 5, no. 2, pp. 13–32, 2020.

[235] K. Yang, Y. Gao, Y. Shen, B. Zheng, and L. Chen, “DisMASTD: An effi-

cient distributedmulti-aspect streaming tensor decomposition,” in IEEE
Int. Conf. Data Eng., 2021, pp. 1080–1091.

[236] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: Dynamic

tensor analysis,” in ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
2006, pp. 374–383.

[237] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incremental

tensor analysis: Theory and applications,” ACM Trans. Knowl. Discov.
Data, vol. 2, no. 3, pp. 1–37, 2008.

[238] X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo, “Robust visual track-

ing based on incremental tensor subspace learning,” in IEEE Int. Conf.
Comput. Vis., 2007, pp. 1–8.

[239] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, and Z. Zhang, “Incremental

tensor subspace learning and its applications to foreground segmenta-

tion and tracking,” Int. J. Comput. Vis., vol. 91, no. 3, pp. 303–327, 2011.

[240] W. Zhang, H. Sun, X. Liu, Xiaohui, and Guo, “An incremental tensor

factorization approach for web service recommendation,” in IEEE Int.
Conf. Data Min. Works., 2014, pp. 346–351.

[241] L. Kuang, F. Hao, L. T. Yang, M. Lin, C. Luo, and G. Min, “A tensor-

based approach for big data representation and dimensionality reduc-

tion,” IEEE Trans. Emerg. Topics Comput., vol. 2, no. 3, pp. 280–291, 2014.

[242] R. Yu, D. Cheng, and Y. Liu, “Accelerated online low rank tensor learn-

ing for multivariate spatiotemporal streams,” in Int. Conf. Mach. Learn.,
2015, pp. 238–247.

[243] M. Baskaran, M. H. Langston, T. Ramananandro, D. Bruns-Smith,

T. Henretty, J. Ezick, and R. Lethin, “Accelerated low-rank updates to

BIBLIOGRAPHY 319

tensor decompositions,” in IEEE High Perf. Extreme Comput. Conf., 2016,
pp. 1–7.

[244] H. Kasai and B. Mishra, “Low-rank tensor completion: A Riemannian

manifold preconditioning approach,” in Int. Conf. Mach. Learn., 2016,
pp. 1012–1021.

[245] A. Ozdemir, E. M. Bernat, and S. Aviyente, “Recursive tensor subspace

tracking for dynamic brain network analysis,” IEEE Trans. Signal Inf.
Process. Netw., vol. 3, no. 4, pp. 669–682, 2017.

[246] X. Wang, W. Wang, L. T. Yang, S. Liao, D. Yin, and M. J. Deen, “A

distributed HOSVD method with its incremental computation for big

data in cyber-physical-social systems,” IEEE Trans. Comput. Social Syst.,
vol. 5, no. 2, pp. 481–492, 2018.

[247] L. T. Yang, X. Wang, X. Chen, L. Wang, R. Ranjan, X. Chen, and M. J.

Deen, “A multi-order distributed HOSVDwith its incremental comput-

ing for big services in cyber-physical-social systems,” IEEE Trans. Big
Data, vol. 6, no. 4, pp. 666–678, 2020.

[248] N.Madhav, B.Mishra, M. Gupta, and P. Talukdar, “Inductive framework

formulti-aspect streaming tensor completionwith side information,” in

ACM Int. Conf. Inf. Knowl. Manag., 2018, pp. 307–316.

[249] H. Xiao, F. Wang, F. Ma, and J. Gao, “eOTD: An efficient online tucker

decomposition for higher order tensors,” in IEEE Int. Conf. Data Min.,
2018, pp. 1326–1331.

[250] A. Traoré, M. Berar, and A. Rakotomamonjy, “Online multimodal dic-

tionary learning,” Neurocomput., vol. 368, pp. 163–179, 2019.

[251] ——, “Singleshot: A scalable Tucker tensor decomposition,” inAdv. Neu-
ral Inf. Process. Syst., 2019.

[252] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell, “Low-rank tucker ap-

proximation of a tensor from streaming data,” SIAM J. Math. Data Sci.,
vol. 2, no. 4, pp. 1123–1150, 2020.

[253] Z. Pan, Z. Wang, and S. Zhe, “Streaming nonlinear Bayesian tensor

decomposition,” in Conf. Uncertain. Artif. Intell., 2020, pp. 490–499.

[254] D. G. Chachlakis, M. Dhanaraj, A. Prater-Bennette, and P. P.Markopou-

los, “Dynamic L1-norm Tucker tensor decomposition,” IEEE J. Sel. Top-
ics Signal Process., vol. 15, no. 3, pp. 587–602, 2021.

BIBLIOGRAPHY 320

[255] S. Fang, R. M. Kirby, and S. Zhe, “Bayesian streaming sparse Tucker

decomposition,” in Conf. Uncertain. Artif. Intell., 2021, pp. 558–567.

[256] J.-G. Jang and U. Kang, “Fast and memory-efficient tucker decomposi-

tion for answering diverse time range queries,” in ACM SIGKDD Conf.
Knowl. Discov. Data Min., 2021, pp. 725–735.

[257] R. Zdunek and K. Fonal, “Incremental nonnegative Tucker decomposi-

tion with block-coordinate descent and recursive approaches,” Symme-
try, vol. 14, no. 1, p. 113, 2022.

[258] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for

robust visual tracking,” Int. J. Comput. Vis., vol. 77, no. 1, pp. 125–141,
2008.

[259] J. Li, G. Han, J. Wen, and X. Gao, “Robust tensor subspace learning for

anomaly detection,” Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 89–98,
2011.

[260] X. Wang, L. T. Yang, X. Chen, M. J. Deen, and J. Jin, “Improved multi-

order distributedHOSVDwith its incremental computing for smart city

services,” IEEE Trans. Sust. Comput., vol. 6, no. 3, pp. 456–468, 2021.

[261] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A survey of mul-

tilinear subspace learning for tensor data,” Pattern Recognit., vol. 44,
no. 7, pp. 1540–1551, 2011.

[262] R. Zhao and Q. Wang, “Learning separable dictionaries for sparse ten-

sor representation: An online approach,” IEEE Trans. Circuits Syst. II
Express Briefs, vol. 66, no. 3, pp. 502–506, 2019.

[263] P. Li, J. Feng, X. Jin, L. Zhang, X. Xu, and S. Yan, “Online robust low-

rank tensor modeling for streaming data analysis,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 4, pp. 1061–1075, 2019.

[264] Y. Hu, A. Qu, Y. Wang, and D. Work, “Streaming data preprocessing

via online tensor recovery for large environmental sensor networks,”

ArXiv Prepr. ArXiv210900596, 2021.

[265] D. G. Chachlakis, A. Prater-Bennette, and P. P. Markopoulos, “L1-norm

Tucker tensor decomposition,” IEEE Access, vol. 7, pp. 178 454–178 465,
2019.

[266] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank tensor

completion by Riemannian optimization,” BIT Numer. Math., vol. 54,
no. 2, pp. 447–468, 2014.

BIBLIOGRAPHY 321

[267] H. Liu, L. T. Yang, Y. Guo, X. Xie, and J. Ma, “An incremental tensor-

train decomposition for cyber-physical-social big data,” IEEE Trans. Big
Data, vol. 7, no. 2, pp. 341–354, 2021.

[268] X. Wang, L. T. Yang, Y. Wang, L. Ren, and M. J. Deen, “ADTT: A highly

efficient distributed tensor-train decomposition method for IIoT big

data,” IEEE Trans Ind. Inf., vol. 17, no. 3, pp. 1573–1582, 2021.

[269] E. Gujral and E. E. Papalexakis, “OnlineBTD: Streaming algorithms to

track the block term decomposition of large tensors,” in IEEE Int. Conf.
Data Sci. Adv. Anal., 2020, pp. 168–177.

[270] A. A. Rontogiannis, E. Kofidis, and P. V. Giampouras, “Online rank-

revealing block-term tensor decomposition,” in Asilomar Conf. Signals
Syst. Comput., 2021, pp. 1678–1682.

[271] Z. Zhang, D. Liu, S. Aeron, and A. Vetro, “An online tensor robust PCA

algorithm for sequential 2D data,” in IEEE Int. Conf. Acoust. Speech Sig-
nal Process., 2016, pp. 2434–2438.

[272] K. Gilman, D. Ataee Tarzanagh, and L. Balzano, “Grassmannian Opti-

mization for Online Tensor Completion and Tracking with the t-SVD,”

IEEE Trans. Signal Process., pp. 1–1, 2022.

[273] K. Gilman and L. Balzano, “Online tensor completion and free submod-

ule tracking with the t-SVD,” in IEEE Int. Conf. Acoust. Speech Signal
Process., 2020, pp. 3282–3286.

[274] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,

and M. Shah, “Visual tracking: An experimental survey,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1442–1468, 2013.

[275] X. Zhang, X. Shi, W. Hu, X. Li, and S. Maybank, “Visual tracking via dy-

namic tensor analysis with mean update,” Neurocomput., vol. 74, no. 17,
pp. 3277–3285, 2011.

[276] W. Hu, J. Gao, J. Xing, C. Zhang, and S. Maybank, “Semi-supervised

tensor-based graph embedding learning and its application to visual

discriminant tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 1, pp. 172–188, 2016.

[277] S. Khan, G. Xu, R. Chan, and H. Yan, “An online spatio-temporal tensor

learning model for visual tracking and its applications to facial expres-

sion recognition,” Expert Syst. Appl., vol. 90, pp. 427–438, 2017.

BIBLIOGRAPHY 322

[278] A. Sobral, S. Javed, S. K. Jung, T. Bouwmans, and E. Zahzah, “Online

stochastic tensor decomposition for background subtraction in mul-

tispectral video sequences,” in IEEE Int. Conf. Comput. Vis., 2015, pp.
946–953.

[279] M. M. Salut and D. V. Anderson, “Online tensor robust principal com-

ponent analysis,” IEEE Access, vol. 10, pp. 69 354–69 363, 2022.

[280] Y. He and G. K. Atia, “Patch tracking-based streaming tensor ring com-

pletion for visual data recovery,” IEEE Trans. Circuits Syst. Video Techn.,
pp. 1–1, 2022.

[281] B. Wen, Y. Li, L. Pfister, and Y. Bresler, “Joint adaptive sparsity and low-

rankness on the fly: an online tensor reconstruction scheme for video

denoising,” in IEEE Int. Conf. Comput. Vis., 2017, pp. 241–250.

[282] B. Wen, S. Ravishankar, and Y. Bresler, “VIDOSAT: High-dimensional

sparsifying transform learning for online video denoising,” IEEE Trans.
Image Process., vol. 28, no. 4, pp. 1691–1704, 2018.

[283] C.Min andG.Medioni, “Inferring segmented densemotion layers using

5D tensor voting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9,
pp. 1589–1602, 2008.

[284] D. S. Bassett and M. S. Gazzaniga, “Understanding complexity in the

human brain,” Trends Cognitive Sci., vol. 15, no. 5, pp. 200–209, 2011.

[285] A. Cichocki, Y. Washizawa, T. Rutkowski, H. Bakardjian, A.-H. Phan,

S. Choi, H. Lee, Q. Zhao, L. Zhang, and Y. Li, “Noninvasive BCIs: Multi-

way signal-processing array decompositions,” Computer, vol. 41, no. 10,
pp. 34–42, 2008.

[286] N. Yeung, M. M. Botvinick, and J. D. Cohen, “The neural basis of error

detection: conflict monitoring and the error-related negativity.” Psycho-
logical Rev., vol. 111, no. 4, p. 931, 2004.

[287] A. G.Mahyari, D.M. Zoltowski, E. M. Bernat, and S. Aviyente, “A tensor

decomposition-based approach for detecting dynamic network states

from EEG,” IEEE Trans. Biomed. Eng., vol. 64, no. 1, pp. 225–237, 2016.

[288] E. Acar, M. Roald, K. M. Hossain, V. D. Calhoun, and T. Adali, “Trac-

ing evolving networks using tensor factorizations vs. ICA-based ap-

proaches,” Front. Neurosci., vol. 16, 2022.

[289] A. Fotouhi, E. Eqlimi, and B. Makkiabadi, “Evaluation of adaptive

PARAFAC alogorithms for tracking of simulatedmoving brain sources,”

BIBLIOGRAPHY 323

in Annual Int. Conf. IEEE Eng. Med. Biol. Society. IEEE, 2015, pp. 3819–

3822.

[290] J. W. Meijs, O. W.Weier, M. J. Peters, and A. Van Oosterom, “On the nu-

merical accuracy of the boundary element method (EEG application),”

IEEE Trans. Biomedical Eng., vol. 36, no. 10, pp. 1038–1049, 1989.

[291] A. Fotouhi, E. Eqlimi, and B. Makkiabadi, “Adaptive localization of

moving eeg sources using augmented complex tensor factorization,” in

IEEE Int. Conf. Telecommun. Signal Process. IEEE, 2017, pp. 439–443.

[292] N. Linh-Trung, T. Minh-Chinh, V. Nguyen, and K. Abed-Meraim, “A

non-linear tensor tracking algorithm for analysis of incomplete multi-

channel EEG data,” in Int. Symp. Med. Inf. Commun. Technol., 2018, pp.
1–6.

[293] E. Karahan, P. A. Rojas-Lopez, M. L. Bringas-Vega, P. A. Valdes-

Hernandez, and P. A. Valdes-Sosa, “Tensor analysis and fusion of mul-

timodal brain images,” Proc. IEEE, vol. 103, no. 9, pp. 1531–1559, 2015.

[294] G. Zhou, Q. Zhao, Y. Zhang, T. Adalı, S. Xie, and A. Cichocki, “Linked

component analysis from matrices to high-order tensors: Applications

to biomedical data,” Proceed. IEEE, vol. 104, no. 2, pp. 310–331, 2016.

[295] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A sur-

vey,” ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, 2009.

[296] L. Shi, A. Gangopadhyay, and V. P. Janeja, “STenSr: Spatio-temporal

tensor streams for anomaly detection and pattern discovery,” Knowl.
Inf. Syst., vol. 43, no. 2, pp. 333–353, 2015.

[297] H. Kasai, W. Kellerer, and M. Kleinsteuber, “Network volume anomaly

detection and identification in large-scale networks based on on-

line time-structured traffic tensor tracking,” IEEE Trans. Netw. Service
Manag., vol. 13, no. 3, pp. 636–650, 2016.

[298] N. Cao, C. Lin, Q. Zhu, Y.-R. Lin, X. Teng, and X. Wen, “Voila: Vi-

sual anomaly detection and monitoring with streaming spatiotemporal

data,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1, pp. 23–33, 2017.

[299] C. Lin, Q. Zhu, S. Guo, Z. Jin, Y.-R. Lin, and N. Cao, “Anomaly detection

in spatiotemporal data via regularized non-negative tensor analysis,”

Data Min. Knowl. Disc., vol. 32, no. 4, pp. 1056–1073, 2018.

[300] M. Xu, J. Wu, H. Wang, and M. Cao, “Anomaly detection in road net-

works using sliding-window tensor factorization,” IEEE Trans. Intell.
Transport. Syst., vol. 20, no. 12, pp. 4704–4713, 2019.

BIBLIOGRAPHY 324

[301] J. Yuan, G. C. Alexandropoulos, E. Kofidis, T. L. Jensen, and E. De Car-

valho, “Channel tracking for ris-enabled multi-user simo systems in

time-varying wireless channels,” in IEEE Int. Conf. Commun. Works.
IEEE, 2022, pp. 145–150.

[302] K. Luo, X. Zhou, B. Wang, J. Huang, and H. Liu, “Sparse Bayes ten-

sor and DOA tracking inspired channel estimation for V2X millimeter

wave massive MIMO system,” Sensors, vol. 21, no. 12, p. 4021, 2021.

[303] C. C. Garcez, D. V. de Lima, R. K.Miranda, F.Mendonca, J. P. C. da Costa,

A. L. de Almeida, and R. T. de Sousa Jr, “Tensor-based subspace tracking

for time-delay estimation in GNSS multi-antenna receivers,” Sensors,
vol. 19, no. 23, p. 5076, 2019.

[304] D.M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using

matrix and tensor factorizations,” ACM Trans. Knowl. Disc. Data, vol. 5,
no. 2, pp. 1–27, 2011.

[305] Y.-R. Lin, K. S. Candan, H. Sundaram, and L. Xie, “SCENT: Scalable

compressed monitoring of evolving multirelational social networks,”

ACM Trans. Multimedia Comput. Commun. Appl., vol. 7, no. 1, pp. 1–22,
2011.

[306] K. Shin, B. Hooi, J. Kim, and C. Faloutsos, “Densealert: Incremen-

tal dense-subtensor detection in tensor streams,” in ACM SIGKDD Int.
Conf. Knowl. Discov. Data Min., 2017, pp. 1057–1066.

[307] W. Sun and R. D. Braatz, “Opportunities in tensorial data analytics for

chemical and biologicalmanufacturing processes,” Comput. Chem. Eng.,
vol. 143, p. 107099, 2020.

[308] I. W. Sanou, R. Redon, X. Luciani, and S. Mounier, “Online Nonneg-

ative and Sparse Canonical Polyadic Decomposition of Fluorescence

Tensors,” Chemometrics and Intelligent Laboratory Systems, p. 104550,
2022.

[309] X. Meng, A. Morris, and E. Martin, “On-line monitoring of batch pro-

cesses using a PARAFAC representation,” J. Chemometr., vol. 17, no. 1,
pp. 65–81, 2003.

[310] S. Gourvenec, I. Stanimirova, C.-A. Saby, C. Airiau, and D. Mas-

sart, “Monitoring batch processes with the STATIS approach,” J.
Chemometr., vol. 19, no. 5-7, pp. 288–300, 2005.

BIBLIOGRAPHY 325

[311] H. Tan, Y. Wu, B. Shen, P. J. Jin, and B. Ran, “Short-term traffic predic-

tion based on dynamic tensor completion,” IEEE Trans. Intell. Transport.
Syst., vol. 17, no. 8, pp. 2123–2133, 2016.

[312] J. Wang, J. Wu, Z. Wang, F. Gao, and Z. Xiong, “Understanding urban

dynamics via context-aware tensor factorization with neighboring reg-

ularization,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 11, pp. 2269–2283,
2019.

[313] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Netw. Appl.,
vol. 19, no. 2, pp. 171–209, 2014.

[314] L. De Lathauwer, B. DeMoor, and J. Vandewalle, “Amultilinear singular

value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp.
1253–1278, 2000.

[315] C. D. Martin, R. Shafer, and B. LaRue, “An order-p tensor factorization

with applications in imaging,” SIAM J. Sci. Comput., vol. 35, no. 1, pp.
A474–A490, 2013.

[316] Z. Zhang and S. Aeron, “Exact tensor completion using t-SVD,” IEEE
Trans. Signal Process., vol. 65, no. 6, pp. 1511–1526, 2017.

[317] F. Jiang, X.-Y. Liu, H. Lu, and R. Shen, “Efficient multi-dimensional ten-

sor sparse coding using t-linear combination,” in AAAI Conf. Artif. In-
tell., 2018.

[318] I. Kajo, N. Kamel, and Y. Ruichek, “Incremental tensor-based comple-

tionmethod for detection of stationary foreground objects,” IEEE Trans.
Circuits Syst. Video Technol., vol. 29, no. 5, pp. 1325–1338, 2019.

[319] S. Chatterjee, “A deterministic theory of low rank matrix completion,”

IEEE Trans. Inf. Theory, vol. 66, no. 12, pp. 8046–8055, 2020.

[320] M. Ashraphijuo and X. Wang, “Fundamental conditions for low-CP-

rank tensor completion,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 2116–
2145, 2017.

[321] J. Mairal, “Incremental majorization-minimization optimization with

application to large-scale machine learning,” SIAM J. Optim., vol. 25,
no. 2, pp. 829–855, 2015.

[322] G. Raskutti and M. W. Mahoney, “A statistical perspective on random-

ized sketching for ordinary least-squares,” J. Mach. Learn. Res., vol. 17,
no. 1, pp. 7508–7538, 2016.

BIBLIOGRAPHY 326

[323] M.W.Mahoney, “Randomized algorithms formatrices and data,” Found.
Trends Mach. Learn., vol. 3, no. 2, pp. 123–224, 2011.

[324] C. Battaglino, G. Ballard, and T. G. Kolda, “A practical randomized CP

tensor decomposition,” SIAM J. Matrix Anal. Appl., vol. 39, no. 2, pp.
876–901, 2018.

[325] H. Avron, P. Maymounkov, and S. Toledo, “Blendenpik: Supercharging

LAPACK’s least-squares solver,” SIAM J. Sci. Comput., vol. 32, no. 3, pp.
1217–1236, 2010.

[326] I. C. Ipsen and T. Wentworth, “The effect of coherence on sampling

from matrices with orthonormal columns, and preconditioned least

squares problems,” SIAM J. Matrix Anal. Appl., vol. 35, no. 4, pp. 1490–
1520, 2014.

[327] J. A. Tropp, “Improved analysis of the subsampled randomized

Hadamard transform,” Adv. Adapt. Data Anal., vol. 3, no. 01n02, pp.
115–126, 2011.

[328] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster

least squares approximation,” Numer. Math., vol. 117, no. 2, pp. 219–
249, 2011.

[329] J. C. Spall, Introduction to Stochastic Search and Optimization, 2005.

[330] A. N. Langville andW. J. Stewart, “The Kronecker product and stochas-

tic automata networks,” J. Comput. Appl. Math., vol. 167, no. 2, pp. 429–
447, 2004.

[331] C. F. Van Loan, “The ubiquitous Kronecker product,” J. Comput. Appl.
Math., vol. 123, no. 1-2, pp. 85–100, 2000.

[332] H. Diao, R. Jayaram, Z. Song, W. Sun, and D. Woodruff, “Optimal

sketching for Kronecker product regression and low rank approxima-

tion,” in Adv. Neural Inf. Process. Syst., 2019, pp. 4739–4750.

[333] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-

rithms in signal processing, communications, and machine learning,”

IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, 2016.

[334] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Online nonnegative matrix fac-

torization with robust stochastic approximation,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 23, no. 7, pp. 1087–1099, 2012.

BIBLIOGRAPHY 327

[335] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with

sparse and factored tensors,” SIAM J. Sci. Comput., vol. 30, no. 1, pp.
205–231, 2008.

[336] A.-H. Phan, P. Tichavskỳ, and A. Cichocki, “Fast alternating LS algo-

rithms for high order CANDECOMP/PARAFAC tensor factorizations,”

IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4834–4846, 2013.

[337] J. S. Simonoff, Smoothing Methods in Statistics, 2012.

[338] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari,NonnegativeMatrix
and Tensor Factorizations: Applications to Exploratory Multi-Way Data
Analysis and Blind Source Separation, 2009.

[339] D. Chen and R. J. Plemmons, “Nonnegativity constraints in numerical

analysis,” in Symposium on the Birth of Numerical Analysis, 2010, pp.
109–139.

[340] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, 1995.

[341] D. L. Pimentel-Alarcón, N. Boston, and R. D. Nowak, “A characteriza-

tion of deterministic sampling patterns for low-rank matrix comple-

tion,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 4, pp. 623–636, 2016.

[342] M. Ashraphijuo, V. Aggarwal, and X. Wang, “Deterministic and proba-

bilistic conditions for finite completability of low-Tucker-Rank tensor,”

IEEE Trans. Inf. Theory, vol. 65, no. 9, pp. 5380–5400, 2019.

[343] M. Métivier, Semimartingales: A Course on Stochastic Processes, 1984.

[344] Y. Xu, “Fast algorithms for higher-order singular value decomposition

from incomplete data,” J. Comput. Math., vol. 35, no. 4, pp. 395–420,
2017.

[345] M. Filipović and A. Jukić, “Tucker factorization with missing data with

application to low-n-rank tensor completion,”Multidimens. Syst. Signal
Process., vol. 26, no. 3, pp. 677–692, 2015.

[346] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable tensor

factorizations for incomplete data,” Chemometr. Intell. Lab. Syst., vol.
106, no. 1, pp. 41–56, 2011.

[347] V. Vigneron, A. Kodewitz, M. N. da Costa, A. M. Tome, and E. Langlang,

“Non-negative sub-tensor ensemble factorization (NsTEF) algorithm. A

new incremental tensor factorization for large datasets.” Signal Process.,
vol. 144, pp. 77–86, 2018.

BIBLIOGRAPHY 328

[348] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, “Rank-one modification

of the symmetric eigenproblem,” Numer. Math., vol. 31, no. 1, pp. 31–48,
1978.

[349] G. Cheng, X. Luo, and L. Li, “The bounds of the smallest and largest

eigenvalues for rank-one modification of the Hermitian eigenvalue

problem,” Applied Mathematics Letters, vol. 25, no. 9, pp. 1191–1196,
2012.

[350] J. F. Bonnans and A. Shapiro, “Optimization problems with perturba-

tions: A guided tour,” SIAM Rev., vol. 40, no. 2, pp. 228–264, 1998.

[351] J. Mairal, “Stochastic majorization-minimization algorithms for large-

scale optimization,” in Adv. Neural Inf. Process. Syst., 2013, pp. 2283–
2291.

[352] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2002.

[353] Y. Nesterov, “Introductory lectures on convex programming,” 1998.

[354] E. Kofidis, “A tensor-based approach to joint channel Estimation/Data

detection in flexible multicarrier MIMO systems,” IEEE Trans. Signal
Process., vol. 68, pp. 3179–3193, 2020.

[355] V. A. Miguel, J. E. Cohen, R. Cabral Farias, J. Chanussot, and P. Comon,

“Nonnegative tensor CP decomposition of hyperspectral data,” IEEE
Trans. Geosci. Remote Sens., vol. 54, no. 5, pp. 2577–2588, 2016.

[356] S. Velasco-Forero and J. Angulo, “Classification of hyperspectral im-

ages by tensor modeling and additive morphological decomposition,”

Pattern Recognit., vol. 46, no. 2, pp. 566–577, 2013.

[357] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener, “Multiway

analysis of epilepsy tensors,” Bioinformatics, vol. 23, no. 13, pp. i10–i18,
2007.

[358] J. Hastad, “Tensor rank is NP-complete,” J. Algorithm., vol. 11, no. 4, pp.
644–654, 1990.

[359] R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data, 2019.

[360] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, “Dynam-

ical approximation by hierarchical Tucker and tensor-train tensors,”

SIAM J. Matrix Anal. Appl., vol. 34, no. 2, pp. 470–494, 2013.

[361] C. Lubich, I. V. Oseledets, and B. Vandereycken, “Time integration of

tensor trains,” SIAM J. Numer. Anal., vol. 53, no. 2, pp. 917–941, 2015.

BIBLIOGRAPHY 329

[362] C. Lubich, B. Vandereycken, and H. Walach, “Time integration of rank-

constrained Tucker tensors,” SIAM J. Numer. Anal., vol. 56, no. 3, pp.
1273–1290, 2018.

[363] Y. Zniyed, R. Boyer, A. de Almeida, and G. Favier, “A TT-Based hier-

archical framework for decomposing high-order tensors,” SIAM J. Sci.
Comput., vol. 42, no. 2, pp. 822–848, 2020.

[364] S. S. Haykin, Adaptive Filter Theory, 2008.

[365] Y. Xu and W. Yin, “A block coordinate descent method for regularized

multiconvex optimization with applications to nonnegative tensor fac-

torization and completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp. 1758–
1789, 2013.

[366] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimiza-

tion with biconvex functions: A survey and extensions,”Math. Methods
Oper. Res., vol. 66, no. 3, pp. 373–407, 2007.

[367] A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining from
Evolving Data Streams, 2010.

[368] A.-A. Saucan, T. Chonavel, C. Sintes, and J.-M. Le Caillec, “CPHD-

DOA Tracking of multiple extended sonar targets in impulsive envi-

ronments,” IEEE Trans. Signal Process., vol. 64, no. 5, pp. 1147–1160,
2016.

[369] S. Wang, Z. He, K. Niu, P. Chen, and Y. Rong, “New results on joint

channel and impulsive noise estimation and tracking in underwater

acoustic OFDM systems,” IEEE Trans. Wireless Commun., vol. 19, no. 4,
pp. 2601–2612, 2020.

[370] R. L. Das andM. Narwaria, “Lorentzian based adaptive filters for impul-

sive noise environments,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 64,
no. 6, pp. 1529–1539, 2017.

[371] P. Hänggi and P. Jung, “Colored noise in dynamical systems,” Adv.
Chem. Phys., vol. 89, pp. 239–326, 2007.

[372] M. Mørup and L. K. Hansen, “Automatic relevance determination for

multi-way models,” J. Chemom., vol. 23, no. 7-8, pp. 352–363, 2009.

[373] J. A. Bazerque, G. Mateos, and G. B. Giannakis, “Rank regularization

and Bayesian inference for tensor completion and extrapolation,” IEEE
Trans. Signal Process., vol. 61, no. 22, pp. 5689–5703, 2013.

BIBLIOGRAPHY 330

[374] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of in-

complete tensors with automatic rank determination,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 37, no. 9, pp. 1751–1763, 2015.

[375] M. Che, A. Cichocki, and Y. Wei, “Neural networks for computing best

rank-one approximations of tensors and its applications,” Neurocom-
puting, vol. 267, pp. 114–133, 2017.

[376] M. Zhou, Y. Liu, Z. Long, L. Chen, and C. Zhu, “Tensor rank learning

in CP decomposition via convolutional neural network,” Signal Process.
Image Commun., vol. 73, pp. 12–21, 2019.

[377] C. Hawkins, X. Liu, and Z. Zhang, “Towards compact neural networks

via end-to-end training: A Bayesian tensor approach with automatic

rank determination,” SIAM J. Math. Data Sci., vol. 4, no. 1, pp. 46–71,
2022.

[378] C. Ma, X. Yang, and H. Wang, “Randomized online CP decomposition,”

in Int. Conf. Adv. Comput. Intell., 2018, pp. 414–419.

[379] I. Foster, Designing and Building Parallel Programs: Concepts and Tools
for Parallel Software Engineering, 2020.

[380] J. H. Choi and S. Vishwanathan, “DFacTo: Distributed factorization of

tensors,” in Adv. Neural Inf. Process. Syst., 2014, pp. 1–9.

[381] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:

Efficient and parallel sparse tensor-matrix multiplication,” in IEEE Int.
Parallel Distrib. Process. Symp., 2015, pp. 61–70.

[382] H. Li, Z. Li, K. Li, J. S. Rellermeyer, L. Chen, and K. Li, “SGD-Tucker:

A novel stochastic optimization strategy for parallel sparse Tucker de-

composition,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1828–
1841, 2021.

[383] H. Al Daas, G. Ballard, P. Benner, and M. P. I. Magdeburg, “Parallel

Algorithms for Tensor Train Arithmetic,” SIAM J. Sci. Comput., vol. 44,
no. 1, pp. 25–53, 2022.

[384] N. Cohen and A. Shashua, “Convolutional rectifier networks as gen-

eralized tensor decompositions,” in Int. Conf. Mach. Learn., 2016, pp.
955–963.

[385] B. Liu, L. He, Y. Li, S. Zhe, and Z. Xu, “NeuralCP: Bayesian multi-

way data analysis with neural tensor decomposition,” Cogn. Comput.,
vol. 10, no. 6, pp. 1051–1061, 2018.

BIBLIOGRAPHY 331

[386] X.Wang, M. Che, and Y.Wei, “Tensor neural networkmodels for tensor

singular value decompositions,” Comput. Optim. Appl., vol. 75, no. 3, pp.
753–777, 2020.

[387] P. Brito, “Symbolic data analysis: Another look at the interaction of

data mining and statistics,” Data Min. Knowl. Discov., vol. 4, no. 4, pp.
281–295, 2014.

[388] F. Di Mauro, K. S. Candan, and M. L. Sapino, “Tensor-train decomposi-

tion in presence of interval-valued data,” IEEE Trans. Knowl. Data Eng.,
2021 (early access).

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	General Introduction
	Big Data Stream Processing
	Vector, Matrix, and Tensor Operations
	Batch Low-rank Approximation: From SVD to Tensor Decomposition
	Online Low-rank Approximation: From Subspace to Tensor Tracking

	Thesis Description
	Thesis Outline and Contributions
	List of Publications

	An Overview of Robust Subspace Tracking
	Introduction
	Related Work
	Main Contributions

	Robust Subspace Tracking: Problem Formulation
	Robust Subspace Tracking in the Presence of Missing Data and Outliers
	Grassmannian Algorithms
	Recursive Least-Squares based Algorithms
	Recursive Projected Compressive Sensing based Algorithms
	Adaptive Projected Subgradient Method based Algorithms
	Other Algorithms

	Robust Subspace Tracking in the Presence of Impulsive Noise
	Robust Variants of PAST
	Adaptive Kalman Filtering
	Weighted Recursive Least-Squares Method

	Robust Subspace Tracking in the Presence of Colored Noise
	Instrumental Variable based Algorithms
	Oblique Projection based Algorithms

	Sparse Subspace Tracking
	Conclusions

	Robust Subspace Tracking with Missing Data and Outliers
	Introduction
	Related Works
	Contributions

	Problem Formulation
	Robust Subspace Tracking
	Assumptions

	Proposed PETRELS-ADMM Algorithm
	Online ADMM for Outlier Detection
	Improved PETRELS for Subspace Estimation
	Computational Complexity Analysis

	Performance Analysis
	Experiments
	Robust Subspace Tracking
	Convergence of PETRELS-ADMM
	Outlier Detection
	Robustness of PETRELS-ADMM

	Robust Matrix Completion
	Video Background/Foreground Separation

	Conclusions
	Appendix
	Proof of Lemma 1
	Proof of Proposition (P-1)
	Proof of Proposition (P-2)
	Proof of Proposition (P-3)
	Proof of Proposition (P-4)
	Proof of Proposition (P-5)

	Proof of Proposition 2
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Sparse Subspace Tracking in High Dimensions
	Introduction
	Related Works
	Contribution and Significance
	Organization and Notations

	Problem Formulation
	Proposed Methods
	OPIT Algorithm
	OPIT with Deflation
	Discussions

	Convergence Analysis
	Experiments
	Experiments with Synthetic Data
	Experiment Setup
	Effect of the forgetting factor
	OPIT in Noisy and Dynamic Environments
	OPIT versus Other SST Methods
	OPITd versus OPIT

	Experiments with Real Video Data

	Conclusions
	Appendix
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Proof of Lemma 3
	Appendix D: Proof of Lemma 4

	An Overview of Tensor Tracking
	Introduction
	State-of-the-art Surveys
	Main Contributions

	Tensor Decompositions
	CP/PARAFAC Decomposition
	Tucker Decomposition
	Block-Term Decomposition
	Tensor-train Decomposition
	T-SVD Decomposition

	Tensor Tracking Formulation
	Single-aspect Streaming Model
	Multi-aspect Streaming Model
	General Formulation of Optimization

	Streaming CP Decomposition
	Subspace-based Methods
	Block-Coordinate Descent
	Bayesian Inference
	Multi-aspect streaming CP decomposition

	Streaming Tucker Decomposition
	Online Tensor Dictionary Learning
	Tensor Subspace Tracking
	Multi-aspect streaming Tucker decomposition

	Other Streaming Tensor Decompositions
	Streaming Tensor-Train Decomposition
	Streaming Block-Term Decomposition
	Streaming t-SVD Decomposition

	Applications
	Computer Vision
	Neuroscience
	Anomaly Detection
	Others

	Conclusions

	Robust Tensor Tracking with Missing Data and Outliers
	Introduction
	Related Works
	Main Contributions

	Tensor Tracking with Missing Data
	Problem Statement
	Adaptive CP Decomposition
	Proposed ACP Algorithm
	Performance Analysis

	Adaptive Tucker Decomposition
	Proposed ATD Algorithm
	Performance Analysis

	Tensor Tracking with Sparse Outliers
	Problem Statement
	Robust Adaptive CP Decomposition
	Proposed RACP Algorithm
	Extensions of the RACP algorithm

	Performance Analysis
	Assumptions
	Main Results
	Discussions

	Performance Evaluation
	Performance of ACP
	Experiment Setup
	Effect of Forgetting Factor
	Asymptotic Convergence Behavior
	Noisy and Dynamic Environments
	Evaluation of Effectiveness and Efficiency

	Performance of ATD
	Experimental Setup
	Robustness of ATD
	Tracking Ability in Dynamic Environments
	Orthogonality Constraint
	Real Data

	Performance of RACP
	Experiment Setup
	Robustness of RACP
	Nonnegative RACP
	Real Datasets

	Conclusions
	Appendix
	Appendix A: Proof of Lemma 9
	Stage I
	Step II

	Appendix B: Proof of Lemma 11
	Appendix D: Proof of Lemma 12
	Appendix D: Proof of Lemma 13
	Appendix E: Useful Propositions

	Tensor Tracking under Tensor-Train Format
	Introduction
	Streaming Tensor-Train Decomposition
	Problem Formulation
	Proposed Method
	Estimation of gt(N)
	Estimation of TT-cores
	Computational Complexity and Memory Storage Analysis

	Streaming Tensor-Train Decomposition with Missing Data
	Problem Formulation
	Proposed Method
	Estimation of the temporal TT-core
	Estimation of the non-temporal TT-cores
	Complexity Analysis

	Streaming Tensor-Train Decomposition with Sparse Outliers
	Problem Formulation
	Proposed Method
	Estimation of the temporal TT-core and Outlier
	Estimation of TT-cores
	Computational Complexity and Memory Storage

	Experiments
	Performance of TT-FOA
	Synthetic Data
	Real Data

	Performance of ATT
	Experiment Setup
	Effect of the noise level n
	Effect of the time-varying factor
	Effect of the missing density miss
	Online video completion

	Performance of ROBOT
	Experiment Setup
	Effect of the noise level n
	Effect of the time-varying factor
	Effect of the missing density miss
	Effect of outliers
	Video background/foreground separation

	Conclusions

	Conclusions
	Conclusions
	Research Challenges, Open Problems, and Future Directions
	Data Imperfection and Corruption
	Rank Revealing and Tracking
	Efficient and Scalable Tensor Tracking
	Others

	Résumé de la Thèse
	Traitement de Flux de Données Volumineuses
	Approximation de Rang Inférieur: Du SVD au Décomposition du Tenseur
	Approximation de Rang Inférieur en Ligne: Du Sous-espace au Suivi Tensoriel

	Description de la Thèse
	Sommaire et Contributions de la Thèse
	Liste des Publications

	Bibliography

